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Post-season harvest surveys provide data used in the management of Missouri wildlife.

These surveys provide information on the number of animals harvested, hunting pressure

and hunter success rate. These estimates provide unbiased results at the statewide level

due to the large sample size. However, if this survey information is used to make county

estimates, poor results often occur due to small sample sizes. To estimate hunter success at

the county level for the 1996 Missouri Turkey Hunting Survey, we developed a hierarchical

Bayesian model. Speci�cally, we evaluate a generalized linear model that incorporates linear

covariate terms in addition to a conditional auto-regressive structure for spatial correlation.

Calculation of the posterior distribution is achieved through Gibbs sampling and adaptive

rejection sampling. The inclusion of covariate terms is then evaluated using Bayes factors.

KeyWords: Bayes Factor; Conditional auto-regressive model; Inverse gamma distribution;

Log-linear mixed model; Spatial correlation.

1 INTRODUCTION

The Missouri Turkey Hunting Survey (MTHS) is a post-season mail survey conducted by the

Missouri Department of Conservation to monitor and aid in the regulation of the turkey hunting

season. Questionnaires are distributed after the hunting season to a simple random sample of

persons who purchased permits to hunt wild turkey during the spring season. For the 1996 turkey

hunting season 95,801 persons purchased hunting permits. From these individuals a simple random

sample of 6,999 hunters were selected for the survey and 5,005 of these responded. The MTHS
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dsun@stat.missouri.edu) is Associate Professor of Statistics, Department of Statistics, University of Missouri,
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L. Sheri� (E-mail: SHERIS@mail.conservation.state.mo.us) is a wildlife biometrics supervisor, Fishery and Wildlife

Research Center, Missouri Department of Conservation, 1110 South College Avenue, Columbia, MO 65201.
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provides information concerning the number of turkeys harvested by hunters, the total number of

hunter-days used to pursue turkeys, and the hunter success rates. This information is su�cient

in supplying usable estimates at the state level. At levels less than statewide in scope, however,

accuracy and precision of the estimates become questionable.

For our e�orts here, we wish to estimate the hunter success rate in each county of Missouri.

Turkey population management focuses on the county level as the smallest unit due to the hunters'

ability to indicate where they have hunted in reporting their success. We de�ne hunter success

rate as the number of birds harvested per hunter-day(day) of hunting. At the statewide level,

the resulting sampled number of days is in excess of 10,000, and this number produces acceptable

estimates. After spreading the reported sample days across 114 counties and within two separate

weeks of the turkey hunting season, however, sample sizes are extremely low for some counties.

During the sample selection process we cannot determine in which county a particular person

hunted. This eliminates the possibility of using strati�cation to collect an adequate sample size

for each county. Using the simple random sample approach, the resulting sample may have some

counties with few, if any, respondents. For the 1996 survey four counties had fewer than 10 days

of turkey hunting reported in the sample for either of the two weeks of the season. These small

sample sizes produce large standard errors at the county level.

To achieve our goal of estimating hunter success rates at the county level we used hierarchical

Bayesian methodologies. Hierarchical Bayesian and empirical Bayesian methods are especially

applicable to small area estimation problems. Ghosh and Rao (1994) point out that these types of

models allow borrowing of strength between the regions. The empirical Bayes methodology has been

applied by several authors (Stasny 1991, Tsutakawa 1985, and Tsutakawa 1988). Empirical Bayes

methods do not account for the uncertainty in the estimated prior distribution of the parameters

(Dempster, Rubin, and Tsutakawa 1981). However, a fully Bayesian approach can account for this

uncertainty. Hierarchical and empirical Bayesian methods both su�er from the need for powerful

computing resources. Recent advances in techniques, such as Gibbs sampling (Gelfand and Smith

1990), have provided a remedy for this computational problem and allowed widespread use of

hierarchical Bayesian methods.

We examine the contribution of a county level covariate when added to a hierarchical Bayesian

model. Speci�cally, we evaluate the capability of the covariate to improve a model which includes

random e�ects for individual counties. Our evaluation is carried out through the use of Markov

Chain Monte Carlo (MCMC) methods (Gilks, Richardson, and Spiegelhalter 1996).

Section 2 provides the basic model for response and possible forms for the covariate terms. The

MCMC methods utilized to �t these models are described in section 3. Section 4 provides the

results of this research, and Section 5 provides some conclusions and insights into the covariate
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relationship within the MTHS.

2 Hierarchical Model

The baseline model to which we will add covariate terms has a form similar to the classical

mixed model. A mixed model is generally written as

vvv = XXX1��� + XXX2zzz + eee; (1)

where ��� is an unknown vector of �xed parameters, zzz is an unknown vector of random variables,

XXX1 and XXX2 are known design matrices, vvv is our vector of response variables, and eee is a vector of

random errors. The response vector need not be of simple form, but can be transformed variables.

For the MTHS data, vvv will become the logit-transformed hunter success rates.

We will let nij be the number of days hunted in county i during week j. The number of turkeys

killed will be denoted yij . During the 1996 season, each hunter could take only one turkey during

each of the two weeks of hunting. We, therefore, included an e�ect for weeks, (�j). Our model also

contained a random e�ect for each county (zi). This allowed us to model the general heterogeneity

among counties and incorporates a spatial correlation.

The number of turkeys taken in a particular county may be considered to have a binomial

distribution with parameters nij and probability of success, pij , that is

yij j(nij; pij) � Binomial (nij ; pij): (2)

It is this probability of success, pij , in which we are interested. To model these success rates we

used the logit transformation to approximate linearity. Thus, the following model is considered:

log

�
pij

1� pij

�
= �j + zi + eij ; i = 1; � � � ; I; j = 1; 2; (3)

where I = 114, the number of counties in Missouri, �j is the week e�ect, zi is the county e�ect, and

eij terms are random errors for each week-county combination with mean 0 and common variance

component �0. We use this error term to account for those components which are not explicitly

listed in the model. We assumed a normal distribution for these error terms.

2.1 Priors for Model Components

Priors for a Bayesian model should be chosen with knowledge of the inherent nature of the

data. When inherent knowledge is not available we attempt to assign a reasonable prior which

is relatively 
exible. For instance, preliminary examination of the data indicated that the hunter

success rates during the two weeks may di�er. The statewide success rates for week 1 and week 2

were 10:25% and 6:8%, respectively. To model this di�erence we assign each week e�ect a normal

distribution with unique mean and variance. Thus, we assume �j � Normal (�j ; �j); j = 1; 2:
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2.1.1 Random County E�ects

Turkey habitat and behavior are not restricted by political boundaries. Similarly, turkey hunting

methods are not unique to a particular county. We expected hunter success rates in neighboring

counties in Missouri to be quite similar. This similarity may give rise to spatial correlation between

neighboring counties. In fact, He and Sun (1998) found that the MTHS had a signi�cant spatial

correlation between counties.

The normal distribution is often used to model the random e�ect in a mixed model. We

apply the normal distribution but introduce a spatial correlation structure. Several possibilities

are available to model this spatial correlation. Whittle (1954) proposed a simultaneous auto-

regressive (AR) model for dealing with spatial correlation. It was also introduced by Ord (1975).

He and Sun (1998) used this simultaneous AR model for the MTHS data. This model assumes

that zzz = (z1; : : : ; zI)
0 has a multivariate normal distribution with correlations represented through

the equations:

zi = �

IX
m=1

Cimzm + �i; i = 1; � � � ; I; (4)

where Cim is an indicator variable of the two counties sharing a common boundary. That is, the

elements of CCC take on the value of 1 if regions i and m share a common boundary and 0, otherwise.

This approach uses the intuitive idea that adjoining areas should have similar responses. This

approach considered the counties with common boundaries to be spatially correlated.

Alternatively, we apply the conditional auto-regressive (CAR) model of Clayton and Kaldor

(1987), which is a special case of the model presented by Besag (1974).

In general, a CAR Model is speci�ed by the full conditional densities,

f(zijzm; m 6= i) =
� ai

2��z

� 1
2
exp

n
�

ai

2�z

�
zi �

IX
m6=i

�imzm

�2o
; (5)

for i = 1; � � � ; I and where �z is a common variance component for spatial regions. Let BBB be the

I�I matrix with diagonal elements ai and imth o�-diagonal elements �ai�im. Besag (1974) proved

that if BBB is symmetric and positive de�nite, then the joint probability density of z exists and is

given by

f(zzz) = (2��z)
�I=2 jBBBj1=2 exp

�
�

1

2�z
zzz0BBBzzz

�
: (6)

We let

BBB = III � �CCC; (7)

where � is a measure of spatial correlation, III is the identity matrix, and CCC is an adjacency matrix

as was previously de�ned. We restrict the common spatial correlation to �1
�1 < � < �I

�1, where
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�1 is the minimum eigenvalue of CCC and �I is the largest eigenvalue of CCC. As noted by Cressie

(1993, p. 471), if this condition holds then BBB is positive de�nite. Sun, Tsutakawa and Speckman

(in press) show the conditional density of zi is of the form (5), or equivalently,

(zijzm; m 6= i) � N
�
�
X
m2�i

zm; �z

�
; (8)

where �i is the set of counties adjacent to county i.

2.2 Other Priors

At this stage in the modeling process we also speci�ed a prior distribution for the variance

components. The common prior for the variance of a normal distribution is the inverse gamma

distribution (Gelman, Carlin, Stern, and Rubin 1995). For eij in equation (3), we speci�ed �0 �

IG(a0; b0). We also had a prior for the common variance component(�z) of the random county

e�ects. This was considered a third stage to the hierarchical model. Again, we used the inverse

gamma distribution and set �z � IG(az; bz). The densities of �0 and �z were of the form

�(�k) /
1

�
ak+1
k

exp(�bk=�k); �k > 0; k = 0 or z: (9)

The remaining hyper-parameters, such as (a0; b0) and (az ; bz), were considered �xed. Finally, we

assume that � is uniformly distributed on the interval (��11 ; ��1I ):

2.3 Covariate Terms

Our model can be applied to the hunter success rates obtained by the MTHS. It is, however,

possible that hunter success rates may be more accurately modeled using covariates. These covari-

ates may be obtained from a known biological relationship with the dependent variable. Covariates

may be incorporated to reduce the variance of the random e�ects. These covariates take the form

of additional linear terms in the model. As an example of a covariate, we use the proportion of a

given county covered by forest (Giessman, Barney, Haithcoat, Myers, and Massengale 1986). We

refer to this covariate as forest coverage (si).

2.3.1 Exploratory Data Analysis

Prior to �tting the actual models, including the covariates, we used exploratory techniques

to examine the relationship between the covariate and the hunter success rate produced by the

Bayesian CAR model without covariates. We begin by examining a scatter plot of the covariate

with the estimated success rates for each county (Fig. 1). It would seem there is little or no linear

trend. If a linear relationship were present, it would appear to be negative. The scatter plots in
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Figure 1 also may indicate some curvature in the relationship, which might be modeled using a

quadratic formulation of the covariate.

2.3.2 Covariate as a linear term

We include the forest coverage covariate and use � to indicate the common parameter. The

model presented in (3) can be generalized to include several covariate terms and takes on the form

vij � log

 
pij

1� pij

!
= �j + www0

i��� + zi + eij ; i = 1; � � � ; I; j = 1; 2; (10)

where wwwi is a vector of forest coverage covariates and ��� is the corresponding coe�cients. For forest

coverage, this allows use of either a simple linear model for the covariate term or the inclusion

of higher order relationships, such as a quadratic term. Covariates and week e�ects can easily be

combined into a single design matrix. Thus, in our model the week and forest coverage e�ects

may be considered �xed e�ects in the sense of a mixed model. This model would be considered

our �rst stage of the hierarchical model. To de�ne the second stage, prior distributions for each

component of our linear model must be addressed. We retain the priors for other model components

de�ned above and place a multivariate normal distribution on the vector ��� with mean vector ��� and

variance-covariance matrix ���.

In addition to the speci�cation of the priors we make assumptions on the nature of the model.

Taking the week e�ects as a vector ��� = (�1; �2)
0 then, given (���; ���; zzz; �0); the parameter pij is

independent of �z and �. Also, given (�z ; �); zzz is independent of (���; ���; �0). Finally, we assume the

parameters (���; ���; �0; �z; �) are mutually independent. We have little information on appropriate

prior distributions for the �xed e�ects ��� and ���. To specify these distributions we �rst explore the

posterior of these distributions using a constant prior. We then use the posterior mean and variance

of the resulting posterior to specify the prior of ��� and ���. This procedure may fail if the posterior

is not a proper distribution.

2.4 Existence of the Posterior

We often do not have subjective information concerning the nature of the data. In these

instances we can use a non-informative prior. Non-informative priors, however, do not produce

proper Bayes factors. Thus, if we wish to compare several models, we will need Bayes factors.

Instead, we apply non-informative priors to obtain a posterior mean and variance. This posterior

mean and variance can then be used to construct a proper prior.

When a non-informative prior is used, the posterior distribution may be improper (Hobert and

Casella 1996). Under such a situation, an MCMC algorithm would not converge. To examine

some properties of the priors used and the resulting posterior distributions, suppose the data
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yyy = (y11; : : : ; yI1; y12; : : : ; yI2)
0 follow the binomial distribution as in (2), whose �rst stage prior is

given by the linear mixed model (10). Equation (10) can be rewritten as vvv = XXX1���+WWW���+XXX2zzz+eee;

where

vvv =

0
BBBBBBBBBBB@

v11
...

vI1

v12
...

vI2

1
CCCCCCCCCCCA
; XXX1 =

0
BBBBBBBBBBB@

1 0
...

...

1 0

0 1
...

...

0 1

1
CCCCCCCCCCCA
; WWW=

0
BBBBBBBBBBB@

www
0

1
...

www
0

I

www
0

1
...

www
0

I

1
CCCCCCCCCCCA
; XXX2 =

 
III

III

!
; eee =

0
BBBBBBBBBBB@

e11
...

eI1

e12
...

eI2

1
CCCCCCCCCCCA
:

The following fact is a corollary of a theorem from Sun, Tsutakawa and He (1998).

Fact 1 Suppose that the design matrix (XXX1;WWW) is of full column rank.

Assume the following prior distributions: p(���; ���) / 1, and (zzz j �; �z) has the CAR prior given

in (6), where BBB is given in (7) and � has a uniform prior on (��11 ; ��1I ). Then the joint posterior

distribution of (vvv; ���; zzz; �0; �z; �) given yyy exists if the prior of (�0; �z) (not necessary of the form (9))

is proper.

This theorem is readily applied to our model for the MTHS. Here the design matrix (XXX1;WWW;XXX2)

does not have full rank, but (XXX1;WWW) has full rank. The problem is that the vector of covariates for

forest coverage WWW can be considered a linear combination of the columns of XXX2.

3 Computations

Computing the appropriate posterior in this case is not feasible due to the high dimensionality

of the integration. Instead, we use MCMC methods such as Gibbs sampling. The use of Gibbs

sampling requires sampling from full conditional distributions of each parameter. In this section,

we brie
y summarize these conditional distributions based on our model.

The following fact gives the full conditional distributions when the prior includes the e�ect ���

with the corresponding design matrix WWW: The full conditional distributions without covariates can

be derived similarly.

Fact 2 The full conditional distributions are given as follows:

(a) Given (yyy; ���; ���; zzz; �0; �z ; �), vij = log[pij=(1� pij)]; (i = 1; : : : ; I ; j = 1; 2), are independent, and

have conditional density proportional to

exp

�
vijyij � nij log(1 + evij)�

(vij � �j � www0i��� � zi)
2

2�0

�
:

7



(b) Given (yyy; vvv; ���; zzz; �0; �z; �), �1 and �2 are independent and the distribution of �j is

N

�
dj�j + �0�j

2�j + �0
;

�j�0

2�j + �0

�
;

where dij = vij � zi � www0i��� and dj = I�1
PI

i dij.

(c) Given (yyy; vvv; ���; zzz; �0; �z ; �), the distribution of ��� is multivariate normal with mean AAA�1
1 GGG1 and

covariance matrix AAA�1
1 ; where AAA1 =

2
�0
WWW0WWW +����1 and GGG1 =

2
�0
WWW0ttt+ ����1��� with

ttt =
�1
2

2X
j=1

(v1j � �j)� z1; : : : ;
1

2

2X
j=1

(vIj � �j)� zI

�0
: (11)

(d) Given (yyy; vvv; ���; ���; �0; �z; �), zzz is multivariate normal with mean ��10 AAA�1
2 GGG2 and covariance matrix

AAA�1
2 ; where AAA2 =

2
�0
III+ 1

�z
BBB and

GGG2 =
� 2X
j=1

(v1j � �j � www01���); : : : ;
2X

j=1

(vIj � �j � www0I���)
�0
: (12)

(e) Given (yyy; vvv; ���; ���; zzz; �z; �), �0 has an inverse gamma distribution with parameters

a0 + I and b0 +
1

2

X
i;j

(vij � �j � www0i��� � zi)
2:

(f) Given (yyy; vvv; ���; ���; zzz; �0; �), �z has an inverse gamma distribution with parameters

az + 1 and bz +
1

2
zzz0BBBzzz:

(g) Given (yyy; vvv; ���; ���; zzz; �0; �z), � has a conditional density proportional to

jBBBj1=2 exp
n
�

1

2�z
zzz0BBBzzz

o
:

These distributions allow the use of Gibbs sampling for producing our Bayesian estimates of the

parameters. The distributions of the vij and � are not a standard distribution from which we can

easily obtain samples. These distributions can be sampled using the adaptive rejection sampling

procedures of Gilks and Wild (1992) . This methodology is very straight forward for distributions

which are log-concave as shown by Berger and Sun (1993). It can be shown that the conditional

densities of vij and � are indeed log-concave. For vij , the second derivative of the log density is

given by:

�nije
vij (1 + evij)�

1

�0
:

This value is negative for values of vij and thus the distribution is log-concave. For �, we note that

the second derivative of the log density is given by:

�
1

2

IX
i=1

�2i
(1� ��i)2

;

where (�1; � � � ; �I) are the eigenvalues of the adjacency matrix CCC. This derivative is obviously

negative. We can use the log-concavity of the density to simplify sample generation.
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4 Results

Our goal is to examine covariate e�ects in modeling the success rate of turkey hunters in

counties of Missouri. The covariate of interest is the proportion of a county covered by woodland.

Biologically, forest coverage may be linked with the number of turkeys in a given area. It is

reasonable to assume that the hunter success rate might also be linked with forest coverage. It is

also thought that the number of turkeys has a quadratic relationship with forest coverage. We thus

considered both linear and quadratic relationships between hunter success rate and forest coverage.

4.1 Models

We considered three models for these data (Table 1). We examined a simple model with no

covariate as a baseline to examine the covariate e�ect. This model included the �xed week and

the random county e�ects but no covariates. For the second model we start with a simple linear

relationship and include the covariate forest coverage (si). A third model that included both a

linear term and a quadratic term of the forest coverage was also �t.

4.2 Hyper-parameters

To implement our Gibbs sampling routine we needed to specify the appropriate hyper-parameters.

We had little practical knowledge of the situation so use of priors that were informative was not

feasible. We �rst used non-informative priors to produce estimates of the posterior means and

variances. The resulting posterior means and variances allowed us to establish more appropriate

priors. We then used these proper priors for estimation and calculation of Bayes factors.

For example, in Model 2 we needed the prior for the covariate term. The posterior mean and

variance for this term from the non-informative prior were found to be �0:1 and 0:2. We then set

the mean of the covariate prior at �0:1 and the variance at 0:8, or four times the variance. For

Model 3, we have both a linear and a quadratic term. As before, we used the posterior results

from the non-informative prior to set the mean and variance of the linear term at 0:0075 and 0:008

respectively. Similarly for the quadratic term, we set the prior mean to �0:0107 and variance to

0:07 using the posterior results from the non-informative priors.

For other hyper-parameters, we followed similar procedures. For the week e�ects, �j we assigned

�1 = �2:2; �2 = �2:6 and �1 = �2 = 1:0: For the variance components, we set the priors on the

inverse gamma distributions with shape parameters a0 and az , to 2:5 and the scale parameters b0

and bz to 0:1 for both the component from the random e�ects and the overall error. Experimentation

with a variety of hyper-parameters found very similar results regardless of the hyper-parameters.
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4.3 Model Comparison

To compare the various models we use Bayes factors. The Bayes factor gives the ratio of

the posterior odds to the prior odds in comparing two models. To use this, we had to specify

prior odds for particular model comparisons. In this instance, we took a neutral point of view

and choose equal probability for both models. The Bayes factor for Model h versus Model k is

Bhk = P (yyyjMh)=P (yyyjMk): The di�culty with the Bayes factor is calculating P (yyyjMk). Several

methods are available for calculating this quantity.

The simplest method is the harmonic mean estimator for the marginal likelihood based on

Gibbs outputs presented by Newton and Raftery (1994). Unfortunately, as it was noted by Kass

and Raftery (1995) and others, the estimated marginal likelihood is often dominated by a few

values with small likelihood. Alternatively, we use the bridge sampling method of Meng and Wong

(1996). This method makes use of a random sample 


(k) = (


k1; � � � ; 


knk) from the posterior

produced by Gibbs sampling for Model k. In our case 


km = (vvv(m); ���(m); zzz(m); �
(m)

0 ; �
(m)
z ; �(m)),

m = 1; : : : ; nk; from the output of Gibbs sampling for Model k: Meng and Wong (1996) presented

an iterative algorithm for obtaining an optimal estimate of the Bayes factor. Speci�cally, at the

(g + 1)st iteration the estimate of the Bayes factor of Model h to Model k is given by

B̂
(g+1)
hk =

1
nk

Pnk
m=1

lkm

dhlkm+dkB̂
(g)

hk

1
nh

Pnh
m=1

1

dhlhm+dkB̂
(g)

hk

; (13)

where dh = 1� dk = nh=(nh + nk); lkm = qh(


km)=qk(


km); lhm = qh(


hm)=qk(


hm); and qk is the

product of the likelihood and the marginal prior density of 


 = (vvv; ���; zzz; �0; �z; �) under Model k.

We often choose nh = nk so that dh = dk = 1=2:

To see if a linear or quadratic term for forest coverage is necessary, we let WWW2 = (s1; : : : ; sI)
0

and WWW3 be the I � 2 matrix, whose ith row is of the form (si; s
2
i ). We also let ���k and ���k be the

prior mean and variance of the corresponding parameters ���k under Model k, for k = 2; 3. In this

instance, we have,

q1(


)

qk(


)
= (2�)(1�pk)=2j���k j

1=2jAAA3kj
1=2 exp

�1
2

h
���0k���

�1
k ���k �GGG0

3kAAA
�1
3k GGG3k

i�
; k = 2; 3;

where pk is the dimension of ���k (i.e., q2 = 1 and q3 = 2), GGG3k = 2
�0
WWW0

kttt + ����1
k ���k and AAA3k =

2
�0
WWW0

kWWWk + ����1
k . Here ttt is de�ned as in equation (11) and is evaluated using the random sample




(k).

4.3.1 Bayes Factors

The models presented in 4.1 were �t and the Meng and Wong (1996) procedure was used to

calculate appropriate Bayes factors. The resulting Bayes factors for comparing Model 2 (the CAR
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model with a linear covariate) with Model 1 (CAR model without covariate) was B21 = 2:753.

The value for comparing Model 3 (CAR with quadratic covariates) and Model 1 was B31 = 3:009.

The Bayes factors give the posterior odds in favor of �rst model. The interpretations outlined by

Kass and Raftery (1995) �nd that Bayes factors between 1 and 3 are \not worth more than a bare

mention" and values from 3 to 20 are considered to be \positive" evidence. Here we see that while

the Model 2 is probably not an improvement over Model 1, Model 3 may be more e�ective.

The borderline value of the Bayes factor in comparison of Model 3 with Model 1 necessitates

further examination. To support the conclusions of the Bayes factors, we examined the posterior

distributions of the covariate coe�cients. If the covariates add little to the model, we would expect

the coe�cients to be near zero. The posterior marginal distributions are displayed in Figure 2.

Both covariate coe�cients (�1; �2) for the quadratic model (Model 3) appear to be centered near

zero. Similarly, for the linear covariate model (Model 2) we see that the distribution of � is centered

near zero. In light of this information it is unlikely that the covariates improve the model in either

form for these data.

4.3.2 Comparison of Success Rates

Another point of comparison among the candidate models concerns the hunter success rates

for each county. Figure 3 displays plots of the comparative success rates generated by each model.

From these plots it appears that success rates of the covariate models were very similar to the

simple CAR model for the 1996 turkey data. Figure 4 also gives maps of the success rates for under

the Bayesian CAR model as well as the simple frequency estimators.

4.4 Bayesian Estimators

The Gibbs sampling routine produced estimates for the posterior distributions of the week and

county e�ects. The posterior means and standard deviations for Model 1 are given in Table 2.

Other posterior parameter estimates of interest include the variance components and the spatial

correlation. Model comparisons given above imply that our spatial correlation should be non-zero.

This conclusion is supported by the posterior mean and standard deviation for the correlation

coe�cient �. As expected the random county e�ects had a signi�cant variance �z . The estimated

posterior densities are displayed in Figure 5.

5 Comments

The forest coverage covariate did not seem to provide substantive improvement over the simpler

CAR models for the 1996 MTHS data. This result is somewhat unexpected. Examination of scatter
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plots seemed to indicate a general relationship between the covariate and success rates.

A possible explanation of this general relationship may be attributed to the county e�ects zi.

In �tting models with the forest coverage covariate but without the county e�ects, we found very

di�erent posterior estimates for the covariate parameters. Table 3 provides a comparison of the

posterior estimates and standard deviations of the covariate e�ects with and without the random

county e�ects.

For the quadratic model without the inclusion of county e�ects, a 95% con�dence interval

would not contain zero. In contrast the model which contained random county e�ects had a 95%

con�dence interval that contained zero. This would indicate that the forest coverage covariate may

be useful if one chooses not to �t random county e�ects.

In general, Bayesian estimates provided a smoother �t than standard frequency estimators used

in standard survey methods. We did �nd that even in counties where no data were available

or where no successes were reported in the sample, we had a positive estimate. These Bayesian

estimates seem more reasonable in such situations.
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Table 1: Models

Model Description Form

1 CAR model without covariate �j + zi + eij

2 CAR model with linear covariate �j + �si + zi + eij

3 CAR model with quadratic covariate �j + �1si + �2s
2
i + zi + eij

Table 2: Posterior Estimates of Parameters for Model 1 (CAR model without

covariates included.)

Parameter Posterior Mean Posterior Std. Dev.

�1 �2:2040 :0791

�2 �2:6705 :0816

�0 0:0601 :0151

�z 0:0222 :0079

� 0:1663 :0039

Table 3: Covariate Estimates (Std. Dev) With and Without County E�ects

Model Linear Term Quadratic Term

�j + �si + eij �130:66(75:45) {

�j + �si + zi + eij 0:0204(0:0413) {

�j + �1si + �2s
2
i + eij 2090:56(270:96) �3855:05(441:00)

�j + �1si + �2s
2
i + zi + eij 0:0132(0:0414) �0:0257(0:1222)
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Figure 1: Scatter plots of logit success rates obtained from the CAR model logit(pBij) and

the forest coverage si for week 1 (a) and week 2 (b).

Figure 2: Relative frequency histograms of posterior distributions of the covariate terms

from (a) the linear term of Model 2, (b) the linear term of Model 3 and (c) the quadratic

term of Model 3.

Figure 3: Comparisons of the predicted success rates (~pBij) for (a) Model 2, and (b) Model

3 with those of Model 1 (pBij).

Figure 4: Maps of naive frequency estimators of pFij = yij=nij and Bayesian estimators

pBij : (a): frequency estimators of pFi1 for Week 1; (b): frequency estimators of pFi2 for Week 2;

(c): Bayesian estimators of pBi1 for Week 1; (d): Bayesian estimators of pBi2 for Week 2. Here

the counties in white are those where nij = 0 so that pFij do not exist.

Figure 5: Relative frequency histograms from posterior distributions produced by Model

1 for the week e�ects (a) �1, and (b) �2, the variance components (c) �0, and (d) �z, and the

common spatial correlation (e) �.
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