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Introduction

Chris Lam
— Background in Computer Science
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Introduction

— Machine Learning (ML) in (Smart) Surveys
— ML in Survey Methodology
— How is ML applied in surveys?
— What effects does ML have on the statistics?




Machine Learning in Surveys




Machine Learning in Surveys: Household budget Survey

In Smart Surveys, ML can automate parts of the response %

process -> Lowering Response burden
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Machme Learnmg in Surveys: Household budget Survey
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In Smart Surveys, ML can be used to automate parts of the
response process -> Lowering Response burden




Machine Learning in Surveys: Household budget Survey
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Save money. Live better.

( 330 ) 339 - 3991
MANAGER DIANA EARNEST
231 BLUEBELL DR SW
NEW PHILADELPHIA OH 44663
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PET TOY 004747571658 1.97 X
FLOPPY PUPPY 004747514846 1:97 X
SSSUPREME S 070060332153 4.97 X
2.5 SQUEAK 084699803238 5.92 X
MUNCHY DMBEL 068113108796 3.77 X
DOG TREAT 007119013654 2.92 X
PED PCH 1 002310011802 0.50 X
PED PCH 1 002310011802 0.50 X
COUPON 23100 052310037000 1.00-0
HNYMD SMORES 088491226837 F 3.98 0
FRENCH DRSNG 004132100655 F 1.98 0
3 ORANGES 001466835001 F 5.47 N
BABY CARROTS 003338366602 I 1.48 N
COLLARDS 000000004614KT 1.24 N
CALZONE 005208362080 F 2.50 O
MM RVW MNT 003399105848 19.77 X
STKOBRLPLABL 001558679414 1.97 X
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STKO SUNFLWR 001558679410 0.97 X
STKO SUNFLWR 001558679410 0.97 X
STKO SUNFLWR 001558679410 0.97 X
STKO SUNFLWR 001558679410 0.97 X
BLING BEADS 076594060699 0.97 X
GREAT VALUE 007874203191 F 9.97 O
T.TPTON n0N1200011224 % 4 4R ¥

Smart Survey Mode: Receipt Text digitization =
& automatic product categorization
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Machine Learning in Surveys: Household budget Survey
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Machine Learning in Surveys: Response modes
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Smart Survey Mode: Receipt Text digitization =

& automatic product categorization
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Machine Learning in Survey Methodology




Machine Learning in Survey Methodology
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How does ML affect the Total Survey Error framework? 14
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ML is used in the reporting process, |
it therefore affects the measurement error ]




Is there a way to evaluate
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ML is used in the reporting process, |
it therefore affects the measurement error 3
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Errors in Machine Learning

e Let’s look at an example:

e Develop an ML-model that can determine the
category of a product using ML

18



Errors in Machine Learning

e Let’s look at an example:

e Develop an ML-model that can determine the
category of a product using ML

ML

‘ Category: Fruits
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categorization =

“3 oranges”
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Errors in Machine Learning

Training Application
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Errors in Machine Learning

sandwich 5 Bread
peanuts (50g) 2 Nuts
apples (1pc) 1 Bread
coffee (200ml) 4 Drinks

Expected input Expected output

Training data
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Errors in Machine Learning

sandwich 5 Bread
peanuts (50g) 2 Nuts
apples (1pc) 1 Bread
coffee (200ml) 4 Drinks

Expected input Expected output

Training data

Product data obtained from some
supermarkets
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Errors in Machine Learning

sandwich 5 Bread
peanuts (50g) 2 Nuts
apples (1pc) 1 Bread
coffee (200ml) 4 Drinks

Expected input Expected output

Training data

ML Model

Train ML-model
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Errors in Machine Learning

almonds (1kg) 10
apples (500g) 2
hammer 15

Unobserved data

Predict
unobserved
data
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Errors in Machine Learning

almonds (1kg) 10
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hammer 15
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via receipt scan
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Errors in Machine Learning
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Errors in Machine Learning
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Errors in Machine Learning

Product name price
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Errors in Machine Learning
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Can we assume that the training
data:
e Has no errors in the data?
(measurement error)
e e.g.apples = bread?

model




Errors in Machine Learning
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Product name price
almonds (1kg) 10
apples (500g) 2
hammer 15

Unobserved flata

\4
Predict

Can we assume that the unobserved

data:

e Contains no error? (e.g. typos by
respondents)

Product category =k

Nuts =
Bread

Fish 31




Aspects from TSE (Groves et al., 2004) can be
used for the training and application of ML
models!




Errors in Machine Learning
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Total Machine Learning Error Framework (TMLE): Training Phase
(Puts, Salgado & Daas, 2024) 33




Errors in Machine Learning
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Total Machine Learning Error Framework (TMLE): Training Phase
(Puts, Salgado & Daas, 2024)
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Training a model is nothing more but
but estimating its parameters!




Errors in Machine Learning
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Applying the Total Machine Learning Framework



Applying TMLE on ML for Product Categorization

The TMLE applied on the ML for product categorization
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Applying TMLE on ML for Product Categorization

Measurement Representation
Training Training
Case Tralnlnlg
Population
Measurement | Coverage
Error Error
A 4 v
Measurement Training
(Xyy) Frame
Sampling
Error
v
Training
Mode.l sample
Assumptions
» Model <

The TMLE applied on the ML for product categorization
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Applying TMLE on ML for Product Categorization
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The TMLE applied on the ML for product categorization
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Applying TMLE on ML for Product Categorization
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The TMLE applied on the ML for product categorization
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Applying TMLE on ML for Product Categorization
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Applying TMLE on ML for Product Categorization
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Applying TMLE on ML for Product Categorization
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Conclusions

e ML can be used to lower response burden
e Affects the measurement error of the survey (TSE)

e Aspects from TSE (Groves et al., 2004) can be used to assess the quality of
a ML model

e Total Machine Learning Error Framework (Puts, Salgado & Daas, 2024)
e For example in ML for product categorization:
e coverage error: four stores vs. all stores

e measurement error in training data: wrong product categories

e We have done similar work for the mobility survey (Smart survey, ML)
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Future work

e Expand the types of errors in TMLE
e e.g. under- and over-coverage
e Quantification of errors in the TMLE
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