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Abstract: Fitting complex survey data to regression equations is explored
under a design-sensitive model-based framework. A robust version of the
standard model assumes that the expected value of the difference between
the dependent variable and its model-based prediction is zero no matter
what the values of the explanatory variables. The extended model assumes
only that the difference is uncorrelated with the covariates. Little is as-
sumed about the error structure of this difference under either model other
than independence across primary sampling units. The standard model of-
ten fails in practice, but the extended model very rarely does. Under this
framework some of the methods developed in the conventional design-based,
pseudo-maximum-likelihood framework, such as fitting weighted estimating
equations and sandwich mean-squared-error estimation, are retained but
their interpretations change. Few of the ideas here are new to the refereed
literature. The goal instead is to collect those ideas and put them into a
unified conceptual framework.
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1. Introduction

The standard “design-based” framework for fitting a regression model to survey
data was introduced by Fuller (1975) for linear regression and by Binder (1983)
more generally. This framework treats the finite population as a realization of
independent trials from a conceptual population. A maximum likelihood esti-
mator for regression-model parameters could, in principle, be estimated from
the finite-population values. Given a complex sample drawn from the finite
population, either that impractical-to-calculate finite-population estimate or its
limit as the finite population grows infinitely large is treated as the target of
estimation in the Fuller/Binder design-based framework

That is not what most analysts think they are estimating when they fit
regression models. We will explore an alternative model-based framework for
estimating regression models introduced in Kott (2007) that is sensitive to the
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complex sampling design and to the possibility that the usual model assumptions
may not hold in the population. Under this design-sensitive robust model-based
framework some of the methods developed in the conventional design-based
framework, such as fitting weighted estimating equations and sandwich mean-
squared-error estimation, are retained but their interpretations change. Few of
the ideas in this paper are new to the refereed literature. The goal here is to
collect those ideas and put them into a unified conceptual framework.

Section 2 lays out the standard and extended model which underlie the
design-sensitive approach to fitting vaguely-specified regression model taken
here as opposed to the more conventional design-based or pseudo-maximum-
likelihood (pseudo-ML) approach seen in Skinner (1989), Binder and Roberts
(2003), Pfeffermann (1993; 2011), Lumley and Scott (2015; 2017), and else-
where. Section 3 describes the weighted estimating equation used to estimate
model parameters in a consistent manner under the design-sensitive framework.

The design-sensitive framework described here is model based for the most
part. Probability-sampling (“design-based”) principles are invoked in setting
up an asymptotic framework to more deeply robustify the model. A parallel
framework for robustifying the regression model can be found in the econo-
metric literature (e.g., White, 1980; 1984). Probability-based inference is also
invoked in Section 6.2 to provide some justification for a mean-squared-error
estimator.

The design-sensitive robust model-based framework is like the randomization-
assisted model-based approach to estimating population means and totals pro-
posed in Kott (2005) as a contrast to the popular model-assisted (design-based)
approach advocated in Särndal et al. (1992). Kott replaced the conventional
term “design” with the more accurate “randomization” (“probability-sampling”
would have been even better) because some aspects of the sampling design, like
stratification, often depend explicitly or implicitly on a model. Here we use the
modifier “design-sensitive” because our robust model-based framework is quite
literally sensitive to how the sample has been designed. In what follows, we
shorten “design-sensitive robust model-based framework” to “design-sensitive
framework” for convenience.

For linear and logistic regression estimation, there is no difference in the
estimator under the design-sensitive and pseudo-ML approaches. As Section 4
shows, that is not the case when estimating a cumulative logistic model, where
both approaches lead to consistent, but not identical, parameter estimators.

Section 5 discusses the alternative weights introduced in Pfeffermann and
Sverchkov (1999). These produce consistent and potentially more efficient esti-
mators under the standard model.

Section 6 describes sandwich-like mean-squared-error estimation (from Fuller,
1975 and Binder, 1983) under the design-sensitive framework in the absence of
calibration weight adjustments. In their presence, replication is advocated. The
section also discusses the not-completely-resolved issue of how to handle the
stratification of primary sampling units. Sections 7 and 8 discuss tests of whether
the standard model holds, and Section 9 offers some concluding remarks.
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2. The design-sensitive robust model-based approach

We start by defining the standard model in the following robust (i.e, distribution-
free) manner:

yk = f(xT
k β) + εk, (2.1)

where

E(εk|xk) = 0 for all realized xk, k ∈ U, (2.2)

yk is the dependent random variable being modeled in the population U , while
xk is a vector of r explanatory variables (covariates), one of which is 1, and f(.)
is a monotonic function. Observe that

f(xT
k β) = xT

k β for linear regression,

= exp(xT
k β)/[1 + exp(xT

k β)] for logistic regression, and

= exp(xT
k β) for Poisson regression.

Few additional assumptions about the distribution and variance structure of
the εk are needed in this vaguely-specified version of the model underpinning
a regression analysis until the issue of estimating the mean-squared error of an
estimator of β arises, as we shall see in Section 6.

Although apparently very general, there is a key restriction imposed by the
standard model in equation (2.2); namely, that the expected value of the error
term εk is zero no matter the value of xk. This assumption can fail and the
standard model not be appropriate in the population being analyzed. For ex-
ample, suppose yk = x2

k in the population. Suppose one tries to fit the linear
model yk = α + βxk + εk to this population. The standard model assumption
E(εk|xk) �= 0 for all realized xk, k ∈ U , would fail.

A generalization of the standard model is the extended model under which
E(εk|xk) = 0 in equation (2.2) is replaced by

E(εkxk) = E(xkεk) = 0. (2.3)

In other words, εk has mean zero unconditionally (i.e., E(εk) = 0) and is uncor-
related with each of the components of xk. Unlike the standard model, the more
general extended model rarely fails, so long as the first three central moments
of the random variable xk are finite.

Consider fitting the linear model yk = α + βxk + εk when yk = x2
k in the

population. The population analogue of ordinary least squares reveals β =
Cov(x2

k, xk)/Var(xk) and α = E(x2
k) − βE(xk). If the xk were uniformly dis-

tributed on U = [0, 1], then α would be −1/6 and β would be 1. Consequently,
both E(εk|xk = 0) = 0−(−1/6) and E(εk|xk = 1) = 1−(5/6) would be positive,
while E(εk|xk = 1/2) = 1/4 − 1/3 would be negative. The E(εk) and E(εkxk),
by contrast, would both be 0.

Observe that the standard version of simple linear model through the origin,
yk = βxk + εk, is not exactly of the form specified by equation (2.1) because it
is missing an intercept. It similarly assumes E(εk|xk) = 0. The extended version
of this model assumes only E(εk) = 0.
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3. The asymptotic framework and the weighted estimating equation

Although populations from which survey samples are drawn are almost always
finite, the samples themselves are usually large. That is why it is reasonable
to use asymptotics (arbitrarily-large sample properties) when analyzing survey
data. If we assume there is an infinite sequence of nested populations growing
arbitrarily large and that a sample is drawn from each using the same selection
mechanism (which includes the self-selection of responding to the survey and
the possibly-imperfect quasi-selection of individual population units into the
sampling frame), where the samples are not necessarily nested but also grow
arbitrarily large, then it is possible to take the probability limit of a statistic
based on a sample as the expected sample size and population grow arbitrarily
large (formally as we advance ad infinitum from one population in the sequence
to the next). “Expected sample size” is because under many selected mechanisms
the sample size is not fixed.

Suppose t is an estimator for T . A sufficient condition for the probability
limit of t, denoted p lim(t), to be T is for the limit of the mean-squared error of
t to converge to 0, in which case t is a consistent estimator for T .

Letting N denote the size of population U , then it is not difficult to see that

p lim

{
N−1

∑
U

[
yk − f(xT

k β)
]
xk

}
= p lim

{
N−1

∑
U

εkxk

}
= 0 (3.1)

under the extended model (where E(εkxk) = 0) given mild assumptions about
the values of the components of xk (e.g., they are bounded in number and each
have finite moments) and variance structure of the εk (e.g., they are uncorre-
lated across primary sampling units, each of which consists of a fraction of the
population that converges to 0 as the population grows arbitrarily large). Given
a complex sample S with weights {wk}, each nearly equal to the inverse of the
corresponding element’s selection probability (i.e., any difference tends to zero
as the expected sample size grows arbitrarily large),

p lim

{
N−1

∑
S

wk

[
yk − f(xT

k β)
]
xk

}
= 0 (3.2)

under mild additional conditions on the sampling design and population such
that

p limΨz = 0, where Ψz = N−1

(∑
k∈S

wkzk −
N∑

k=1

zk

)
, (3.3)

for zk = 1, yk, any component of xk, or any product of two of these. Suffi-
cient additional assumptions are that the zk have finite moments and that the
joint probability of drawing two primary sampling units in the first-stage of ran-
dom sampling is bounded by the product of their individual first-stage selection
probabilities.
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The modifier “nearly” needs to be added to “equal” when weights are cal-
ibrated either to increase the statistical efficiency of the resulting estimators
(as in Deville and Särndal, 1992) or to account for unit nonresponse or frame-
coverage errors (the element is missing from the frame or is contained on the
frame more than once) as in Kott (2006). The latter set of calibration adjust-
ments is based on fits of selection models. Consequently, even assuming (as we
do) that the selection models employed (for nonresponse and/or coverage ad-
justment) are correct, the calibrated weights are only asymptotically equal to
the inverses of the selection probabilities. We return to the issues surrounding
calibrated weights in Section 6.3.

The wk are inserted into equation (3.2) in case E(εk|xk, wk) �= 0, a situation
in which the weights are said to be nonignorable in expectation (with respect
to the model − a phrase that usually goes without saying). Full ignorability of
the weights or, equivalently, of the selection probabilities in the sense of Little
and Rubin (2002), obtains when the conditional εk|xk are independent of the
wk. If the original random sample is selected with probability proportion to
some component of xk, while the variance of εk|xk is a function of that same
component, then εk|xk is clearly not independent of wk, and the weights are not
ignorable, but they could still be ignorable in expectation (i.e, E(εk|xk, wk) = 0
for every realized xk and wk, k ∈ U).

Whether the standard or extended model is assumed to hold in the popula-
tion, solving for b in the weighted estimating equation (Godambe and Thomp-
son, 1974) ∑

S

wk[yk − f(xT
k b)]xk = 0 (3.4)

provides a consistent estimator for β under mild conditions because

b− β =

[
N−1

∑
S

wkf
′(θk)xkx

T
k

]−1

N−1
∑
S

wkxkεk, (3.5)

for some θk between xT
k b and xT

kβ. This is a consequence of the mean-value
theorem. In addition to equation (3.3), the mild conditions assume that

Aθ = N−1
∑
S

wkf
′(θk)xkx

T
k (3.6)

and its probability limit are positive definite. Because N−1
∑

S wkxkεk con-
verges to 0 in probability as the expected sample size grows arbitrarily large
(equation (3.1)), b is a consistent estimator for β.

It is not hard to show that
∑

U [yk − f(xT
k b)]xk = 0 is the maximum-

likelihood (ML) estimating equation for the population under the indepen-
dent and identically distributed (iid) linear regression model and under logistic
regression with independent observations (i.e., sampled population elements).
Nevertheless, the solution to equation (3.4) is not ML when the weights vary
or the εk within primary sampling units are correlated. Instead, the b solving
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(3.4) is referred to as pseudo-ML (Skinner, 1989). Strictly speaking, the full-
population solution to

∑
U [yk − f(xT

k b)]xk = 0 in linear or logistic regression
need not be ML estimates under the design-based approach because the stan-
dard model may not hold in the population. Some advocates of model fitting
using pseudo-ML, however, assume that the model does hold in the population
(e.g., Pfeffermann, 1993; 2011).

4. The cumulative logistic model

More generally, the pseudo-ML estimating equation in Binder is

∑
S

wk
f ′(xT

k b)

vk

[
yk − f(xT

k b)
]
xk = 0, (4.1)

where vk = E(ε2k|xk) and E(εkεj |xk, xj) = 0 for k �= j. For logistic, Poisson, and
ordinary least squares (OLS) linear regression, f ′(xT

k β)/vk ∝ 1. This equality
does not hold for general least squares (GLS) linear regression, however, where
vk varies across the elements of the population.

We will return to GLS linear regression in the next section. For now, we con-
sider another example of when the pseudo-ML and design-sensitive estimators
differ. The cumulative logistic model is a multinomial logistic regression model
for ordered data, where there are L categories with a natural ordering (e.g.,
always, frequently, sometimes, never). Being in the first category is assumed to
fit a logistic model. Being in either the first or second category is assumed to fit
a different logistic model. Being in the first, second, or third category is assumed
to fit yet another logistic model, and so forth.

The generalized cumulative logistic model is (splitting out the intercept from
the rest of the covariates)

E(y�k|xk) =
exp(α� + xkβ�)

1 + exp(α� + xkβ�)
for� = 1, . . . , L− 1, (4.2)

and y�k = 1 if k is in one of the first l categories, 0 otherwise. When β� = β for
all categories, but each category has its own intercept, the cumulative logistic
model is also called a proportional-odds model.

Finding the b� that satisfies the estimating equations:

∑
S

wk

[
y�k − f(xT

k b�)
] [ 1

xk

]
= 0 for� = 1, . . . , L− 1 (4.3)

can be used for the generalized cumulative logistic model or the proportional
odds model. This is not the pseudo-ML estimating equation in the surveylogis-
tic routine in SAS/STAT 14.1 (SAS Institute Inc., 2015), the logistic routine
in SUDAAN 11 (Research Triangle Institute, 2012) or the gologit2 routine in
STATA (Williams, 2005).
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When the standard model fails, that is, when

E

[
y�k − exp(α� + xkβ�)

1 + exp(α� + xkβ�)

∣∣∣∣xk

]
�= 0 for � = 1, . . . , L− 1,

the solution for the b� in equation (4.2) may not be estimating the same param-
eter as the pseudo-ML bPML

� . This is not a bad thing. Unlike the pseudo-ML
solution, the solution to equation (4.3) has this reasonable property:

N−1
∑
S

wky�k = N−1
∑
S

wkf(x
T
k b�) for � = 1, . . . , L− 1.

This is a property retained at the asymptotic limit of b� but not necessarily the
asymptotic limit of bPML

� . That is to say,

lim

{
N−1

∑
U

wky�k

}
= lim

{
N−1

∑
U

f(xT
k β�)

}
for � = 1, . . . , L− 1,

where β� is the estimand of b�. The equality need not hold when β� is replaced
by the estimand of bPML

� .

5. Modified weights under the standard model

5.1. Pfeffermann-Sverchkov (P-S) modified weights

Pfeffermann and Sverchkov (1999) showed that under the standard model one
can replace the wk with the P-S modified weights wk·g = wkgk where gk is a
function of the components of xk, say g(xk), computed to reduce as much as
possible the variability of the wk·g in the hopes of decreasing the variability
of the linear regression-coefficient estimates under an iid model. Kott (2007)
pointed out that the Pfeffermann-Sverchkov result is a simple repercussion
of the assumption that E(εk|xk) = 0 for all realized xk, k ∈ U . We can see
that by replacing wk in equations (3.2) and (3.4) by wkg(xk) and noting that
E[g(xk)εkxk|xk] = E(εk|xk) = 0 for all realized xk, k ∈ U .

5.2. Listwise-deletion of observations with missing values

Interestingly, the Pfeffermann-Sverchkov result justifies the often reviled prac-
tice of deleting sampled observations with any missing values from a regression
analysis (see, for example, Wilkinson et al. 1999). Under the standard model,
listwise deletion leads to consistent coefficient estimates when the probability
pk that a sampled unit remains in the listwise-deleted sample is a function
of the components of xk. (The probability an item value is missing is thus
1 – pk, which is also a function of the components of xk) Consequently, the
true inverse-selection-probability weight is wk/pk, and a potential P-S modified
weight is wk = wk/pk × p(xk). Not only can item nonresponse be missing at
random, explanatory-variable values can be missing not at random so long as
their missingness does not depend on yk|xk. Moreover, the functional form of
p(.) need not be known.
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5.3. Generalized least squares

When E(ε2k|xk) = vk, E(εkεj |xk, xj) = 0 for k �= j, and vk is a function of xk,
then the pseudo-ML estimator for a linear regression estimator in equation (4.1)
in consistent under the standard model (note that f ′(xT

k b) = xT
k b). When the

weights are ignorable, however, a more efficient estimator is the solution to

∑
S

xT
k b

vk

[
yk − f(xT

k b)
]
xk = 0.

This suggests that when the weights are not ignorable a more efficient esti-
mator than the solution to equation (4.1) would factor each weight wk/vk by
1/w(xk) where w(xk) is a good approximation for wk. A method for creating a
reasonable form for w(xk) is by setting w(xk) = exp(h(xk)), where h(xk) is the
fitted values of the ordinary-least-squares regression in the sample of log(wk)
on components of xk = (x1k, . . . , xrk)

T and, perhaps, functions of those com-
ponents (e.g., x2

1k)

6. Mean-squared-error estimation

In this section, we restrict attention to stratified or single-stratum probability
samples of primary sampling units (PSUs) of fixed size. Additional stages of
probability samples can then be conducted independently within each PSU to
draw the sample elements. We do not rule out samples of elements where the
PSUs are completely enumerated or where each PSU is composed of a single
element.

In our asymptotic framework, the number of PSUs grows infinitely large along
with the population. The number of strata may also grow arbitrarily large or it
can be fixed. In the former situation, the number of PSUs in a stratum is fixed,
while in the later that number grows infinitely large.

Let h denote one of H strata, uk the H-vector of stratum-inclusion identifiers
for element k (i.e., if k is in stratum h, then uhk, the hth component of uk, is
1, while the other H − 1 components are 0), N(n) the number of PSUs in the
population (sample), Nh (nh) the number of PSUs in the population (sample)
and stratum h, M(m) the number of elements in the population (sample), Mhj

(mhj) the number of elements in the population (sample) and PSU j of stratum
h, and Shj the set of mhj elements of PSU j of stratum h. We assume

lim
N→∞

(Mhj/N) = 0 for all hj. (6.1)

6.1. When first-stage stratification is ignorable

Mean-squared-error estimation given a stratified multistage sample can be tricky
unless a simplifying assumption is made. Usually, the assumption is that the
PSUs were randomly selected with replacement within strata.
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Instead, we assume for now that the εk are uncorrelated for elements from
different PSUs, have bounded variances, and E(εk|xk,uk) = 0 (E(xkεk|uk) = 0
for the extended model) which is to say the first-stage stratification is ignorable
in expectation. Although it is likely that strata were chosen such that the mean
of the yk differed across strata, it is nonetheless not unreasonable to assume that
the E(εk|xk) (or E(xkεk)) are unaffected by the first-stage stratum identifiers
especially since xk in equation (2.1) may contain a bounded number (as the
number of PSUs grows arbitrarily large) of stratum identifiers or functions of
stratum identifiers (e.g., uhkxjk).

To estimate the mean-squared error of the consistent estimator b (i.e., its
probability limit tends to β as n grows arbitrarily large), one starts with

b− β =

[
N−1

∑
S

wkf
′(θk)xkx

T
k

]−1

N−1
∑
S

wkxkεk, (3.5)

for some θk between xT
k b and xT

k β and the additional assumption that Aθ =
N−1

∑
S wkf

′(θk)xkx
T
k (equation (3.6)) and its probability limit are finite and

positive definite. Let ωk be the inverse of the selection probability of k. We will
assume that wk = ωk until Subsection 6.3.

The design-based mean-squared-error estimator for b (from Binder, 1983) is

var(b) = N−2D

H∑
h=1

nh

nh − 1

nh∑
j=1

⎛
⎝ ∑

k∈Shj

wkxkek − 1

nh

nh∑
ϕ=1

∑
κ∈Shϕ

wκxκeκ

⎞
⎠

⎛
⎝ ∑

k∈Shj

wkxkek − 1

nh

nh∑
ϕ=1

∑
κ∈Shϕ

wκxκeκ

⎞
⎠

T

D, (6.2)

where D =
[
N−1

∑
S wkf

′(xT
k b)xkx

T
k

]−1
estimates the definite probability

limit of Aθ in equation (3.6), and ek = yk − f(xT
k b). Our assumptions as-

sure the near unbiasedness of the variance estimator in equation (6.1) (as n
grows arbitrarily lage) given a sampling design and the population such that
p lim(nΨ2

z) is bounded, where Ψz is defined in equation (3.2).
They also assure the near unbiasedness of

varA(b) = D

H∑
h=1

nh∑
j=1

⎛
⎝N−1

∑
k∈Shj

wkxkek

⎞
⎠

⎛
⎝N−1

∑
k∈Shj

wkxkek

⎞
⎠

T

D. (6.3)

Under the standard model (but not necessarily the extended model), the wk in
both equations (6.2) and (6.3) can be replaced by wk·g.

From a model-based viewpoint, the keys to both mean-squared-error estima-
tors are that the Ehj =

∑
k∈Shj

wkxkεk on the right-hand side of equation (3.5)
have mean 0 and are uncorrelated across PSUs and that the probability limit
of D, like Aθ, is finite and positive definite. The use of robust sandwich-type
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mean-squared-error estimates like equations (6.2) and (6.3) (the D being the
bread of the sandwich) allows the variance matrices of the Ehj to be unspecified.
The additional asymptotic assumptions allow ek = εk − xT

k (b − β) to be used
in place of εk within the Ehj , and D to replace the probability limit of Aθ.

Additional variations of the mean-squared-error estimator in equation (6.2)
can be made if the analyst is willing to assume that the εk are uncorrelated across
secondary sampling units or across elements. The more components there are
in xk, the more reasonable the assumption that the εk are uncorrelated across
elements (or another higher-stage of sampling like housing unit in a household-
based sample of individuals) and the more reasonable the assumption that the
first-stage stratification is ignorable.

6.2. When first-stage stratification is not ignorable

When the first-stage stratification is not ignorable and again wk = ω, it is tempt-
ing to follow design-based theory and argue that under probability-sampling
theory the Ehj are independent and have a common mean within strata, justi-
fying the use of the mean-squared-error estimator in equation (6.2) but not (6.3).
This argument is only valid when the first-stage PSUs are indeed selected with
replacement (which would allow the same PSU can be selected more than, with
independent subsampling in each selection) or their selection can reasonably be
approximated by that design.

A well-known problematic without-replacement sample is a systematic sam-
ple of elements drawn from a list ordered in cycles such that each possible
sample severely over- or underestimates the estimand. Even when a systematic
probability-proportional-size sample of PSUs is drawn from a randomly-ordered
list, invoking large-sample or large- population properties (see Hartley and Rao,
1962) when the actual sample or population of PSUs in each stratum is not
large is dubious.

Graubard and Korn (2002) point out that, even under with-replacement sam-
pling of PSUs, equation (6.2) provides a nearly unbiased mean-squared-error es-
timator only when the relative sizes of the nonignorable strata are fixed as the
population grows arbitrarily large. Otherwise, there is a component of the mean-
squared error of b that equation (6.2) fails to capture: the random number of
elements within each first-stage stratum when the number of strata is bounded
(e.g., when the strata are the four US regions and the fraction of elements in
each region is random).

6.3. An extension for calibrated weights

Let dk denote the inverse of the probability that element k is chosen for the
sample. The ratio ωk/dk is the product of calibration factors accounting for
the probability of response which can occur at various levels (e.g., household
and person for a survey of individuals) and the expected number of times the
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element is in the sampling frame. When k is known not to be on the frame more
than once, this value is the probability the k is on the frame at all.

To simplify the exposition, we will assume that there is a single calibration
factor of the form ωk/dk = q(mT

k γ), where q(t) is a monotonic function, such as
q(t) = 1+exp(t), mk is a vector of variables with a finite number of components,
γ is an unknown parameter consistently estimated by a g such that the following
calibration equation holds: ∑

S

dkq(m
T
k g)ck = Tc, (6.4)

where ck is a vector of calibration variables with the same number of components
as – and often equal to – mk, and the population total of ck or a nearly unbiased
estimate of that total is known and denoted Tc. When used to account for
nonresponse, the components of Tc can be estimates based on the full sample
before nonresponse.

When the calibration factor is used strictly to increase the efficiency of esti-
mated means and totals q(t), it is often set at 1 + t (linear calibration), exp(t)
(raking), or 1/(1 + t) (pseudo- empirical likelihood) and γ = 0. Linear calibra-
tion and raking are also popular for coverage and nonresponse adjustment but
γ is no longer 0. For nonresponse adjustment setting q(t) at 1 + exp(t) > 0 as-
sumes the probability of response is a logistic function of mk, while setting q(t)
at (L+exp(t))/(1+exp(t)/U) assumes response is a truncated logistic function
with response probabilities between 1/U and 1/L.

Under mild conditions, paralleling those used to justify equation (3.5) and the
consistency of b and assuming the selection model for response/nonresponse or
coverage error implied by q(mT

k γ) is correct and that if Tc is a random variable
then it is uncorrelated with whether element k is a respondent when sampled,

d− δ =

[
N−1

∑
S

dkq
′(ϕk)ckm

T
k

]−1

N−1

[
Tc −

∑
S

dkq(m
T
k γ)ck

]

for some ϕk between mT
k g and mT

k γ, and so d is a consistent estimator for δ.
Just as in the near unbiasedness of b, the differences between 1/q(mT

k γ) and
the value it estimates (i.e., 1 if element k is a respondent, 0 if not; the number
of times element k of the population is in the sampling frame) can be correlated
within PSUs, although it is more common to assume that the differences are
uncorrelated across all elements.

Often many of the components of mk will also be component of xk. If they
all were or if we replace the standard-model assumption in equation (2.2) by

E(εk|xk,uk,mk) = 0 for all realized xk,uk,mk, k ∈ U,

then it is easy to see from

b− β =

[
N−1

∑
S

wkf
′(θk)xkx

T
k

]−1

N−1
∑
S

wkxkεk
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=

[
N−1

∑
S

wkf
′(θk)xkx

T
k

]−1

N−1
∑
S

ωkq(m
T
k g)xkεk

that equation (6.3) (or (6.2)) can be used to estimate the mean-squared error of
b given Tc when under the standard model. The conditioning is needed when
Tc itself is an estimator.

More generally, we would be better served using a replication method (i.e.,
one that replicates the calibration factors so that equation (6.4) holds for each
replicate) to estimate the (conditional) mean-squared error of b in a way that
accounts for the mean-squared error contribution from d as well as the εk (and,
perhaps, Tc as well). Although the mean-squared error with both these contri-
butions can be linearized as well, linearization becomes increasingly cumbersome
as the number of calibration factors increase. So too does replication because
there is a calibration equation for each factor, but once replicate weights are
determined they can be used for estimating any number of regression models.
Linearization does not share this convenient property.

6.4. Degrees of freedom

When fitting a regression model to survey data, design-based practice often
treats the diagonals of the mean-squared-error estimator in equation (6.3) as if
they had a chi-squared distribution with n−H degrees of freedom (Lohr, 2010,
p. 438). There is no justification for this under probability sampling theory,
which relies entirely on the asymptotic normality of b. This questionable prac-
tice clearly comes from var(b) in equation (6.3) looking a bit like the multiple
of a chi-squared statistic with n−H degrees of freedom.

In fact, if the Ehj were all independent and identically distributed multi-
dimensional normal random variables, then the diagonals of var(b) would indeed
be close to a multiple of a chi-squared statistic with n−H degrees of freedom.
Unfortunately, the Ehj in practice are not likely to be normally distributed, and
even if they are close enough to being normal for them to be treated as such,
they rarely have the same variances.

A model-based approach in Kott (1994) assumes that the first-stage stratifi-
cation is ignorable, and the εk (as opposed to the Ehj) are normally distributed,
have mean zero and a common variance, and are uncorrelated. The approximate
relative mean-squared error of a diagonal of var(b) ≈ var(N−1

∑∑
DEhj),

call it rv, can be calculated under those assumptions. Using the Satterthwaite
approximation, the effective degrees of freedom for the corresponding compo-
nent of b would then be 2/rv and could vary across coefficients. It is

F =

(∑H
h=1

∑nh
j=1

∑
k∈shj

w2
k

)2

(∑H
h=1

∑nh
j=1

∑
k∈shj

w4
k +

∑H
h=1

1
(nh−1)2

∑nh
j,g=1,j �=g

[∑
k∈shj

w2
k

] [∑
k∈shg

w2
k

]) .

Although this procedure is itself more than a little questionable, when it is
employed in the generation of t statistics the result will likely produce better
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coverage intervals than conventional design-based practice. Better yet would
be to compute alternative measures of the effective degrees of freedom under
different assumptions about the variance structure of the εk within a sensitivity
analysis. Valliant and Rust (2010) address the degrees-of-freedom problem in
design-based regression analyses.

7. Tests for choosing weights

Suppose an analyst wants to determine whether b and b′, each computed with
its own sets of weights, are estimating the same thing. For example, to test
whether weights are ignorable in expectation, the analyst could compare b com-
puted using inverse-selection-probability weights with b′ computed using equal
weights. If the vectors are not significantly different, then weights might be ig-
nored. Similarly, b could be compared with a different b′ computed using P-S
modified weights. This would provide an indirect test of the standard model,
since using the P-S modified weights produces a consistent estimator for β under
the standard model but not more generally.

Under the null hypothesis that b and b′ are estimating the same thing,
χ2
r = (b− b′)T [var (b− b′)]−1

(b− b′) is asymptotically chi-squared with r
degrees of freedom, r is the dimension of xk, and var(.) is a mean-squared-
error estimator analogous to the one in either equation (6.2) or (6.3). A popular
design-based test statistic for whether b and b′ are estimating the same thing
is

Fr,d−r+1 =

(
d− k + 1

d

)
(b− b′)T [var (b− b′)]−1

(b− b′)

r
, (7.1)

where d is the nominal degrees of freedom, that is, n−H. The F test in equa-
tion (7.1) is called the adjusted Wald F test in SUDAAN 11 (RTI International,
2012, p. 217), which also offers a host of variations, of which the adjusted
Wald F (Felligi, 1980) and the Satterthwaite-adjusted F , based on Rao and
Scott’s (1981) Satterthwaite-adjusted chi-squared test, are the best (see Korn
and Graubard, 1990).

This test, proposed in Kott (1991) which owes much to the more assumption-
dependent Hausman (1978) test, is relatively easy to conduct using popular
design-based software in the following manner. Two copies are made for each
element in the data set. Both are assigned to the same PSU which accounts
for their being strongly correlated in mean-squared-error estimation. The first
copy is assigned the weight used to compute b and the second the weight used
to compute b′. The row vector of covariates xT

k of the regression is replaced
by (xT

k x
T
k ) for the first copy and by (xT

k 0
T ) for the second. The regression

coefficient is then

d =

(
b′

b− b′

)
,

and testing whether b′ − b is significantly different from 0 becomes a straight-
forward regression exercise using design-based software, such as SUDAAN 11 or
the survey procedures in SAS/STAT 14.1 (SAS Institute Inc., 2015).
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The design-sensitive model-based approach allows each component of d to
have its own model-based effective degrees of freedom in a t test and then uses
a conservative Bonferroni adjustment to test whether the components in the
bottom half of d are significantly different from 0 (i.e., the smallest p value
among the components is compared to α/r when testing for significance at
the α level). Using a Bonferroni-adjusted t test in place of an F test when
analyzing a regression with complex survey data was previously advocated by
Korn and Graubard (1990). Holm (1979) proposed a method for determining
which components of b′−b are significantly different from zero. Using the Holm-
Bonferroni procedure, the component with the vth lowest p value is deemed
statistically significant at the α level when the v − 1th lowest p value has been
deemed significant and the vth lowest p value is less than α/(1 + r − v).

8. Another test for the standard model

Determining whether using P-S modified weights yields significantly different
regression-coefficient estimates from using inverse-selection-probability weights
is one way of testing whether the standard model holds. Here is another test
that may prove useful for determining whether the standard logistic model holds
in the population, which can be difficult with a clustered sample (Graubard et
al., 1997).

Estimate b in equation (2.1) using inverse-selection-probability weights, cal-
ibrated weights, or P-S modified weights. Compute fk = f(xT

k b) which nearly
equals f(xT

k β). Apply “design-based” software to the linear model: E(yk) =
α+βfk+γf2

k . If g, the estimator for γ, is significantly different from 0, then the
standard model fails for the model in equation (2.1) because E(εk|xk) is clearly
not 0 (fk being a function of xk, and the “design-based” mean-squared-error
estimator being robust to the heteroskedasticity of the yk − α − βfk − γf2

k ).
That g is not significantly different from 0 is necessary for the standard model
to hold but not sufficient to establish that it holds. Observe that when the
standard model holds a, the estimator for α, should also not be significantly
different from 0. This suggests testing whether a and g are simultaneously not
significantly different from 0.

9. Concluding remarks

The goal of this paper has been to show that some of the techniques in conven-
tional design-based practice can be justified in the design-sensitive framework
for estimating the vaguely-specified regression models defined herein. Neverthe-
less, although inserting weights into an estimating equation is often justified, it
is not always necessary, depending on what assumptions are made. In addition,
the sandwich-type mean-squared-error estimator used in design-based practice
(equation (6.3)) does not fully account for first-stage stratification when first-
stage stratification is not ignorable in expectation. When it is ignorable, a sim-
pler mean-squared-error estimator (equation (6.2)) can be used that is likely
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more stable (i.e., it diagonals have less relative mean-squared error). Other,
even more stable, mean-squared-error estimators can be constructed if one is
willing to assume that element errors are not correlated across smaller levels of
clustering than PSUs (e.g., across households but not within households).

In practice the standard and extended models described here rarely produce
estimators different from the popular pseudo-ML methodology. An exception
to this is the cumulative logistic model. Ironically, it is a simple matter to
employ SAS/STAT or SUDAAN to estimate a generalized cumulative logistic
model using the methodology discussed here even though the analogous pseudo-
ML estimator cannot be computed with SUDAAN. To do so one treats the L-1
equations involving the same element as if they different elements from the same
PSU and runs a (binary) logistic regression, relying on the sandwich-like design-
based mean-squared-error estimators to handle the correlation of the equations.
Testing the “parallel lines” assumption of the proportional-odds model that all
the β� = β in equation (4.1) is straightforward.

One interesting repercussion of assuming the robust standard model is that
listwise deletion turns out to be an appropriate technique for regression analysis
so long as the probability an element is deleted from the analysis does not
depend on the value of the dependent variable given the independent variables.

The problem with making assumptions is that they can be wrong. Survey
statisticians have, for the most part, accepted a design-based framework that
effectively focuses on robustness by relying on as few model assumptions as
possible. That framework is not particularly helpful when the goal is to fit a
regression model. Moreover, it can be misleading when survey statisticians graft
a notion like degrees of freedom onto what is an asymptotic theory.

The paper has reviewed statistical tests for determining whether inverse-
selection-probability weights are ignorable in expectation when fitting a regres-
sion model and, if so, whether the standard model nonetheless holds, allowing
the use of P-S modified weights. The practicality of these tests, which may not
have much power, will need to be determined by further research.

Design-based practice has been to fear that any such test will incorrectly fail
to see that the weights are not ignorable or that the standard model fails. In
fact, the standard model, like all models, is almost never be completely true. In
the same vein, inverse-selection-probability weights are rarely entirely ignorable.
Still, the standard model may be useful, and the efficiency gains from ignoring
the weights may overwhelm the resulting bias. We need better tools for making
such determinations. The design-sensitive model-based approach may be the
key to developing those tools.
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