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The Need for Data Integration

Probability samples ensure every possible sample from a finite
population possess some chance of selection [8] and hence is the gold
standard for population-based inference

Cons: Costly, prone to non-response, and generally of small size [6, 11,
10]

Nonprobability samples (i.e., convenience samples) are flexible,
rich, and cheap sources of data

Cons: No probabilistic design; no way to control for sampling bias [12,
6]

Research Goal: “Integrate” data from large convenience samples
with that from smaller probability samples, to leverage the strengths
of both
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Why Data Integration?

1 Vulnerable populations, where new probability samples can’t be
obtained, but old ones only include common demographic variables

Can be combined with cheap, current, and colossal data

2 Political polls, which are abundant but prone to error

These can be used to predict the outcome of a probabilistic,
pre-election poll
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Data Integration Setting

A denotes a probability sample of size nA from a finite population U
of size N

Has covariates X1, X2, · · · , Xp

Has πi = Pr (i ∈ U ∩ i ∈ A)

B denotes a convenience sample of size nB from the same finite
population

Has covariates X1, X2, · · · , Xp

Has Y , which is the variable of interest

Goal: Use data from A and B to estimate finite population quantities
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Data Integration Setting (cont.)

Sample π X1 X2 · · · Xp Y

Probability (A) ✓ ✓ ✓ ✓ ✓ ×
Nonprobability (B) × ✓ ✓ ✓ ✓ ✓

Table 1: The data integration sample setup.
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Estimating Distribution Functions

Sometimes we are interested in estimating distribution functions, as
well as quantiles:

FN(t) =
1

N

∑
u∈U

1
(
Yu ≤ t

)
tN(α) = inf

t
{t : FN(t) ≥ α} ; α ∈ (0, 1),

Some examples:
1 Estimating % of individuals in a food desert with income at or below

poverty
2 Estimating 80th percentile of BMI after conditioning on age, sex, and

race

Research Question: How can we do this using A and B?
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Semiparametric Regression

Assume distribution of Y in finite population follows

Y = m(X;βN) + ν(X)ϵ, (1)

where

m(X;βN) = E (Y |X): known function of X, parameterized by
unknown βN

βN: U ’s estimate of the true β in the superpopulation model

ν(·): a known, strictly positive variance function

ϵ: a random error term satisfying E (ϵ|X) = 0 and E
(
ϵ2|X

)
= σ2

ϵ
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Semiparametric Regression (cont.)

Let β̂ denote a sample-based estimate of βN that solves

Û(β) =
1

nB

∑
j∈B

(
Yj −m(Xj ;β)

)
W (Xj ;β) = 0

for some p-dimensional function W [4]

Ex: Simple Linear Regression w/ OLS (p = 1)

β̂ = min
β

[RSS]

= min
β

 1

nB

∑
j∈B

(
Yj − βXj

)2
=

∑
j∈B YjXj∑
j∈B X2

j

.
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Residual eCDF Estimator

Our residual, eCDF-based estimate of the finite population
CDF:

F̂R(t) =
1

N

∑
i∈A

π−1
i Ĝi

=
1

NnB

∑
i∈A

∑
j∈B

π−1
i 1

(
ϵ̂j ≤

t−m(Xi; β̂)

ν(Xi)

)
(2)

Corresponding quantile estimator:

t̂R(α) = inf
t

{
t : F̂R(t) ≥ α

}
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Asymptotic Results: Summary

1 Under Assumptions 1 - 7,

F̂R(t)− FN (t)

AV {F̂R(t)}
L−→ N(0, 1),

where

AV {F̂R(t)} =
1

N2

∑
u∈U

∑
v∈U

(
πuv
πuπv

− 1

)
GuGv

2 An asymptotically unbiased estimate of AV {F̂R(t)} is

ÂV {F̂R(t)} =
1

N2

∑
h∈A

∑
i∈A

(
πhi
πhπi

− 1

)
1

πhi
ĜhĜi
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Simulation Overview

We conducted a two-phase Monte-Carlo simulation study to contrast
the performance of our proposed distribution estimators to that using
B alone

Performance metric: relative root mean squared error (RRMSE),
defined generically for some estimator θ̂ as

RRMSE(θ̂) =

√
MSE(θ̂)

MSE(θ̂π)
,

where
1 θ̂π for CDF: F̂π(t) =

1
N

∑
i∈A π−1

i 1
(
Yi ≤ t

)
2 θ̂π for quantile: t̂π(α) = inft{t : F̂π(t) ≥ α} ; α ∈ (0, 1)
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Simulation Setup

U : Simple random sample without replacement (SRSWOR) of size
N = 100, 000 from four superpopulation models

A: SRSWOR of size nA = 500 from U

B: Distratified SRSWOR of size nB = 10000 from U
1 Missing at random (MAR): binary stratification based on the

covariate with the highest Pearson correlation to Y
2 Missing not at random (MNAR): binary stratification based on the

population mean

nI = .85nB; nII = .15nB

α =
[
.01 .10 .25 .50 .75 .90 .99

]
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Superpopulation Models

Model f1 [3]: Y = .3 + 2X1 + 2X2 + ϵ, where

X ∼ N(µ = 2, σ = 1)

ϵ ∼ N(µ = 0, σ = 1)

Model f2 [3]: Y = .3 + .5X2
1 + .5X2

2 + ϵ, where

X ∼ N(µ = 2, σ = 1)

ϵ ∼ N(µ = 0, σ = 1)
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Superpopulation Models (cont.)

Model f3 [9, 5]: Y = − sin (X1) +X2
2 +X3 − e−X2

4 + ϵ, where

X1, · · · , X6 ∼ Unif(−1, 1)

ϵ ∼ N(µ = 0, σ =
√
.5)

Model f4 [7, 5]:

Y = X1 + .707X2
2 + 21 (X3 > 0) + .873 ln (|X1|) |X3|

+ .894X2X4 + 21 (X5 > 0) + .464eX6 + ϵ,

where

X1, · · · , X6 ∼ Unif(−1, 1)

ϵ ∼ N(µ = 0, σ =
√
.5)

Data Integration for CDF Estimation ITSEW 2024 14 / 22



Estimators Under Comparison

CDF Estimators

F̂B(t): The näive CDF of B
F̂P(t): Plug-in CDF estimator, F̂P(t) =

1
N

∑
i∈A π−1

i 1
(
Ŷi ≤ t

)
F̂R(t): Our residual eCDF estimator

Quantile Estimators

t̂B(α): The näive quantile function of B
t̂P(α): The estimated quantile function associated with our plug-in
CDF estimator
t̂R(α): The estimated quantile function associated with our residual
eCDF estimator

Name Shortening

Estimator names have been shortened to ‘B’, ‘P’, and ‘R’, respectively, to
preserve readability.
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Figure 1: RRMSE Values for MAR Missingness at nB = 10, 000
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Figure 2: RRMSE Values for MNAR Missingness at nB = 10, 000
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Real Data: Description

Using NHANES [1] data, we sought to estimate the CDF / quantile
function of total cholesterol (in mg/dL) using the following seven
covariates:

X1: Biological Sex
X2: Age
X3: Glycohemoglobin (i.e., hemoglobin A1c, in %)
X4: Triglycerides (in mg/dL)
X5: Direct high-density lipoprotein cholesterol (HDL, in mg/dL)
X6: Body mass index (BMI, X6, kg/m

2)
X7: Pulse
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Sampling Setup

U : Population of U.S. adults

A: 2015-2016 NHANES cohort (nA = 2, 474)

B: 2017-2020 cohort (nB = 3, 770)

Performance metric: percent absolute relative bias, defined
generically for some θ̂ as

RB
(
θ̂
)
=

∣∣∣θ̂π − θ̂
∣∣∣

θ̂π
× 100
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Table 2: Percent absolute relative bias of F̂B(t), F̂P(t), and F̂R(t), as well as their
respective quantile estimators, relative to HT equivalents using the 2015-2016 NHANES
dataset (A).

RB
(
F̂
)

RB
(
t̂
)

α F̂π(t) t̂π(α) B P R B P R

1% 0.01 107.00 99.00 100.00 52.49 6.54 38.71 25.51
10% 0.10 138.00 50.99 99.49 17.67 5.80 15.87 0.37
25% 0.25 158.00 30.34 70.55 10.17 5.06 7.07 2.03
50% 0.51 184.00 16.59 16.92 6.95 4.89 2.38 2.40
75% 0.75 212.00 7.53 21.61 4.53 3.77 8.21 2.41
90% 0.90 244.00 3.56 9.85 2.68 4.51 14.24 3.60
99% 0.99 295.00 0.12 0.77 0.04 0.68 18.69 0.50
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Concluding Summary

Research Question: How to extend the field of data integration to
distribution function estimation?

Idea: Substitute 1(Yi ≤ t) in F̂π(t) with Ĝi, the eCDF of estimated
residuals from a regression model built on B

Empirical Results: F̂R(t) seemed robust to model misspecification if
ignorability held, and robust to ignorability if the model was correctly
specified

Next Steps: Replacing semiparametric regression with a
nonparametric alternative
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Asymptotic Assumptions
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Asymptotic Assumptions

1 The sampling design of B is ignorable; that is,
Pr(δj |X, Y ) = Pr(δj |X) for all j ∈ B.

2 The sampling fraction ns
N = nA+nB

N converges to a limit in (0, 1] as
both ns and N tend to infinity [2].

3 There exist some positive real constants c1, c2 such that
c1 ≤ Nπi

ED(nA)
≤ c2 for all i ∈ A, where ED (·) denotes the

design-based expectation. Furthermore,

lim
N→∞

[(
ED (nA)

nB

)1/2
]
= 0,

implying n
−1/2
B = o

(
E−1/2
D (nA)

)
.
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Asymptotic Assumptions (cont.)

4 For any random variable z with finite 2 + δ population moments and
arbitrarily small δ > 0,

VarD

(
1

N

∑
i∈A

π−1
i zi

)
≤ c3

ED (nA) (N − 1)

∑
u∈UN

(zu − z̄N)
2,

where z̄N = 1
N

∑
u∈UN

zu is the finite population mean of z.

5 For any random variable z with a finite fourth population moment,

VarD (z̄π)
−1/2 (z̄π − z̄N)

L−→ N(0, 1)

VarD (z̄π)
−1/2 V̂arπ (z̄π)− 1 = OP

(
ED

(
n
−1/2
A

))
,

where z̄π = 1
N

∑
i∈A π−1

i zi denotes the HT mean estimate of z̄N and

V̂arπ (z̄π) denotes the HT estimate of VarD (z̄π).
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Asymptotic Assumptions (cont.)

6 FN(t) converges to a smooth function F ∗(t) as N goes to infinity;
that is,

lim
N→∞

FN(t) = F ∗(t),

where the limiting function F ∗(t) is uniformly continuous with finite
first and second derivatives.

7 There exists some positive real constants c3, c4, c5 such that Xi ≤ c3,
ν(Xi) ≤ c4, and Xj ≤ c5 for all i ∈ A and j ∈ B.
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