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ABSTRACT

In forensic science, DNA profiles are used to characterize individuals and associate
suspects with crimes. Modern DNA profiles are constructed using microsatellite markers,
short tandem repeats of sequences of 2-5 base pairs. One tool for evaluating evidence
based on DNA profiles is the match probability. The match probability is the conditional
probability that a random person would have the profile of interest given that the suspect
has it and that these people are different members of the same subpopulation. One
issue in evaluating the match probability is hidden population differentiation, which can
induce coancestry among members of the same subpopulation. Forensic assessments of
DNA profiles which ignore such coancestry typically overstate the strength of evidence
against the suspect. Theory has been developed to account for coancestry when evaluating
match probabilites. Assumptions include a steady-state population of constant size, and
a recurrent mutation model that may be unrealistic for microsatellite markers. We use a
coalescent to investigate the robustness of the theory to a generalized stepwise model of
microsatellite mutation, in growing rather than constant-sized populations. Demographic
parameters are chosen to reflect historical human population estimates. Simulations
demonstrate that, even when coancestry is taken into account, the probability of a

matching profile can still be underestimated for common genotypes.
INTRODUCTION

Several authors (e.g. BALDING and NICHOLS 1994; BALDING and NICHOLS 1995;
LANGE 1995) have discussed the need to account for the coancestry of individuals when
assessing the evidential strength of matching DNA profiles in forensic identification.
Matching profiles could reflect genetic homogeneity of a subpopulation, rather than guilt
of the suspect. Hence, a fair assessment of DNA profile evidence should allow for the
possibility that the suspect and perpetrator belong to the same subpopulation (WEIR
1994). Standard product-rule estimators of match probabilities (NRC 1992) assume
that the effects of hidden population subdivision are negligible. However, BALDING
and NICHOLS (1997) examined genetic correlations quantifying population differentiation
among Caucasians, and concluded that coancestry was too large to be ignored. They
found that product-rule estimators of match probabilities can, in many cases, overstate
the strength of evidence against the suspect.

Theory has been developed to account for the effects of coancestry on match

probabilities. A mutation model is assumed in which the allelic state after a mutation
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event is independent of the state prior to mutation (WRIGHT 1951; GRIFFITHS 1979).
Under this source-invariant mutation model, the joint allele probabilities within a
population may then be expressed in terms of marginal allele probabilities and identity-
by-descent measures appropriate to the genetic model. Joint allele probabilities determine
match probabilities. BALDING and NICHOLS (1994) assume a subdivided population of
constant size, and use a coalescent argument to arrive at expressions for the joint allele
probabilities within a subpopulation. Subpopulations are not necessarily independent,
because of migration and common history. Genetic replicates are therefore defined as
the combined evolutionary history of subpopulations. These authors show that when the
marginal probabilities of an allele have reached a steady state, the joint allele probabilities
within a subpopulation match the moments of a Dirichlet distribution. Note that since the
genetic model is formulated without reference to a base population, measures of identity
by descent are defined in terms of the coalescence of ancestral lines, without intervening
mutations or migrations. The measures therefore depend on the rates of mutation,
migration, and coalescence. Coalescence rates, in turn, depend on population size. Hence,
‘under constant population size and mutation and migration rates, the measures of identity
by descent remain constant over time.

WEIR and COCKERHAM (1984) proposed an estimator of the coancestry coefficient
under a genetic model in which each subpopulation is constructed by randomly drawing
individuals from a base population of infinite size. At the time of the base population,
the probability of drawing an allele is assumed to be in steady state. The expected
value of allele frequency in the subpopulation is therefore equivalent to the allele
frequency in the base population. Thereafter, subpopulations are assumed to evolve
under similar demographic conditions. Inference is conditional on allele frequencies in
the base population, and subpopulations represent independent genetic replicates. In
this prospective genetic model, identity by descent is defined with respect to the base
population, and therefore decays with the time elapsed since the base population. Under
the equilibrium of descent measures within subpopulations, higher-order descent measures
can be written in terms of the pairwise measure of identity by descent (L1 1996). Then
joint allele probabilities within a subpopulation have a form similar to those in the
genetic model of Balding and Nichols, but are defined in terms of parameters in the
prospective genetic model. L1 (1996) used the resulting expressions to approximate joint
allele probabilities early in the history of constant-size subpopulations, and found that

the approximation performed well.



Both approaches invoke the equilibrium distribution of allele frequencies under the
source-invariant mutation model. However, for the microsatellite alleles used in DNA
profiling, a stepwise mutation model (e.g., FU and CHAKRABORTY 1998) may be more
realistic. Under stepwise mutation, there is no stationary distribution of allele frequencies
(MoRAN 1975). In this paper, we investigate the robustness of the match probability
theory to a stepwise model of microsatellite mutation, in growing rather than constant-

sized populations.
METHODS

Demographic parameters: To simplify the analysis, we assumed the same demo-
graphic history for all subpopulations in our simulation study. The current number of
2 x 10% individuals in a subpopulation was chosen to be typical of the effective size
of a modern population such as New Zealand Caucasians. Subpopulations were not of
constant size over time, but instead underwent exponential growth. Each subpopulation
arose 5000 generations before present (gbp) from 500 random individuals in a population
of size 10000 individuals. Subsequently, each subpopulation evolved independently of the
others, with no migration. Prior to 5000 gbp, the size of the meta-population giving rise
to the subpopulations was constant at 10000 individuals, and there was no subdivision.
Historical population sizes were based on estimates from the literature (e.g. HARPENDING
et al. 1998; KRUGLYAK 1999), which suggest that the approximate date of the Homo
sapien migration out of Africa is G ~ 5000 gbp, and that the effective population size
prior to the migration was N =~ 10000 individuals.

Mutation model: Let 7;; be the probability that a mutation causes an allele
size change from i to j. FU and CHAKRABORTY (1998) proposed a generalized
stepwise mutation model in which m;; depends on ¢ and j only through |i —j|. A
homogeneous distribution without constraints on allele size was preferred because it had
fewer parameters and because only the relative sizes of alleles were known. Under their
model,

) aP(1- p)i—i-t j>1
v { (1-a)P(1— Py~ j<i.
The parameter o describes the probability of an increase in repeat number; the size |i — j|
of the resulting change in allelic length has a geometric distribution with probability
P(1 - p)li-il-1,



Table 1: Allele frequencies of microsatellite marker D8S1179 in New Zealand Caucasians.

Allele length in repeat units
8 9 100 11 12 13 14 15 16 17
percent 2.13 0.45 11.63 7.72 14.54 33.33 17.56 9.40 3.02 0.22

Other parameters of the stepwise mutation model include the mutation rate p, and
the length A of the allele of the most recent common ancestor (MRCA) of the sample.
We have selected a sample of size 1000 chromosomes. Simulations indicate that with high
probability (~ .998) the sample MRCA coincides with the MRCA of the subpopulation.
Even with a more modest sample size of 100 chromosomes, the probability is still very
high (~ .980). Hence, A may also be viewed as the allelic length of the MRCA of the
population. Given A and the realized ancestral tree, microsatellite mutations can be
placed on the tree, from the root to the tips, as described by Fu and CHAKRABORTY
(1998). Conditional on the length of a segment of the tree, the number of mutation events
on the segment is approximated by a Poisson random variable, with mean equal to the
product of the mutation rate and the segment length.

For the simulation study, we chose mutation model parameters p = 5 x 107%, A = 9,
a = 0.720, and P = 0.999, consistent with microsatellite allele frequencies shown in
Table 1. Reported allele frequencies are based on a sample of 454 New Zealand Caucasian
offenders. Selected parameter values are consistent with estimates from the literature.
Microsatellites have a high mutation rate of ~ 10™* to 10™% per generation (GYAPAY
et al. 1994). Most observed mutations result in a change of a single repeat unit (WEBER
and WoNG 1993; DIRIENZO et al. 1994), with a tendency towards increasing allelic
length (BRINKMANN et al. 1998).

Allelic associations: Following the notation of EVETT and WEIR (1998), consider
a microsatellite locus A with alleles A; of length ¢ repeat units in a randomly mating
subpopulation. Let p; and P,; denote, respectively, the probability of drawing an allele A;,
and the probability of drawing an individual with genotype G = A;A; in the subpopulation
at present. In both genetic models, p; is assumed to be in steady state. Under the source-
invariant mutation model, genotype probabilities may then be described by

Py = 0pi+(1—- 9)1’?



Pj = (1-0)2pip; i # 7,

where the coancestry coefficient 6 is specific to the genetic model. In the genetic model
of WEIR and COCKERHAM (1984), 60 is the probability that two alleles drawn from the
subpopulation at present are identical by descent with respect to the base population.
In the genetic model of BALDING and NICHOLS (1994), @ is the probability that two
alleles from the same subpopulation coalesce with no intervening mutation events on the
lines of descent. However, for the high mutation rates typical of microsatellite markers,
both measures are virtually identical given the demographic parameters of this simulation
study. Figure 1 shows the coancestry coefficient, measured first with respect to the
base population at 5000 gbp, and then without reference to a base population. At the
selected mutation rate u = 0.0005, both coancestry coefficients are ~ 0.008. Coancestry
coefficients were determined empirically based on 107 coalescent replicates for a random

pair of chromosomes from a subpopulation.
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Figure 1: Coancestry coefficient versus mutation rate. Solid, pairwise probability of
identity by descent without reference to a base population; dotted, with reference to the
base population at 5000 gbp.

To gain insight into the adequacy of the source-invariant mutation model for
microsatellite DNA profiles, we compared association parameters describing F;; under the

stepwise mutation model to the analogous quantity under the source-invariant mutation



model. Associations were determined empirically, based on 107 coalescent replicates for a
random pair of chromosomes within a random sample of 100 chromosomes. The within-
subpopulation correlation for an allele of length 7 repeat units is
0 = P — Pg '

pi(l —pi)
Under the source-invariant mutation model, this correlation coincides with the coancestry
coefficient 0; hence 6;; = 6. More generally, however, 6;; can vary with allele length 3.
Another measure of association within a subpopulation, between two alleles of different

lengths i # j, is
Pi'

2pip;
In a stepwise mutation model, 6;; is expected to vary with the allelic states (BALDING and

].—Hijz

NicHOLs 1994). Such variation is not accommodated by the source-invariant mutation
model, which constrains 6;; = 6. As a diagnostic for the fit of the source-invariant
mutation model, we examined the departure of §;; and 6;; from the coancestry coefficient
6.

Predicted match probabilities: BALDING and NICHOLS (1994) showed that under
the source-invariant mutation model joint allele probabilities within a randomly-mating
subpopulation match the moments of a Dirichlet distribution, provided that the marginal
allele probabilities are in steady state. They expressed joint allele probabilities in terms
of marginal probabilities p; and the coancestry coefficient 6, and used them to derive
formulae for match probabilities. For a suspect (S) with genotype Gg and perpetrator
(P) with genotype Gp, equations (1) give the expressions for genotypes A;A; and A;A;,
i # j, respectively (EVETT and WEIR 1998).

[pi +0(2 —pi)l[pi +0(3 — pi)]
(1 +0)(1+20)

PI’(GP = A,Az | GS = AiA,)
(1)

2[p; +6(1 — pi)llp; +0(1 — p;)]
Pr(Gp = A;A; | Gs = AjAj) = L I
HOp = Aiflj [ Gs = Aify) (1+0)(1 +20)
Empirical match probabilities were compared to those predicted by the equations using
empirically determined values of p; and assigned values of § = 0.010,0.050, 0.100, and
0.150. Empirical values were based on 107 coalescent replicates for a random sample of four
chromosomes, within a random sample of 1000 chromosomes drawn from a subpopulation.

Empirical match probabilities were calculated by dividing the observed probability of
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drawing two members of a subpopulation with the given genotype by the probability of
that genotype.

Estimated match probabilities: We also examined the bias, over coalescent
replicates, of the product rule estimator and an estimator based on the Dirichlet
equations (1). The Dirichlet estimator is formulated unconditionally, over repeated
realizations of populations or sets of populations. In contrast, the product rule estimator
is formulated conditional on the observed population. However, bias of the product rule
estimator across coalescent replicates should reflect a tendency towards bias at the fixed
population level.

Typically, forensic databases are constructed using convenience samples from a limited
number of subpopulations. To mimic such data, we simulated the ancestry of random
samples of 1000 chromosomes from each of 5 subpopulations with demographic histories as
described above. For each coalescent replicate, the samples were used to build a database
of microsatellite allele frequencies. The overall database frequency f; of an allele of size
1 repeats was used to estimate the expected frequency p;. The product-rule estimator
of match probability is 2f;f; for a suspect and perpetrator with genotype G;Gj, i # j,
and f? for a suspect and perpetrator with homozygous genotype G;G;. An estimator
taking into account coancestry was constructed by substituting database frequencies f;
for p;, and a moment estimate for 6 into the Dirichlet equations (1). We chose a moment
estimator of § which is easy to calculate and combines coancestry information across
subpopulations (WEIR 1996). BALDING and NICHOLS (1997) introduced a Bayesian
approach to modelling variation in 6 among subpopulations in order to address the
possibility that subpopulations may have different degrees of coancestry, owing to differing
demographic histories. However, in the current study, all subpopulations were simulated

to have the same coancestry coefficient. Hence, modelling of variation in @ is unnecessary.
RESULTS

Figure 2 shows the probability of drawing an allele A; of length 7 repeat units from a
subpopulation at present. The marginal distribution has a longer right tail, with a mode
of 13 repeat units, and a mean of approximately 16 units. Over 90% of the time, an
allele is between 9 and 28 repeat units in length. The mode and longer right tail of the
distribution are consistent with the ancestral allele A = 9 and the parameter a = 0.720

describing the probability of an increase in allelic length given a mutation event. Over



time, the mode of allele frequencies within a subpopulation tends to drift towards higher
repeat numbers. Long ancestral trees generally have more such drift and a larger spread
of allele lengths than shorter trees. Shorter ancestral trees result in more tightly clustered
lengths, closer to the ancestral allele. As predicted (MORAN 1975), the spread of allele
lengths in a subpopulation tends to be more stable than the mode, which can occasionally
drift towards high repeat numbers. In fact, most variation in allelic length (~ 80%) is
observed across coalescent replicates rather than within a replicate.

probability
0.04 0.06 0.08

0.02

0.0

5 10 15 20 25 30 35 40 45 50 55 60

allele length

Figure 2: Probability of sampling an allele of a given length.

Allelic associations: Allelic correlations 8;; are plotted in Figure 3. The stepwise
mutation model introduces excess correlation, above the correlation of § = 0.008 (the
coancestry coefficient) that would hold under the source-invariant mutation model. The
average correlation weighted by allele frequency is >; p;ifi; =~ 0.095. Correlation is high
for alleles of length 9 and 10 repeat units, which are associated with shorter ancestral
trees. Short ancestral trees have alleles that tend to be more tightly clustered in length.
Correlation is lowest for alleles with very low repeat numbers, which tend to derive from
long ancestral trees carrying alleles with a wider range of lengths. Further simulation
results indicate that, as expected, correlation is diminished at higher mutation rates and,
when o = 0.5, drops off symmetrically from the ancestral allele length of A =9.

Figure 4 displays associations 1 — 6;; in the natural logarithmic scale for selected
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Figure 3: Within subpopulation correlations §;; for allele A;.

genotypes A;A;, ¢ < j. The rarer the allele, the stronger the association with alleles
of similar but unequal length. Such positive association is at odds with the negative
Dirichlet association between distinct alleles that is predicted by the source-invariant
mutation model. Overall, 3°;; P;0;; ~ —3.6.

These diagnostics indicate that the source-invariant mutation model does not fully
capture the pairwise distribution of alleles under a stepwise mutation model. It is therefore
reasonable to expect that the joint distribution of three and four alleles, and hence
the predicted match probabilities, would also be misspecified. In the next section, we
investigate the impact of the stepwise mutation model on match probabilities predicted

by the source-invariant mutation model.

Predicted match probabilities: Figure 5 shows empirically determined match
probabilities, and the probabilities predicted by the source-invariant mutation model with
various values of 6 in the equations (1) for selected genotypes A;A4;, ¢ =13 and j > ¢. For
the common genotypes, predicted match probabilities systematically underestimate true
match probabilities, except when 6 is taken to be very high. For example, at § = 0.150,
the predicted match probability for genotype A3, A4 is approximately correct, but those
for the A3, A3 homozygote and the less common heterozygotes are too conservative.

Estimated match probabilities: Figure 6 shows empirically determined match
probabilities, and the expected values of match probability estimators for selected
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association log_e(1-theta(i,j))

5 10 15 20 25 30 35 40 45 50
allele length j

Figure 4: Within subpopulation associations log,(1—#6;;) for alleles j > 4; solid line, 7 = 5;
dotted, ¢ = 20; short-dashed, ¢ = 30; long-dashed, ¢ = 40.

probability
006 008 010 0.12
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0.02

0.0

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
allele length j

Figure 5: Empirical and predicted match probabilites for selected genotypes A;A;, ¢ =13

and j > ¢. Solid line, empirical probabilities; dotted, predicted probabilities § = .010;
short-dashed, 6 = .050; medium-dashed, # = .100; long-dashed, 6 = .150.
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genotypes A;A;, ¢ = 13 and j > i. The product-rule estimator is systematically biased,
with a tendency to underestimate match probabilities. The Dirichlet estimator is less
biased, but still tends to underestimate match probabilities for common genotypes. For
example, estimated match probabilities for a suspect with the more common heterozygous
genotype A3, A14 are expected to be about 51% and 31% of the true match probability, for
the Dirichlet and product-rule estimators, respectively. Suppose profile data are available
on five unlinked microsatellite loci, all with mutation parameters similar to the locus
considered here. Then, in the case that the suspect carried the common genotype at
all five loci, we would expect match probabilities to be underestimated by a factor of
.51% = 3 x 1072 with the Dirichlet estimator, and by a factor of .31% = 3 x 1073 with
the product-rule estimator, assuming statistical independence of alleles at unlinked loci.
For ten loci, we would expect underestimation by factors of about 1 x 1073 and 9 x 1075,
respectively.

Given that the product rule estimator underestimates the true match probability, it
is not surprising that for common genotypes so does the Dirichlet estimator. Predicted
match probabilities for common genotypes A;A; involve larger marginal probabilities p;
and p; in the numerator of equations (1). Larger p; and p; reduce the importance of
the coancestry coefficient in the expression, and make predicted match probabilities more

similar to those under the product rule.
DISCUSSION

There are several aspects of population genetics that require genotype probabilities
and conditional genotype probabilities. In forensic assessments of DNA profiles, a theory
of conditional genotype probabilities has been developed to account for the effects of
coancestry on match probabilities (BALDING and NICHOLS 1995). Assumptions include a
source-invariant mutation model with a stationary allele frequency distribution (WRIGHT
1951; GRIFFITHS 1979) and populations of constant size. However, for microsatellite DNA
profiles, a stepwise mutation model would seem more realistic; for such a model there is
no stationary distribution of allele frequencies (MIORAN 1975). We have investigated
the robustness of the theory to a generalized stepwise model of mutation, in growing
populations. Although a variety of demographic and stepwise mutation models may
be applied in a coalescent framework, we have opted for simple models as useful first
approximations. While our results confirm that it is important to account for coancestry,

they also cast doubt on the growing use of the Dirichlet approximation to the distribution
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Figure 6: Empirical match probabilites, and expected values of match probability
estimators for selected genotypes A;A;, i = 13 and j > 4. Solid line, empirical
probabilities; dotted line, expected value of Dirichlet estimator; dashed line, expected

value of product estimator.

of microsatellite allele frequencies. We find that, although the coancestry coefficient is
small (f = 0.008), the product-rule estimator is systematically biased, with a tendency
to underestimate match probabilities. As shown in Figure 6, the estimator which takes
into account coancestry is less biased, but still tends to underestimate match probabilities
for the more common genotypes. However, as shown in Figure 5, such underestimation
may be avoided by setting the coancestry coefficient to be very high. The price for
such corrections is overly conservative predictions for rarer genotypes. For example, in
the current study, some predicted match probabilities were more than three times the
empirical value.

It is clear that allelic associations must be taken into consideration when estimating
match probabilities for microsatellite profiles. However, as shown in Figures 3 and 4, these
associations are inadequately characterized by the coancestry coefficient. Estimation
procedures formulated under the source-invariant mutation model will therefore be
ineffective. One alternative suggested by the current study is a coalescent-based estimator.
For a given microsatellite locus, available data from well-characterized populations could
be used to estimate the appropriate mutation parameters. Fu and CHAKRABORTY (1998)
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describe one such analysis. Estimated parameters could then be used to evaluate match
probabilities empirically, in conjunction with a variety of plausible demographic histories
for the population of the suspect. However, for a given mutation model, such a procedure
would only be as good as the parameter estimates. The statistical properties of estimators

of mutation parameters are uncertain, and require further investigation.
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