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Pipette to Patient to Population

In the clinical trial world we discuss “bench to bedside” (or
“pipette to patient”), bringing the results of biological
research to improve patient health.
But a missing piece is in step from the patient to the
population.
Randomized clinical trials (RCT) are the gold standard for
assessing causal effects, since randomization eliminates
confounding due to either observed or unobserved
covariates (Fisher 1926).
Randomization does not eliminate the effect of effect
modifiers, which can impact the causal effect of treatment
in a population that differs from the RCT sample. (Elliott
2016).
“Transporting” the sample ACE estimators to the
population ACE requires understanding the relationship
between the treatment effect in the sample and the
treatment effect in the population.
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Casual Inference: Review and Notation

(Population) Average casual treatment effect comparing
treatment level Z = z to Z = z ′:
PATE = N−1

∑
N
i=1(Y (z)i −Y (z ′)i). where Y (z) is the

“potential outcome” for the same subject Yi under different
treatment levels Z = 0, ...T (Holland 1986).
If Z is randomized and the sample=population, then
observed mean Y Z is unbiased for the PATE:
E(Y Z ) = Y (Z ).
However, if our trial is only a sample of the population, then
yZ can remain unbiased for Y (Z ) only if the sampling
indicator Ii is independent of Y (Z )i .

Holds if Ii is a random sample from the population, or more
generally, P(Ii) = πi for known πi (replace yZ with a
weighted mean wi = π

−1
i ).

Otherwise if Ii is guided by an unknown mechanism, and
Cov(Ii ,Xi) ̸= 0 for Xi where interaction is present
(E(Y (1)i −E(Y (0)i | Xi = x) ̸=
E(Y (1)i −E(Y (0)i | Xi = x ′)), yZ may be biased for Y (Z ).
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Generalizability Review

Cole and Stuart (2010) combined data from a RCT of HIV
testing the effect of a protease inhibitor with data from
US-wide surveillance of new HIV cases to develop inverse
probability of selection weights.
Stuart et al. (2011) developed a propensity matching
method based on the propensity to be in population.
“Doubly-robust” methods that combine propensity score
weights and outcome models have been the focus of
recent developments.

Dahabreh et al. (2020) consider three versions of these
estimators that combine predictions of the outcome under
treatment or control in the representative sample with
IPTW-weighted residuals of the outcome model in the RCT.
Schmid et al. (2022) consider a targeted maximum
likelihood estimator (TMLE) that uses the IPTW weight itself
together with the outcome model to predict the outcome
under treatment and control in the representative sample.

Degtiar and Rose (2023) provide a overview of the
currents methods used for RCT generalization. 4 / 27



Non-probability Inference Review

Valliant and Dever 2011 develop IPWTs to estimate a
“true” probability of selection for the non-probability sample
elements in a manner similar to Cole and Stuart. Elliott et
al. (2010) developes IPWTs in a somewhat differently.
Rivers (2006) matched subjects in the non-probability
sample to subjects in the probability sample via propensity
to be in the probability sample, with the matched
nonprobability sample used for inference.
Direct outcome regression models that predict outcomes
based on covariates are less common in the
non-probability literature.

But “doubly robust” estimators have been developed: Chen
et al. (2020) use estimators that combine model-based
estimates from the probability sample with
propensity-weighted residuals from non-probability sample.

A review of estimation from non-probability samples is
available at Wu (2022).
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Distinctions between the Generalizability and
Probability/Non-probability Sampling Literature

There are many similarities between the RCT generalizability
literature and the combining of probability and non-probability
samples literature, but there are also key distinctions.

With the exception of Ackerman (2021), the generalizability
literature has generally ignored complex sample design
features such as weighting, clustering, or stratification in
the benchmark probability sample, although these features
are commonly present in both general population surveys.
While the probability survey literature has a large section
devoted to missing data, it usually does not face a setting
where all observations have missing elements in a joint
distribution of interest.
The relevant patient population may be more difficult to
define, let alone obtain a high-quality sample from.
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Our Proposed Work: Notation and Assumptions

Notation:
Defined population of size N.
Binary treatment Zi ∈ {0,1}, with potential outcomes Y (0)i
and Y (1)i .
Sampling indicators SR

i (R=randomized trial) and SB
i

(B=probability/benchmark dataset)..
Probabilty of being sampled in B is known: P(SB

i = 1) = πB
i .

Common covariates Xi in B and R.
Assumptions:

Randomization: (Y (1)i ,Y (0)i)⊥ Zi | SR
i = 1;

Stable Unit Value Treatment Assignment (SUTVA): the
observed outcome Yi = ziY (1)i +(1−zi)Y (0)i for treatment
assignment Zi = zi ;
Positivity: P(SR

i = 1)> 0 and P(SB
i = 1)> 0 for all i ;

Estimability: P(SR
i = 1) = πR

i = g(Xi ;θ) for known g and
unknown θ ;
Ignorability: (Y (1)i ,Y (0)i)⊥ SR

i ,S
B
i | Xi .
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Pseudo-weights

Standard inverse probability weighting (Valliant and Dever (2011)):

π
RB
i = P

(
SR

i = 1|Xi = xi ,S
B
i = 1 or SR

i = 1
)
.

where πRB
i is estimated by (weighted) logistic regression,

Elliott et al. (2011) show via Bayes’ rule that

π
R
i = P(SR

i = 1|Xi = xi ) ∝

P(SB
i =1|Xi = xi )

P
(

SR
i = 1|Xi = xi ,SB

i = 1 or SR
i = 1

)
1−P

(
SR

i = 1|Xi = xi ,SB
i = 1 or SR

i = 1
) = π

B
i ×

πRB
i

1−πRB
i

The components of πR
i can be estimated using generalized linear

regression or Bayesian Additive Regression Trees (Chipman et al.
2010).

Chen et al. (2020) argue that π̂RB
i is not a consistent estimator of πR

i
unless πR

i is a constant. Chen et al. suggest an maximum likelihood
estimator of πR

i that does provide a consistent estimator; however, it
does not easily admit non-linear estimators such as BART.
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Prediction

Under randomization, we have

E(Y (1)i | Xi) = E(Yi | Xi ,Zi = 1) | SR
i = 1

E(Y (0)i | Xi) = E(Yi | Xi ,Zi = 0) | SR
i = 1.

Thus a correct model of E(Yi | Xi ,Zi) allows prediction of
Yi(1−Zi), and the following estimators of the PATE are

∆̂WVD =
∑

N
i=1 I(SR

i = 1)/π̂RB
i [Zi(yi − Ŷ (0)i)+(1−Zi)(Ŷ (1)i −yi)]

∑
N
i=1 I(SR

i = 1)/π̂RB
i

∆̂WE =
∑

N
i=1 I(SR

i = 1)/π̂R
i [Zi(yi − Ŷ (0)i)+(1−Zi)(Ŷ (1)i −yi)]

∑
N
i=1 I(SR

i = 1)/π̂R
i
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Prediction

If outcome information is available in the probability sample, an
alternative that only uses prediction is

∆PRED = ˆ̄Y (1)− ˆ̄Y (0),

ˆ̄Y (Z )=
∑

N
i=1[I(S

R
i = 1)+(wB

i −nR/nB)I(SB
i = 1)][I(Z = zi )yi + I(Z = 1−zi )Ŷi (Z )]

nR +∑
N
i=1 I(SB

i = 1)(wB
i −nR/nB)
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Inference

Since all of the methods we are consider involve estimating
Y (1−zi) using BART, we will use a Bayesian approach for
inference.
Each draw of Y (1−zi) generates a draw of the relevant
PATE estimator.

Point estimates are obtained as the posterior mean of these
draws, with 1-α credible intervals obtained from the α/2
and 1−α/2 empirical CDFs.
For ∆WE we also consider an estimator of the variance
(∆WE2) that incorporates uncertainty in the estimation of
πR

i .
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Inference

Because the prediction model uses a complex sample
design for the probability sample, we use Rubin’s Rules for
combining multiple imputations:

Ê(∆PRED | data) =
1
B

B

∑
b=1

∆
(b)
PRED

v(∆PRED | data) =
1
B

B

∑
b=1

v(∆(b)
PRED)+

B+1
B

1
B−1

B

∑
b=1

(
∆

(b)
PRED − Ê(∆PRED | data)

)2

where v(∆(b)
PATE) is estimated using a design-based

estimator of variance that treats the imputed values of
Y (1−zi) as observed.
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Treatment effect among the treated

Simulations and example focus on population treatment effect
among the treated (PATT):

∆̂WVD,PATT =
∑

N
i=1 I(SR

i = 1)/π̂RB
i Zi(yi − Ŷ (0)i)

∑
N
i=1 I(SR

i = 1)Zi/π̂RB
i

∆̂WE ,PATT =
∑

N
i=1 I(SR

i = 1)/π̂R
i Zi(yi − Ŷ (0)i)

∑
N
i=1 I(SR

i = 1)Zi/π̂R
i

∆̂PRED,PATT =
∑

N
i=1[I(S

R
i = 1)+(wB

i −nR/nB)I(SB
i = 1)]Zi [yi − Ŷi(0)]

nR1 +∑
N
i=1 I(SB

i = 1)Zi(wB
i −nR/nB)

where nR1 is the number of observations assigned to treatment
in the RCT.

Inference using BART for prediction proceeds as the in
estimation of the PATE.
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Simulation Study
Potential outcome Y (Z ) for a binary treatment Z and two
normally distributed covariates, X1 and X2:

Y (Z )∼ N (µZ ,1)

µ1 = β0 +δ +β1X1 +β2X2 +β3X2
1 ,µ0 = β0

Poisson sampling is used to allocate observation i into the
RCT (R; non-probability) data or benchmark (B;
probability) sample (N = 20,000, n = 1000):

Pr(SB
i = 1) = expit(ψB

0 )

Pr(SR
i = 1 | SB

i ) =

{
0, SB

i = 1
expit(ψR

0 +ψR
1 X1,i +ψR

2 X2,i +ψR
3 X1,iX2,i ), SB

i = 0

Consider a 2×2×3 design:
Outcome with (correctly specified) and without
(misspecified) quadratic term
RCT SRS (ψR

1 = ψR
2 = ψR

3 = 0), without interaction
(ψR

3 = 0), with interaction
Alignment + (Effect of X in same direction for outcome and
selection) and - (different directions) (Kern et al. 2016).
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Simulation Study: Summary

SATT good if RCT is simple random sample; poor
otherwise.
WVD (estimated with logistic regression and no interaction)
not too bad for bias until prediction model is complex;
coverage is poor is prediction model is misspecified.
WE1 (treating pseudo-weight as fixed) generally works
reasonable well with respect to bias but has modest
undercoverage with more variable selection probabilities;
WE2 (incorporating variance of pseudo-weight) somewhat
overcorrects for more conservative coverage except when
prediction is complex, in which case bias effects coverage.
PRED has best bias properties and, because it utilizes
predictions from benchmark data, much smaller RMSE.
Generally good coverage though some undercoverage
occurs when prediction model is simple and positively
aligned.
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Study of pulmonary artery catheterization (PAC) in
critical care

PAC is an invasive and controversial cardiac monitoring device
that is used in critical care. “PAC-Man” randomized trial (Harvey
et al. 2005):

1,013 subjects at 65 United Kingdom intensive care units.
Outcome=in-hospital mortality.

Concerns about differences between the study sites and the
general population in which PAC is used (Sakr et al. 2005).
Obtain data from the Intensive Care National Audit Research
Centre (ICNAR) database (Harrison et al. 2004)

1.5 million admissions to 250 critical care units in the UK.
Restricting to same inclusion and exclusion criteria as PAC-Man
yields 1052 PAC population cases
Population control group not exchangeable with RCT controls,
even conditional on available covariates.

Restricted their analysis to the treated only: PATT
Approximate as being a SRS from a superpopulation by assigning
a small sampling fraction value: 0.01 so πB

i ≡ 0.01 and thus
wB

i ≡ 100.
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Covariates

Variable RCT INCAR p-value
Age 64.5 61.9 <0.001
% Female 41.8 39.0 0.22
% Elective 6.3 9.3
% Emergency 27.4 23.1 0.007
% Medical 66.2 67.6
% Ventilator 90.3 86.2 0.006
% Teaching Hosp. 21.5 41.2 <0.001
Survival Prob. 54.1 52.5 0.15
AP2 score 17.8 17.5 0.32
% Cardio event 3.8 3.2 0.60
% Renal failure 1.2 1.2 1.00
% Resp problems 3.6 2.5 0.19
% Liver failure 2.5 2.2 0.78
% Immunte disorder 7.8 6.8 0.46
Glasgow coma score 3.95 3.77 0.042
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Results

Adjusted SATT obtained from a BART model trained on the
observed data in the RCT assigned to treatment assigned
to control:-4.3% (95% CI -9.5%,1.0%)
The PATT estimated under the pseudo-weighting method
of WE1 is 0.2% with a 95% CI of (-4.2%,4.4%).
The PATT estimated under WE2 is 0.2% with a 95% CI of
(-9.5%,10.1%).
The PATT estimated under PRED was 6.8% with a 95% CI
of (-1.2%,14.8%).

While none of the effects significant, the PATT expected
direction of the effect, in contrast to the SATT.
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Model Checking: Testing for ignorability

Transportability relies on the ignorabilty assumption:
potential outcomes are independent of sampling indicator
given covariates.

Impute Y (Z )i when Zi = 1−z in the probability sample (or
Y (Z )i for Z = 0,1 if Y is not observed in the probability
sample).

Assumption testable when Y is observed in the probability
sample

Test the reduced version Y (1)i ⊥ SR
i ,S

B
i | Xi in PAC-Man

since only treatment outcomes are available.
Posterior predictive distribution p-value:
T rep = ∑

N
i=1 I(Si = 1)Y (1)rep

i versus
T obs = ∑

N
i=1 I(Si = 1)I(Zi = 1)yi .

P(T rep < T obs | data ) = 0.159,
Overestimate the success of PAC in the population, or,
equivalently, subjects in the RCT were more likely to have a
good outcome even after controlling for available covariates.
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Ignorability-corrected PATT

The impact on the failure of ignorability in this setting
depends on how the joint distribution of
(Y (1)i ,Y (0)i) | Xi ,Si = 2 differs from
(Y (1)i ,Y (0)i) | Xi ,Si = 1.
If δ (1,Xi)

S −δ (0,Xi)
S = 0 for all Xi ,

δ (z,Xi)
S = P(Y (z)i | Xi ,Si = 2)−P(Y (z)i | Xi ,Si = 1) then

the PATT estimate remains unbiased
Other extreme:ignorability holds on the control arm, so that
δ (0,Xi)

S = 0 or, more generally E(δ (0,Xi)
S) = 0.

E(δ (1,Xi)
S) = E(T rep −T obs | data ) = 8.4%

Estimate corrected PATT of 6.8%+8.4%=15.1%.
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Discussion

Econometricians, epidemiologists, and biostatisticians
have independently invented and reinvented the wheel of
causal inference for the past several decades, in the
process following or borrowing the tools of population
inference from survey statistics.
Survey statistics can return the favor by adapting recently
developed methods for non-probability samples for the
important task of transporting randomized trials to better
understand how novel treatments can work in a larger
population.
“Tip of the iceberg” of research opportunities:

Accommodating non-compliance.
Mediation; confounding by indication in longitudinal studies.
Adaptive trial design to ferret out key interactions.
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