
### COLUMBIA UNIVERSITY OF PUBLIC HEALTH ENVIRONMENTAL HEALTH SCIENCES

## Transmission Dynamics of SARS-CoV-2: Inference and Projection



Jeffrey Shaman January 21, 2021

# Funders

NIH (NIGMS)/NSF (DMS) joint initiative to support research at the interface of the biological and mathematical sciences



Models of Infectious Disease Agent Study

> Funded by the National Institutes of Health









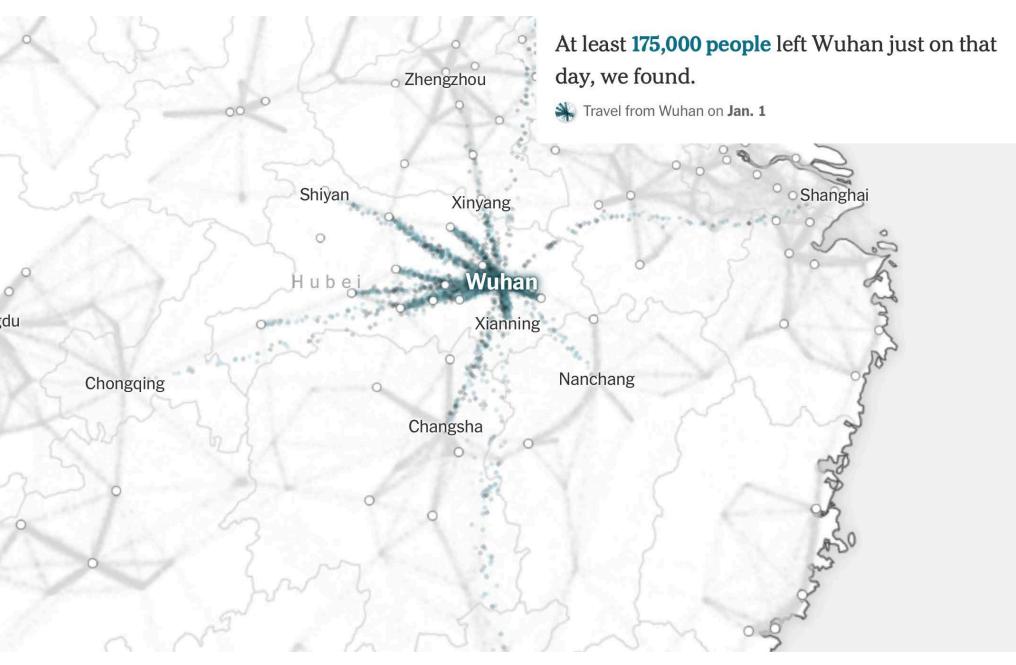
## Collaborators

### Columbia/Mailman

Wan Yang Sasikiran Kandula Teresa Yamana Sen Pei Marta Galanti Nicholas Defelice Haruka Morita Alexandra Heaney (UC Berkeley) Ruiyin Li (Imperial) James Tamerius (U. Iowa)

### Other

Alicia Karspeck Marc Lipsitch (Harvard) Cecile Viboud (NIH/Fogarty) Virginia Pitzer (Yale) Bryan Grenfell (Harvard) Bin Chen (UC Davis) Yimeng Song (U Hong Kong) Tao Zhang (Tsinghua) • **Cohort** — 214 individuals from October 2016 to April 2018.


(two daycares, CUMC, pediatric and adult ED, high school). Weekly swabs + daily symptoms .

# Virome of Manhattan Most Infections Undocumented

| VIRUS       | EPISODES* | MA | P(MA v <sub>i</sub> ) | HOME | P(HOME v <sub>i</sub> ) | MEDS | P(MEDS v <sub>i</sub> ) |
|-------------|-----------|----|-----------------------|------|-------------------------|------|-------------------------|
| Influenza   | 32        | 7  | 0.22                  | 14   | 0.44                    | 18   | 0.56                    |
| RSV         | 30        | 2  | 0.07                  | 6    | 0.20                    | 12   | 0.40                    |
| PIV         | 30        | 3  | 0.10                  | 4    | 0.15                    | 9    | 0.30                    |
| HMPV        | 20        | 4  | 0.20                  | 7    | 0.35                    | 10   | 0.50                    |
| HRV         | 275       | 24 | 0.09                  | 31   | 0.11                    | 70   | 0.25                    |
| Adenovirus  | 63        | 9  | 0.14                  | 10   | 0.16                    | 14   | 0.22                    |
| Coronavirus | 137       | 6  | 0.04                  | 13   | 0.09                    | 36   | 0.25                    |

\*group of consecutive weekly specimens from a given individual that were positive for the same v (allowing for a one-week gap to account for false negatives and temporary low shedding).

### **COVID-19 Rapid Spread**



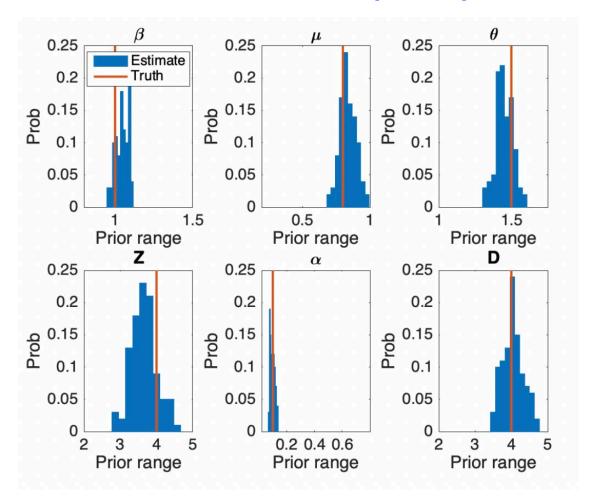
#### New York Times, March 22, 2020

$$\begin{aligned} \frac{dS_i}{dt} &= -\frac{\beta S_i I_i^r}{N_i} - \frac{\mu \beta S_i I_i^u}{N_i} + \theta \sum_j \frac{M_{ij} S_j}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji} S_i}{N_i - I_i^r} \\ \frac{dE_i}{dt} &= \frac{\beta S_i I_i^r}{N_i} + \frac{\mu \beta S_i I_i^u}{N_i} - \frac{E_i}{Z} + \theta \sum_j \frac{M_{ij} E_j}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji} E_i}{N_i - I_i^r} \\ \frac{dI_i^r}{dt} &= \alpha \frac{E_i}{Z} - \frac{I_i^r}{D} \\ \frac{dI_i^u}{dt} &= (1 - \alpha) \frac{E_i}{Z} - \frac{I_i^u}{D} + \theta \sum_j \frac{M_{ij} I_j^u}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji} I_i^u}{N_i - I_i^u} \\ N_i &= N_i + \theta \sum_j M_{ij} - \theta \sum_j M_{ji} \end{aligned}$$

- Metapopulation network model representing 375 cities in China
- Use Tencent travel records during the Chunyun spring festival
- Coupled with data assimilation methods
- Use daily observations from all 375 cities
- Simulate January 10-23

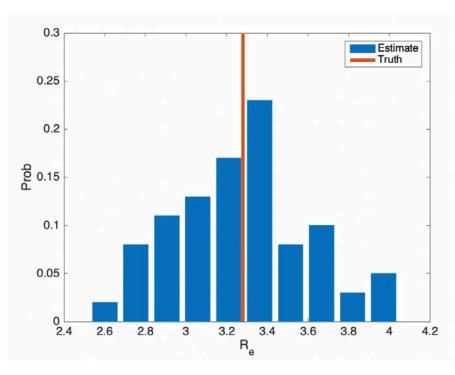
Li et al., 2020

$$\frac{dS_i}{dt} = -\frac{\beta S_i I_i^r}{N_i} - \frac{\mu \beta S_i I_i^u}{N_i} + \theta \sum_j \frac{M_{ij} S_j}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji} S_i}{N_i - I_i^r}$$


$$\frac{dE_i}{dt} = \frac{\beta S_i I_i^t}{N_i} + \frac{\mu \beta S_i I_i^a}{N_i} - \frac{E_i}{Z} + \theta \sum_j \frac{M_{ij} E_j}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji} E_i}{N_i - I_i^r}$$

$$\frac{dI_i^r}{dt} = \alpha \frac{E_i}{Z} - \frac{I_i^r}{D}$$
$$\frac{dI_i^u}{dt} = (1 - \alpha) \frac{E_i}{Z} - \frac{I_i^u}{D} + \theta \sum_j \frac{M_{ij}I_j^u}{N_j - I_j^r} - \theta \sum_j \frac{M_{ji}I_i^u}{N_i - I_i^u}$$

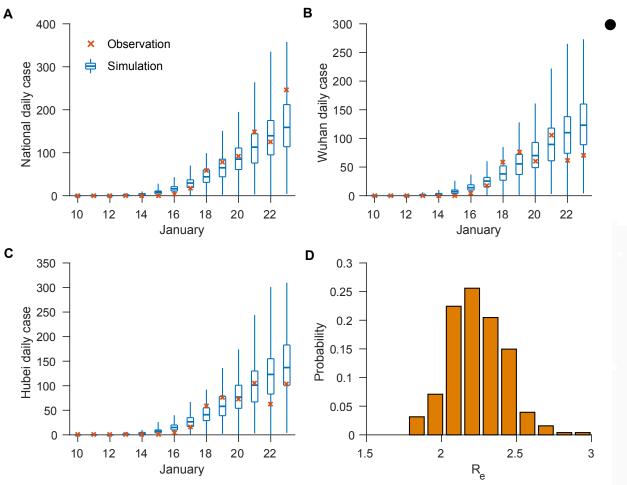
$$N_i = N_i + \theta \sum_j M_{ij} - \theta \sum_j M_{ji}$$


Li et al., 2020

- Simulate January 10-23
- Prior to travel restrictions
- The model separately represents documented and undocumented infections
- The model has a separate contagiousness for documented/ undocumented infections

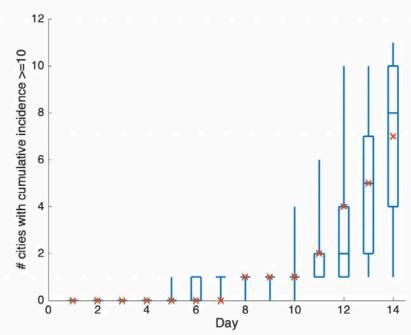


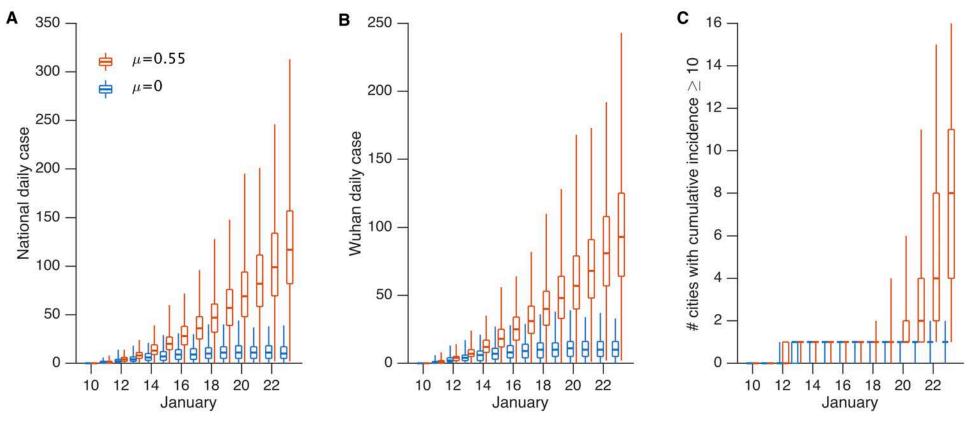
Li et al., 2020


 Synthetic test of modelinference parameter estimation using modelgenerated observations



| Parameter                                     | Median (95% CIs)  |
|-----------------------------------------------|-------------------|
| Transmission rate ( $\beta$ , <u>days-1</u> ) | 1.12 (1.04, 1.18) |
| Relative transmission rate $(\mu)$            | 0.55 (0.46, 0.62) |
| Latency period (Z, days)                      | 3.69 (3.28, 4.03) |
| Infectious period (D, days)                   | 3.48 (3.18, 3.74) |
| Reporting rate $(\alpha)$                     | 0.14 (0.10, 0.18) |
| Basic reproductive number $(R_e)$             | 2.38 (2.04, 2.77) |
| Mobility factor ( $\theta$ )                  | 1.36 (1.28, 1.43) |


- Estimate that 14% of infections are documented
- 86% are undocumented
- Per person, undocumented infections are on average half as contagious (55%) as documented infections
- 2.38 reproductive number

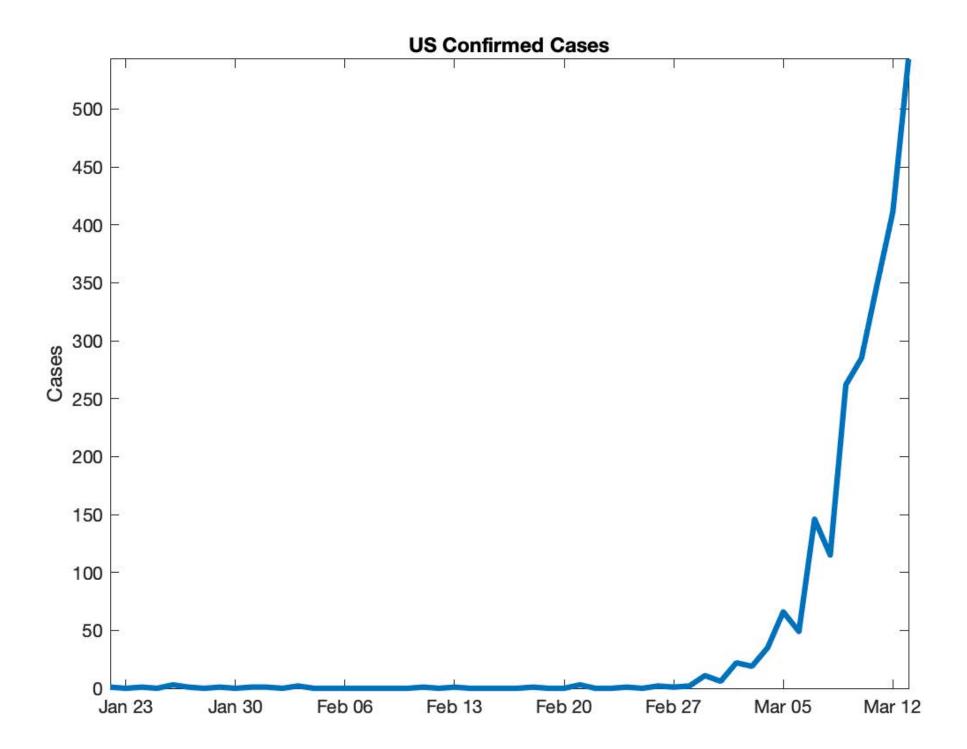

Li et al., 2020



Li et al., 2020

 Simulations with the parameter estimates match the observed outbreak



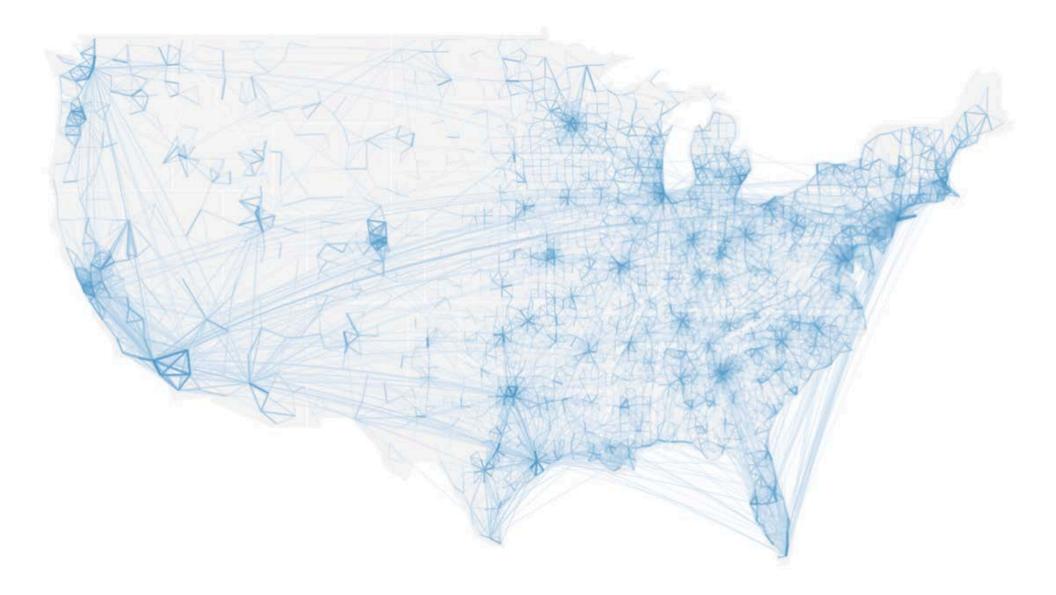



 Simulations show without transmission from undocumented cases, confirmed cases decrease 79%

Li et al., 2020

## Documentation History of CoV

- SARS: sub-clinical infection rates believed to be low (WHO, 2003)
- MERS: 21% of laboratory identified cases were mild or asymptomatic (WHO, 2018)
- Seasonal Coronaviruses (229E, OC43, NL63, HKU1)
  - 135 infection events
  - >60% mild or asymptomatic
  - 4% sought medical care (all had either OC43 or HKU1—the two seasonal betacoronaviruses) (Shaman and Galanti, 2020)
- Our model-inference approach identifies a 14% documentation rate prior to travel restrictions (Li et al. 2020) and indicates that undocumented infections contribute substantially to COVID-19 transmission.




## Inference of Undocumented COVID-19 Infections and Key Epidemiological Parameters

$$\begin{split} S_{ij}(t+dt_{1}) &= S_{ij}(t) - \frac{\beta S_{ij}(t) \sum_{k} I_{ki}^{r}(t)}{N_{i}^{D}(t)} dt_{1} - \frac{\mu \beta S_{ij}(t) \sum_{k} I_{ik}^{u}(t)}{N_{i}^{D}(t)} dt_{1} \\ &+ \theta dt_{1} \frac{N_{ij} - I_{ij}^{r}(t)}{N_{i}^{D}(t)} \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} S_{kl}(t)}{N_{k}^{D}(t) - \sum_{l} I_{lk}^{r}(t)} - \theta dt_{1} \frac{S_{ij}(t)}{N_{i}^{D}(t) - \sum_{l} I_{li}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (1) \\ E_{ij}(t+dt_{1}) &= E_{ij}(t) + \frac{\beta S_{ij}(t) \sum_{k} I_{ki}^{r}(t)}{N_{i}^{D}(t)} + \frac{\mu \beta S_{ij}(t) \sum_{k} I_{ik}^{u}(t)}{N_{i}^{D}(t)} dt_{1} - \frac{E_{ij}(t)}{Z} dt_{1} \\ &+ \theta dt_{1} \frac{N_{ij} - I_{ij}^{r}(t)}{N_{i}^{D}(t)} \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} E_{kl}(t)}{N_{k}^{D}(t) - \sum_{l} I_{lk}^{r}(t)} - \theta dt_{1} \frac{E_{ij}(t)}{N_{i}^{D}(t) - \sum_{l} I_{li}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (2) \\ I_{ij}^{r}(t+dt_{1}) &= I_{ij}^{r}(t) + \alpha \frac{E_{ij}(t)}{Z} dt_{1} - \frac{I_{ij}^{r}(t)}{D} dt_{1} \quad (3) \\ I_{ij}^{u}(t+dt_{1}) &= I_{ij}^{u}(t) + (1-\alpha) \frac{E_{ij}(t)}{Z} dt_{1} - \frac{I_{ij}^{u}(t)}{D} dt_{1} \\ &+ \theta dt_{1} \frac{N_{ij} - I_{ij}^{r}(t)}{N_{i}^{D}(t)} \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} I_{kl}^{u}(t)}{N_{k}^{D}(t) - \sum_{l} I_{lk}^{u}(t)} - \theta dt_{1} \frac{I_{ij}^{u}(t)}{N_{i}^{D}(t) - \sum_{l} I_{il}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (4) \\ &N_{i}^{D}(t) = N_{ii} + \sum_{k \neq i} I_{ki}^{r}(t) + \sum_{k \neq i} (N_{ik} - I_{ik}^{r}(t)) \quad (5) \end{split}$$

Pei and Shaman, 2020

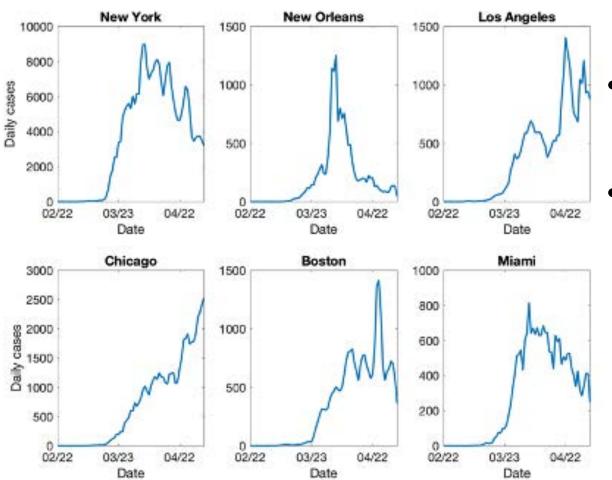
## Inter-county commuting data from US census survey



Pei et al., 2020

# Initial Estimates for the US (through March 13, 2020)

| Parameter                                          | Median (95% Cls)     |
|----------------------------------------------------|----------------------|
| Transmission rate ( $\beta$ , days <sup>-1</sup> ) | 0.95 (0.84, 1.06)    |
| Relative transmission rate ( $\mu$ )               | 0.64 (0.56, 0.70)    |
| Latency period (Z, days)                           | 3.59 (3.28, 3.99)    |
| Infectious period (D, days)                        | 3.56 (3.21, 3.83)    |
| Reporting rate ( $\alpha$ )                        | 0.080 (0.069, 0.093) |
| Basic reproductive number ( $R_e$ )                | 2.27 (1.87, 2.55)    |
| Mobility factor ( $\theta$ )                       | 0.15 (0.12,0.17)     |


## **Additional Features**

$$\begin{split} S_{ij}(t+dt_{1}) &= S_{ij}(t) \underbrace{\beta S_{ij}(t) \sum_{k} I_{ki}^{r}(t)}{N_{i}^{D}(t)} dt_{1} - \frac{\mu \beta S_{ij}(t) \sum_{k} I_{ik}^{u}(t)}{N_{i}^{D}(t)} dt_{1} \\ &+ \theta dt_{1} \frac{N_{ij} - I_{ij}^{r}(t)}{N_{i}^{D}(t)} \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} S_{kl}(t)}{N_{k}^{D}(t) - \sum_{l} I_{lk}^{r}(t)} - \theta dt_{1} \frac{S_{ij}(t)}{N_{i}^{D}(t) - \sum_{l} I_{il}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (1) \\ E_{ij}(t+dt_{1}) &= E_{ij}(t) + \frac{\beta S_{ij}(t) \sum_{k} I_{ki}^{r}(t)}{N_{i}^{D}(t)} + \frac{\mu \beta S_{ij}(t) \sum_{k} I_{ik}^{u}(t)}{N_{i}^{D}(t)} dt_{1} - \frac{E_{ij}(t)}{Z} dt_{1} \\ &+ \theta dt_{1} \frac{N_{ij} - I_{ij}^{r}(t)}{N_{i}^{D}(t)} \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} E_{kl}(t)}{N_{k}^{D}(t) - \sum_{l} I_{ik}^{r}(t)} - \theta dt_{1} \frac{E_{ij}(t)}{N_{i}^{D}(t) - \sum_{l} I_{il}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (2) \\ I_{ij}^{r}(t+dt_{1}) &= I_{ij}^{r}(t) + (1-\alpha) \frac{E_{ij}(t)}{Z} dt_{1} - \frac{I_{ij}^{u}(t)}{D} dt_{1} - \frac{I_{ij}^{r}(t)}{D} dt_{1} \quad (3) \\ I_{ij}^{u}(t+dt_{1}) &= I_{ij}^{r}(t) \sum_{k \neq i} \frac{\overline{N}_{ik} \sum_{l} I_{kl}^{u}(t)}{N_{k}^{D}(t) - \sum_{l} I_{ik}^{r}(t)} - \theta dt_{1} \frac{I_{ij}^{u}(t)}{N_{i}^{D}(t) - \sum_{l} I_{il}^{r}(t)} \sum_{k \neq i} \overline{N}_{ki} \quad (4) \\ N_{i}^{D}(t) &= N_{ii} + \sum_{k \neq i} I_{ki}^{r}(t) + \sum_{k \neq i} (N_{ik} - I_{ik}^{r}(t)) \quad (5) \end{split}$$

- Assimilate Cases and Deaths
- Allow certain parameters to vary through time
- Allow certain parameters to vary by county

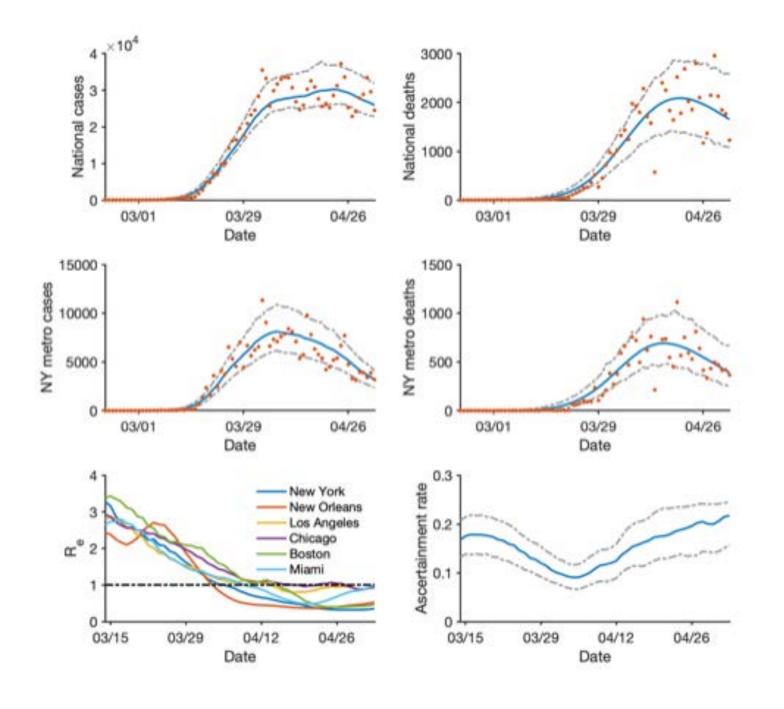
Pei and Shaman, 2020

# Inference, Fitting and Projection



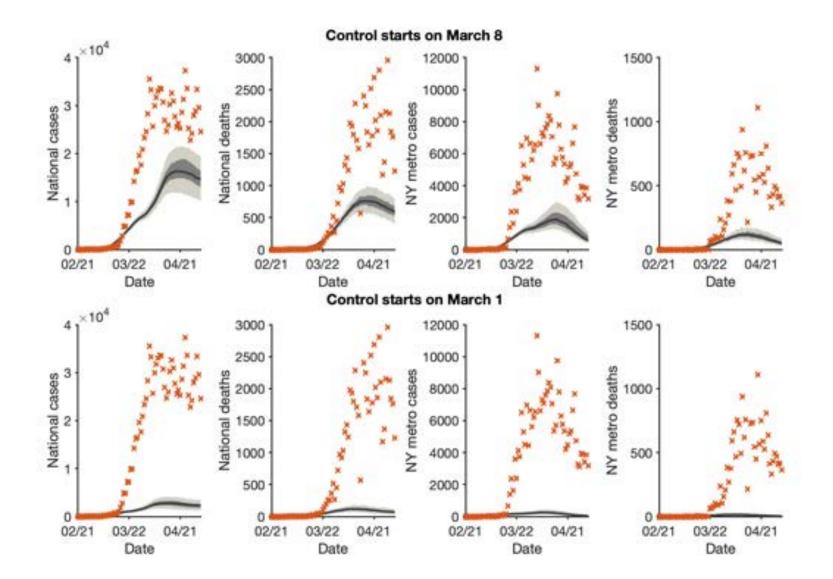
Pei et al., 2020

- Estimate  $\beta$  in all counties with more than 400 cumulative cases as of May 3, 2020
- Vary movement between counties using Safe Graph location-based mobility data
- Spotlight activity in six metropolitan areas. These counties are:


1.New York: Kings County NY, Queens County NY, New York County NY, Bronx County NY, Richmond County NY, Westchester County NY, Bergen County NJ, Hudson County NJ, Passaic County NJ, Putnam County NY, Rockland County NY 2.New Orleans: Jefferson Parish LA, Orleans Parish LA, St. John the Baptist Parish LA, St. Tammany Parish LA

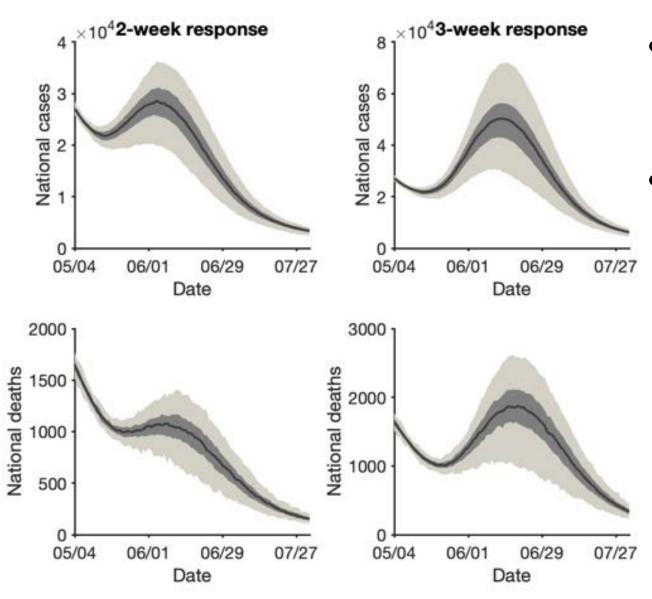
3.Los Angeles: Los Angeles County CA, Orange County CA

4.Chicago: Cook County IL, DuPage County IL, Kane County IL, McHenry County IL, Will County IL 5.Boston: Norfolk County MA, Plymouth County MA, Suffolk County MA


6.Miami: Miami-Dade County FL, Broward County FL, Palm Beach County FL

## **Fitting and Inference**




Pei et al., 2020

## **Counterfactuals**

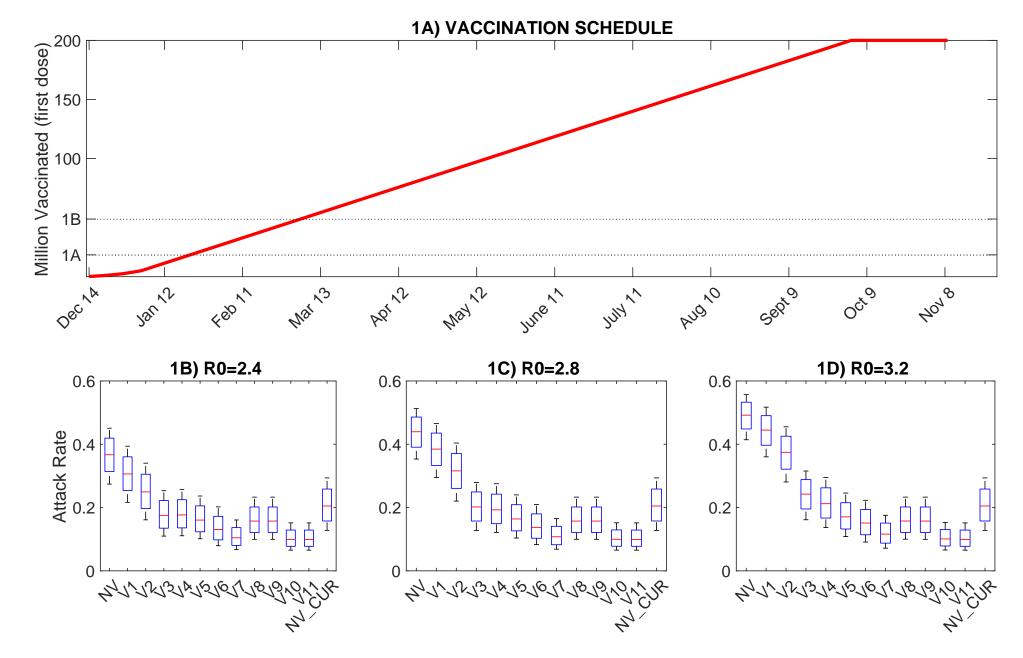


• Pei et al., 2020

# **Going Forward**

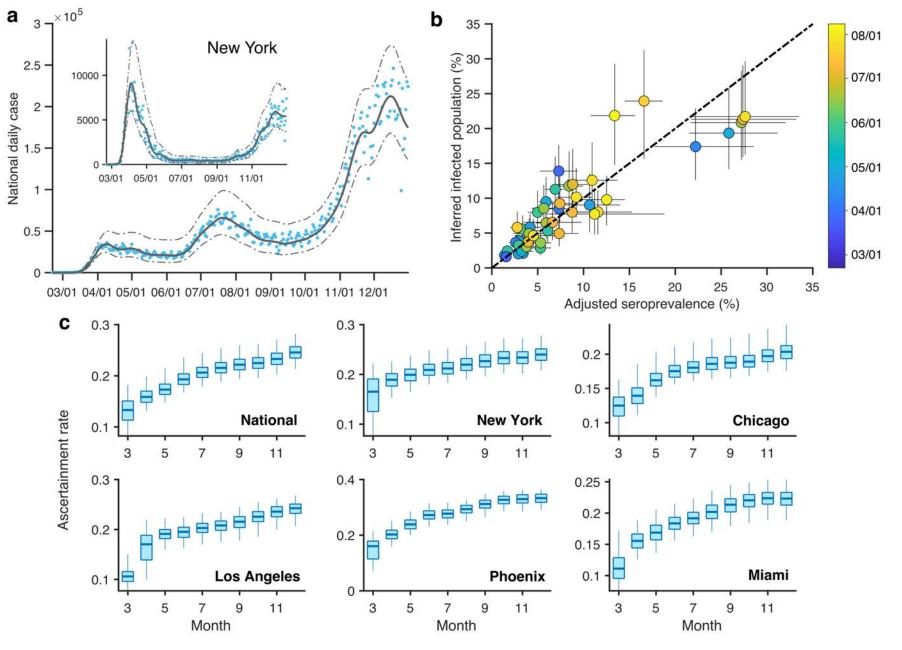


- Rebound outbreaks confront a similar problem
  - A one-week further delay to the resumption of control measures results in tens of thousands of extra deaths


• Pei et al., 2020

## Vaccination

| NV  | NPIs fully relaxed on December 4 <sup>th</sup> ; no vaccination                                             |
|-----|-------------------------------------------------------------------------------------------------------------|
| V1  | NPIs fully relaxed on December 4 <sup>th</sup> ; vaccination                                                |
| V2  | NPIs maintained at currently estimated levels then fully relaxed after PHASE1 (HC+LTCF) vaccination         |
| V3  | NPIs maintained at currently estimated levels then fully relaxed after PHASE2 (EW) vaccination              |
| V4  | NPIs maintained at currently estimated levels then gradually relaxed after PHASE1 (HC+LTCF) vaccination     |
| V5  | NPIs maintained at currently estimated levels then gradually relaxed after PHASE2 (EW) vaccination          |
| V6  | NPIs strengthened to R <sub>0</sub> =1.4, then gradually relaxed after PHASE1 (HC+LTCF) vaccination         |
| V7  | NPIs strengthened to R <sub>0</sub> =1.4, then gradually relaxed after PHASE2 (EW) vaccination              |
| V8  | NPIs maintained at currently estimated levels then fully relaxed upon vaccination of 140 million people     |
| V9  | NPIs maintained at currently estimated levels then gradually relaxed upon vaccination of 140 million people |
| V10 | NPIs strengthened to R <sub>0</sub> =1.4 then fully relaxed upon vaccination of 140 million people          |
| V11 | NPIs strengthened to R <sub>0</sub> =1.4 then gradually relaxed upon vaccination of 140 million people      |


### • Galanti et al., 2020

## Vaccination




• Galanti et al., 2021

## **2020 - Epidemiological Characteristics**



• Pei et al., 2021

## **2020 - Epidemiological Characteristics**



Pei et al., 2021