
Origin-based algorithms for
Transportation Network Modeling

Hillel Bar-Gera

Technical Report Number 103
November, 1999

National Institute of Statistical Sciences
19 T. W. Alexander Drive

PO Box 14006
Research Triangle Park, NC 27709-4006

www.niss.org

NISS

ORIGIN-BASED ALGORITHMS
FOR TRANSPORTATION NETWORK MODELING

Hillel Bar-Gera

Technical Report #103
October, 1999

National Institute of Statistical Sciences
P.O. Box 14006

Research Triangle Park, NC 27709

For additional copies please contact:

Hillel Bar-Gera or David Boyce at
Civil and Materials Engineering Department (MC 246)
University of Illinois at Chicago
842 W. Taylor St. Chicago, IL 60607

hbarge1@uic.edu, dboyce@uic.edu

Copyright c1999 by Hillel Bar-Gera.

All Rights Reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the author, Hillel
Bar-Gera.

PREFACE

Convergent algorithms for solving the deterministic user-optimal tra�c assignment
(route choice) problem with �xed demand have been studied since the 1960s. Al-
though several innovative approaches for solving this problem have been advanced
during the past 30 years, none seems to o�er compelling practical advantages for
solving large-scale problems over the method of Frank and Wolfe (1956). This may
be regarded as surprising since the convergence of the Frank-Wolfe method is known
to be extremely slow. See Patriksson (1994, Ch. 4) for a historical review.

Shortly after we �rst met in September, 1997, Hillel Bar-Gera and I discussed this
issue in the context of the recent interest sparked by the route-based DSD algorithm
of Larsson and Patriksson (1992). When Hillel suggested to me that an origin-based
approach might be more e�ective, I cautioned him to be careful, since many capable
researchers had taken up this problem.

This report is the result of Hillel's investigation of this problem. The contents of the
report are identical, except in format, to his Ph.D. thesis, which he successfully de-
fended in August, 1999. Based on his computational �ndings, as well as his thorough
mathematical analysis of the problem, I have concluded that his �ndings represent a
major breakthrough of substantial practical importance to professional practitioners.

The Bar-Gera Algorithm enables one to compute the solution to large-scale assign-
ment problems with very high accuracy and much more detail than link-based meth-
ods, such as the Frank-Wolfe method, and with less computational e�ort than is
conventionally used to obtain the approximate solutions used in practice. Moreover,
the method requires a relatively modest amount of memory by today's standard.

One still hears the view expressed that the Frank-Wolfe method is adequate since the
available data don't warrant better solutions. I believe this viewpoint is ill-founded.
Practitioners expect that their assignment results should allow them to distinguish
between the performance of alternative transportation plans at the level of individual
link ows. Therefore, it is implausible that they should be satis�ed with a solution
method whose link ows do vary substantially from iteration to iteration. Moreover,
some software solves the assignment problem using integer arithmetic for link ows.
Such software cannot yield solutions to the accuracy required for plan evaluation and
air quality performance measures.

iii

Prior to enrolling in the Ph.D. program in civil engineering at UIC, Hillel Bar-Gera
studied mathematics, computer science and physics at Hebrew University, Jerusalem.
He also studied transportation engineering at North Carolina State University. Dur-
ing his two years as a Research Assistant at UIC, he made numerous important
contributions to our research aimed at implementing, estimating and validating a
combined urban travel choice model for the Chicago region. Since October, 1999, he
is serving as a Post-Doctoral Research Associate on this project.

I would like to express my appreciate to the National Institute of Statistical Sciences,
for the �nancial support of this research, and for the encouragement and collabora-
tion provided by Dr. Jerome Sacks, Director. The support of the National Science
Foundation through NISS is gratefully acknowledged.

David Boyce
Principal Investigator
Regional Travel Model Validation Project

iv

TABLE OF CONTENTS

SUMMARY . xiii

1. BACKGROUND ON TRANSPORTATION MODELING 1
1.1 Introduction . 1
1.2 De�nitions . 2
1.3 The Tra�c Assignment Problem (TAP) 5
1.4 Review of algorithms for TAP . 8
1.5 Route ow solutions . 10

2. ORIGIN-BASED ALGORITHM FOR THE TRAFFIC ASSIGNMENT
PROBLEM . 13
2.1 Overview . 13
2.2 Restricted single origin tra�c assignment problem 22
2.3 Approach proportions . 23
2.4 Optimality conditions . 27
2.5 Second order derivatives and their approximation 35
2.6 Flow shifts and their aggregation . 38
2.7 Boundary search . 43
2.8 Restrictions update . 50
2.9 Multiple origins . 66
2.10 Algorithm of Gallager and Bertsekas . 67

3. ROUTE FLOW ENTROPY MAXIMIZATION AND BYPASS PROPOR-
TIONALITY . 71
3.1 Bypass Proportionality . 72
3.2 Route ow representation for total link ows 74
3.3 Route ow interpretation for origin-based link ows 78
3.4 Extended approach proportionality . 84

4. EXPERIMENTAL RESULTS . 89
4.1 Convergence performance . 90
4.2 Characteristics of equilibrium solutions 103
4.3 Memory requirements . 109
4.4 Solution method progress . 112

5. CONCLUSIONS . 121

CITED LITERATURE . 123

v

LIST OF TABLES

I. NETWORK CHARACTERISTICS 89

II. COST CONVERSION COEFFICIENTS 90

III. CONVERGENCE COMPARISON FOR A GIVEN CPU TIME . . . 98

IV. FRANK-WOLFE METHOD BEST RESULTS 98

V. FRANK-WOLFE CONVERGENCE REGRESSION 103

VI. EQUILIBRIUM SOLUTION STRUCTURE 106

VII. MEMORY REQUIREMENTS . 110

vi

LIST OF FIGURES

1. Flow shift between simple alternatives 15

2. Flow shift between composite alternatives 17

3. Residual ow . 19

4. Boundary search . 20

5. Common nodes and last common nodes in an a-cyclic network 30

6. Average approach cost optimality conditions 34

7. Boundary search and its alternatives 45

8. Bypass proportionality assumption . 73

9. Bypass proportionality vs. entropy maximization 77

10. Extended approach proportionality . 85

11. Relative gap vs. CPU time for the Chicago regional network 92

12. Excess cost vs. CPU time for the Chicago regional network 92

13. Detail of relative gap vs. CPU time for the Chicago regional network 93

14. Detail of excess cost vs. CPU time for the Chicago regional network 93

15. Relative gap vs. CPU time for the Chicago sketch network 94

16. Excess cost vs. CPU time for the Chicago sketch network 94

17. Detail of relative gap vs. CPU time for the Chicago sketch network . 95

18. Detail of excess cost vs. CPU time for the Chicago sketch network . 95

19. Relative gap vs. CPU time for the Sioux-Falls network 96

20. Excess cost vs. CPU time for the Sioux-Falls network 96

vii

21. Detail of relative gap vs. CPU time for the Sioux-Falls network . . . 97

22. Detail of excess cost vs. CPU time for the Sioux-Falls network 97

23. Relative gap vs. CPU time for the Chicago regional network (log) . . 100

24. Excess cost vs. CPU time for the Chicago regional network (log) . . 100

25. Relative gap vs. CPU time for the Chicago sketch network (log) . . . 101

26. Excess cost vs. CPU time for the Chicago sketch network (log) . . . 101

27. Relative gap vs. CPU time for the Sioux-Falls network (log) 102

28. Excess cost vs. CPU time for the Sioux-Falls network (log) 102

29. Sioux-Falls equilibrium solution - link ows from origin 1 104

30. Sioux-Falls equilibrium solution - link ows from origin 12 105

31. Frequency distribution of O-D pairs by equilibrium routes 108

32. Inverted cumulative distribution of O-D pairs by equilibrium routes . 108

33. Frank-Wolfe method step size for the Chicago regional network . . . 113

34. Detail of FW method step size for the Chicago regional network . . . 113

35. Frank-Wolfe method step size for the Chicago sketch network 114

36. Detail of FW method step size for the Chicago sketch network 114

37. Frank-Wolfe method step size for the Sioux-Falls network 115

38. Detail of FW method step size for the Sioux-Falls network 115

39. Origin-based method step size for the Chicago regional network . . . 116

40. Origin-based method step size for the Chicago sketch network 117

41. Origin-based method step size for the Sioux-Falls network 117

42. Origin-based structure progress for the Chicago regional network . . 118

viii

43. Origin-based structure progress for the Chicago sketch network . . . 119

44. Origin-based structure progress for the Sioux-Falls network 119

ix

LIST OF ABBREVIATIONS

TAP Tra�c Assignment Problem
RSOTAP Restricted Single Origin Tra�c Assignment Problem
MEUE Maximum Entropy User Equilibrium
FW Frank-Wolfe Algorithm

x

LIST OF NOTATION

ows:

dpq O-D ow (demand)

d̂ total ow
hrpq route ow
fap ow on link a from origin p
f p origin-based link ow vector for origin p
f origin-based link ow array
fa� total ow on link a
f� total link ow vector
gspq origin-destination route segment ow
gsp origin-based route segment ow
gjp origin-based node ow
�ap origin-based approach proportion
�p approach proportion vector for origin p
� approach proportion array
�i!j proportion of ow to j through i
H the set of feasible route ow assignments
H� the set of user equilibrium route ow solutions
F the set of feasible origin-based assignments
F� the set of feasible total link ow assignments

costs:

ta; t link cost, link cost vector
t0a; t

0 link cost derivatives
cs route segment cost
Cpq minimum O-D cost
�a average cost for approach a
�b average cost for basic approach b
�j average cost to node j
�a approximated derivative of �a cost with respect to fa
�j approximated derivative of �j with respect to gj
ui maximum cost to node i
wi minimum cost to node i
T objective function

xi

network:

G = (N;A) directed graph
N nodes
No origins
Nd(p) destinations for origin p
A links
a � [at; ah] link
ah head node of link a
at tail node of link a
r = [v1; : : : ; vn] route, or route segment
R all simple routes
Rij simple route segments from i to j
r + s route segments combination (concatenation)
�ra link-route incidence matrix
p origin
q destination
i; j; v nodes

subnetworks:

Ap restricting subnetwork
o(j) topological order
Ac
p contributing subnetwork

Au
p used subnetwork

Rij[Ap] route segments in a restricting subnetwork Ap

lcnj last common node to j
bj basic approach to node j
B basic tree
NBj non-basic approaches to node j
NB all non-basic approaches

algorithm:

za!b desirable shift
� algorithmic map
A restriction update map

xii

SUMMARY

The transportation planning process relies on travel forecasts that result from various
transportation models. Some of the well-known models are formulated as non-linear
convex optimization problems. Solving these problems is quite challenging due to
their non-linear nature and their combinatorial structure. Large scale networks of
practical interest increase the need for computationally e�cient algorithms. The goal
of this research is to improve upon existing algorithms for various models.

At the heart of most transportation models stands the tra�c assignment problem,
which is to predict the route choice of travelers given the origin and destination of
each traveler, under the assumption that each traveler seeks to minimize the time/cost
associated with their chosen route.

Most algorithms used in practice solve the tra�c assignment problem in terms of the
total ow on each link (roadway segment) and discard information about the origin
and the destination of travelers. Even though theoretical convergence of such link-
based algorithms is guaranteed, these algorithms often fail to achieve highly accurate
solutions within reasonable amounts of computation time.

An alternative approach that has received increasing academic interest is the route-
based approach that keeps track of all used routes and the ow on each of those
routes. This approach allows to achieve higher accuracy, but at the expense of large
memory requirements that are often regarded as impractical for large scale networks.

This research presents a di�erent approach in which the solution is represented by
origin-based link ows aggregated over all destinations. This approach provides highly
accurate detailed solutions, its memory requirements are reasonable even for large-
scale networks, while computation times are substantially lower than for link-based
algorithms.

A key point in the proposed algorithm is that only a-cyclic solutions are considered
through all iterations. Indeed in the equilibrium (optimal) solution, the links used
by travelers from a speci�c origin form an a-cyclic sub-network. The absence of cy-
cles allows most of the necessary computations to be performed in a time that is a
linear function of network size. An e�cient (and rather simple) procedure allows to
dis-aggregate a-cyclic origin-based link ows into route ows. In that sense the detail

xiii

provided by a-cyclic origin-based link ows is practically equivalent to the detail pro-
vided by route ows. On the other hand, an origin-based solution does not require as
much memory as an equivalent route-based solution. For the implementation of the
origin-based algorithm a special data structure was developed that reduces memory
requirements even further. For some large scale network the proposed data structure
requires 50 times less memory than the equivalent route-based representation. Com-
putational e�ciency in time and memory makes this algorithm highly suitable for
large scale networks.

In general, the cost minimizing assumption allows only total link ows to be deter-
mined. For many applications total link ows are su�cient; however, for certain
analyses practitioners are interested in fully detailed solutions. To determine route
ows an additional assumption is needed. Route ow entropy maximization has been
proposed as a criterion for the most likely route ow pattern. In this research an
alternative behavioral assumption, referred to as the bypass proportionality assump-
tion, is proposed, which leads to rather similar results. The two assumptions are
studied both in a general context and also in an origin-based context.

xiv

1. BACKGROUND ON TRANSPORTATION MODELING

1.1 Introduction

Transportation plays a key role in modern life. People use transportation to get from
one activity to the other. Modern commerce also relies heavily on transportation
of materials and products. Improving transportation systems is therefore essential
to the quality of our lives. Planning improvements in such systems requires careful
consideration of the various alternatives. The di�erent alternatives are evaluated
using models that attempt to capture the nature of transportation systems, and thus
allow one to predict the e�ect of future changes on system performance. Measures of
performance include e�ciency in time and/or money, safety, social and environmental
impacts and more.

Operational studies typically focus on the performance of a single element in the
transportation system, like a roadway segment, an intersection, a rail line, and so
forth. The performance of some elements is determined only by the available in-
frastructure; for example, train schedules are supposedly independent of the number
of travelers. The travel time along a roadway on the other hand is clearly highly
dependent on the level of congestion. The performance of a roadway segment or an
intersection is therefore typically described as a function of tra�c ows. This is only
an approximate description, as it does not consider other inuencing factors like ar-
rival patterns and di�erences in driver behavior; nevertheless, such a description does
seem to capture the main e�ects of tra�c congestion.

To predict the actual performance of the transportation system, an estimate of the
tra�c ow pattern is needed. The overall ow pattern results from the decisions
of many users. Users may avoid using a certain roadway segment by choosing an
alternative route, an alternative mode of travel like public transportation, walking or
riding a bike, or even by not making the trip altogether. These travel decisions depend
on decisions like where to live, where to work, where to shop, and other questions that
are often considered in a wider context of regional economics, land-use planning, and
related disciplines. People make many other choices that a�ect location and travel
decsision; for example, the choice to own a vehicle, choices of entertainment and
recreational activities, and even the choice to have a family and how many children
to have.

1

2

From a research point of view it is almost impossible to study all of these decisions
simultaneously; hence social sciences have evolved into various disciplines that concern
di�erent aspects of people decisions. In reality, however, people do make many of
these decisions simultaneously. Almost every pair of decisions mentioned earlier are
interrelated. Perhaps one of the most complicated examples is the question of where
to live. In answering that question the work/study places of all household members
are considered, as well as many other considerations like shopping and entertainment
opportunities, the availability of public transportation, parking availability, and the
e�ort required for traveling from the location of one's home to various activities.

This research deals mainly with the modeling of travelers' route choice on the highway
network, commonly known as the tra�c assignment problem. For many years this
problem was studied as a stand alone problem. A model integrating travel demand
and route choice was proposed earlier by Beckmann et al. (1956); the �rst e�cient
method for its solution was presented by Evans (1976). Current e�orts are directed
at further integrating this model with regional economic and location models. At
the other extreme, route choice e�ects should also be taken into account when local
operational decisions are made, for example in the case of tra�c signal timing.

The methods and results presented here are highly applicable to any of these problems.
This study is therefore useful not only in the traditional context of transportation
planning, but also in a wide range of applications varying from tra�c signal timing
to studies in regional economics.

1.2 De�nitions

A transportation model considers a speci�c study area which is divided into zones.
The activities in each zone are represented in the model as if they all occur at the same
point, the zone centroid. The transportation network is represented by a strongly
connected directed graph G = fN;Ag, where N is the set of nodes, and A the set
of directed links. Nodes represent intersections, interchanges, zone centroids, toll
booths, and any other point of interest in the network. Links connect the nodes in
the network, and as such they mainly represent roadway segments. In addition they
may represent virtual connectors between zone centroids and the actual network. In
some applications they may also represent turning movements within intersections.

A (simple) route segment is a sequence of (distinct) nodes [v1; : : : ; vk] such that
[vl; vl+1] 2 A 81 � l � k � 1. In particular, the route segment [i; j] is the link from
node i to node j. (We assume that there is only one link, if any, between every pair
of nodes, and that there are no links from a node to itself. Some refer to such graphs

3

as simple.) For generality we allow the route segment [v], which is the empty route
segment at v, i.e. the route segment that starts from v, ends at v, and does not
contain any links. The �rst node of route segment r is considered its tail and denoted
by rt, and the last node is considered the route's head denoted by rh. In particular
by de�nition a � [at; ah] for every link a 2 A.

The set of all simple route segments, that is route segments that do not contain cycles,
from node i to node j is denoted by Rij. The set of all simple routes is denoted by
R =

S
i;j2N Rij . If route segment r = [i = v1; : : : ; vn = j] 2 Rij is followed by route

segment s = [j = u1; : : : ; um = k] 2 Rjk then the combination (concatenation) of the
two segments is denoted by (r + s) = [i = v1; : : : vn�1; vn = j = u1; u2 : : : ; um = k].
In general, a combination of simple route segments may not be simple; if it is simple,
then (r+ s) 2 Rik. The statement s � r means that route segment s is part of route
segment r. In particular a � r means that link a is part of route r, this relationship
is also represented by the element of the link-route incidence matrix �ra, which is
equal to 1 if link a is part of route r and zero otherwise. Comment: the inclusion of
route segments requires not only that one set of nodes is included in the other set
of nodes, but also that the sequential order of the nodes is preserved, for example
[1; 3] * [1; 2; 3].

The set of possible origins is denoted by No, and the set of possible destinations for
each origin p 2 No is denoted by Nd(p). The ow of travelers (also called demand)
in units of vehicles per hour (vph) from each origin p 2 No to every destination
q 2 Nd(p) is denoted by dpq. For the most part we assume that the sets Nd(p) include
only those destinations with positive ow, that is dpq > 0 8p 2 No;8q 2 Nd(p). The

total ow d̂, is de�ned as the sum of ows over all O-D pairs, that is:

d̂ =
X
p2No

X
q2Nd(p)

dpq (1.1)

The ow along route r 2 Rpq from origin p to destination q is denoted by hrpq.
Aggregating route ows through a link over all destinations results in origin-based
link ows

fap(h) =
X

q2Nd(p)

X
r2Rpq;a�r

hrpq (1.2)

Further aggregating those over all origins result in total link ows

fa�(h) =
X
p2No

fap =
X

r2R;a�r

hrpq (1.3)

4

A non-negative vector of route ows h represents a feasible assignment if it satis�es
the origin-destination (O-D) ow. The set of feasible route ow assignments is
therefore

H =

8<
:h 2 RjRj : h � 0;

X
r2Rpq

hrpq = dpq 8p 2 No;8q 2 Nd(p)

9=
; (1.4)

An origin-based link ow array f is feasible i� it is the aggregation of some feasible
route ow vector h. The set of feasible origin-based link ow arrays is therefore

F = ff(h) : h 2 Hg (1.5)

Similarly, a vector of total link ows f� is feasible i� it is the aggregation of some
feasible route ow vector h. The set of feasible total link ow vectors is therefore

F� = ff�(h) : h 2 Hg (1.6)

In general determining whether a vector of total link ows is feasible or not is a
nontrivial task. For an origin-based link ow array, however, feasibility can be deter-
mined directly using the following de�nitions. Let E = (Eai)a2A;i2N be the link-node
incidence matrix, de�ned by

Eai =

8<
:
1 i = ah
�1 i = at
0 otherwise

(1.7)

Let e = (epi)p2No;i2N
be the expanded O-D ow matrix, de�ned by

epi =

8>><
>>:
dpq i 2 Nd(p) n fpg

�
P

q2Nd(p)nfpg

dpq i = p

0 i =2 Nd(p); i 6= p

(1.8)

Consider the following set of origin-based link ow arrays

F̂ =
�
f 2 RjAj�jNoj : f � 0; f t �E = e

	
(1.9)

The condition f t � E = e ensures that the origin-based link ow array satis�es the
O-D ow while maintaining conservation of ow at every node. This condition is
clearly met by every feasible origin-based link ow array, hence F � F̂ . The set

5

F̂ may contain origin-based link ow arrays for which every decomposition to route
ows involves cyclic routes; hence in general F̂ * F . One may consider F̂ rather
than F as the set of feasible origin-based link ow arrays. Our main interest here is
in a-cyclic origin-based link ow arrays, meaning that the links used by each origin
form an a-cyclic subnetwork. An a-cyclic origin-based link ow array f is in F̂ only if
f 2 F ; hence in this context the conditions in (1.9) allow us to determine feasibility

directly, and the distinction between F and F̂ is of minor signi�cance.

Comment: in this work the O-D ow pattern and the resulting route ow pattern
are assumed to be static in time for the entire period covered by the model; usually
a congested travel period. This assumption yields tractable consistent models, even
though transportation systems are clearly dynamic in nature. Generalization of this
assumption to dynamic models is an area of active, ongoing research.

The main decision attribute captured by transportation models is the cost of travel.
The term cost is used here in the most general way, and can be interpreted as travel
time, monetary cost, some combination of those, or any other measure of disutility
of traveling along a speci�c route. The cost of travel along route segment s, cs is
assumed additive, i.e. cs1+s2 = cs1 + cs2 . As a result the cost of an empty route
segment [i] must be zero since c[i] = c[i]+[i] = c[i] + c[i] = 0. Intersection delays may
be attached to the approaching links, or to special links representing lane movements
if such links are included in the network representation. The vector of link costs is
denoted by t = (ta)a2A, hence cs =

P
a�s ta. Due to congestion e�ects, the cost of

traveling along a link is likely to depend on the ow of that link, and perhaps on
the ows of other links as well. In general, the cost of link a may be a function of
the entire link ow vector, ta(f�). For the sake of simplicity we assume here that
link costs are separable, that is ta(f�) = ta(fa�). For the most part link costs are
further assumed to be non-negative, monotonically non-decreasing, and continuously
di�erentiable functions of total link ows. In some cases stronger assumptions are
made, that link costs are strictly positive and/or strictly increasing. For brevity the
cost derivative of link a is denoted by t0a = dta=dfa�.

1.3 The Tra�c Assignment Problem (TAP)

Given the O-D ows the tra�c assignment problem is to allocate those ows to
speci�c routes according to a given behavioral hypothesis. A common hypothesis in
transportation research is that users seek to minimize the cost associated with their
chosen routes. These ow-dependent costs are assumed to be known perfectly in
advance. Under these assumptions, known as Wardrop's user equilibrium principle,
for every pair, origin p and destination q, the equilibrium ow on route r can be

6

positive only if the equilibrium cost of route r is not greater than the equilibrium cost
of any alternative route r0 from p to q (Wardrop, 1952). The user-equilibrium Tra�c
Assignment Problem (TAP) is to �nd such an assignment, either in terms of route
ows, or in terms of the resulting total link ows.

Suppose that

T (f�) =

f�Z
0

t (f�) � df� (1.10)

is well de�ned, i.e. path-independent. Consider the set

H� = argminfT (f�(h)) : h 2 Hg (1.11)

which is the set of non-negative route ow vectors that minimize the Lagrangian

L(h) = T (f�(h)) +
X
p2No

X
q2Nd(p)

�pq �

0
@dpq � X

r2Rpq

hrpq

1
A (1.12)

Notice that

@L

@hrpq
(h) = rf�T (f�(h)) �

@f�
@hrpq

(h)� �pq

=
X
a2A

@T

@fa�
(f�(h)) � �ra � �pq

=
X
a�r

ta(f�(h)) � �pq

= cr(f�(h))� �pq (1.13)

Therefore, by the �rst order necessary optimality conditions (using linear indepen-
dence constraint quali�cations) for every h 2 H� and for all p 2 No; q 2 Nd(p); r 2 Rpq

@L

@hrpq
(h) = cr(f�(h))� �pq � 0 (1.14a)

hrpq �
@L

@hrpq
(h) = hrpq � (cr(f�(h))� �pq) = 0 (1.14b)

7

or equivalently

cr(f�(h)) � �pq (1.15a)

hrpq > 0) cr(f�(h)) = �pq (1.15b)

meaning that h satis�es the user equilibrium conditions.

We assumed that link costs are separable, hence

T (f�) =

f�Z
0

t (f�) � df� =
X
a2A

fa�Z
0

ta(x)dx (1.16)

which is well de�ned. Furthermore, link costs were assumed monotonically non-
decreasing, hence T (f�) is a convex function, meaning that the �rst order conditions
are also su�cient for optimality. In conclusion, under the separability and mono-
tonicity assumption H� is the set of user equilibrium route ows. Aggregating user
equilibrium route ows yields the set of user equilibrium origin-based link ows F �,
and the set of user equilibrium total link ows F �

� .

If link costs are strictly increasing then T is strictly convex as a function of f�; hence
the total link ow equilibrium solution is unique. It should be noted that the objective
function T depends on total link ows only, regardless of the speci�c route ow
pattern. In general, di�erent route ow patterns may lead to the same total link ow
pattern. Therefore, even if there is a unique optimal solution for TAP in terms of total
link ows, this solution may have many route ow representations; hence, typically,
the route ow equilibrium solution is not unique. Similar arguments show that in
most cases the user-equilibrium origin-based link ow solution is also not unique.

One of the well known properties of user-equilibrium solutions is that they do not
contain cyclic ows. It is relatively easy to demonstrate that routes that contain cycles
need not be used by a user-equilibrium solution. If link costs are strictly positive then
the cost of every cycle is positive, hence a route that contains a cycle can not be of
minimum cost, and therefore at equilibrium such a route can not be used. If there is a
cycle with zero cost, such a cycle can be a part of a route that is used at equilibrium,
but there is always another user-equilibrium solution where that route is not used.

Origin-based solutions are considered to be a-cyclic if for every origin p every directed
cycle s = [v1; : : : ; vn = v1] contains at least one unused link a � s; fap = 0. By the
following lemma (1) if link costs are strictly positive and if f is not a-cyclic then there
exists f 0 2 F such that T (f�(f 0)) < T (f�(f)), hence f is not an optimal solution of TAP.
In general it is always possible to choose f 2 F � such that 8f 0 2 F �; f 0 � f) f 0 = f .
Such a ow pattern f must be a-cyclic, otherwise by lemma 1 there exists f 0 2 F ; f 0 6= f

8

such that f 0 � f hence T (f�(f 0)) � T (f�(f)) and therefore f 0 2 F �. For additional
discussion see Hagstrom and Tseng (1998).

Lemma 1. If f 2 F is not a-cyclic then there exists f 0 2 F such that f 0 � f and
f 0ap < fap for some a; p.

Proof:
If f is not a-cyclic then there exists origin p0 and a cycle s = [v1; : : : ; vn = v1] such
that 8a � s; fap0 > � for some � > 0. Consider f 0 where f 0ap0 = fap0 � � for all a � s,
and f 0ap = fap otherwise. Clearly f 0 is non-negative and it maintains conservation of
ow, hence it is a feasible origin-based solution, that is, f 0 2 F . Furthermore, f 0 � f ,
and for every a � s; f 0ap0 < fap0.

1.4 Review of algorithms for TAP

Since the original formulation of the tra�c assignment problem by Beckmann et al.
(1956), many methods for its solution have been presented. In the following short
review some of the main solution methods are briey described, and in particular
those that are pertinent to this work. There are several excellent extensive reviews
on the problem and existing solution methods, see Patriksson (1994) or Florian and
Hearn (1995).

All of the existing solution methods for TAP are iterative; i.e. they start by consid-
ering some initial assignment, calculate the costs using the ows of the considered
assignment, then modify the assignment and update the costs. One way to categorize
solution methods is by the level of aggregation in which they store the solution be-
tween iterations. The most aggregated approach is the link-based approach of storing
total link ows, aggregated over all origin-destination pairs. The main advantage
of this approach is its relatively modest memory requirements. The most disaggre-
gated approach is the route-based approach of storing all used routes and the ow on
each. Route-based methods have been shown to achieve better solutions; the main
disadvantage is their large memory requirements.

The most common solution method for TAP is based on the general nonlinear opti-
mization method of Frank and Wolfe (1956). In each iteration of the Frank and Wolfe
(FW) method, a subproblem of minimizing the linearized objective function is solved
by assigning all tra�c to minimum cost routes, where link costs are determined by the
link ows in the current solution for the main problem. A new solution is obtained by
minimizing the original objective function over the line segment connecting the cur-
rent solution and the subproblem solution. The objective function can be evaluated

9

using total link ows only. An aggregated link-based representation of the current
solution is therefore su�cient for this method. As a result the memory requirement
of this method is relatively small, which is its main advantage. The main drawback of
FW is its slow convergence rate. See Patriksson (1994; pp. 99-101) for more details.
Also see section 4.1 for some computational examples.

Related link-based methods were proposed by Florian and Spiess (1983), Fukushima
(1984), LeBlanc et al. (1985), Lupi (1986), and others. In all cases some combination
of previous solutions and the subproblem solution is used as a search direction. The
Restricted Simplicial Decomposition (RSD) method of Hearn et al. (1987) suggests
performing a multi-dimensional search over the convex hull of all previous subproblem
solutions. That is if �f l� are subproblem solutions from previous iterations, the main
problem solution at iteration k + 1 is obtained by solving the following multidimen-
sional nonlinear problem:

fk+1
� 2 argmin

�
T (f�) : f� 2 conv

�
�f1� ; : : : ;�f

k
�

		
The nonlinear simplicial decomposition of Larsson et al. (1998) is a similar method
in the sense that solutions to the main problem are obtained by solving a similar
multidimensional nonlinear problem, where �f l� are still subproblem solutions, except
that the subproblems are nonlinear, rather than linear, approximations of the main
problem.

All of the above methods are link-based methods; that is, only total link ows aggre-
gated over all O-D pairs must be stored between iterations. More recently, increased
attention has been given to route-based methods. These methods assume that all
used routes, and the ow on each route, are known for the current solution. Using
that information, ows can be shifted from high cost routes to low cost routes in order
to achieve equilibrium.

The �rst method proposed to solve TAP, in fact, was a route-based method. In this
method, for each O-D pair considered in a sequentially, cyclic order, ows are shifted
from the maximum cost used route to the minimum cost route until both routes
have the same cost. This idea was suggested by Dafermos (1968) and Dafermos
and Sparrow (1969) and implemented by Gibert (1968). Bothner and Lutter (1982)
implemented a similar route-based method that is used in practice in Germany.

When link cost derivatives are known, they can be used to approximate ow shifts
from all routes to the minimum cost route of every O-D pair. The aggregation of
ow shifts over all O-D pairs is used as a search direction, and the next solution is
chosen as the minimum point of the objective function along that direction. Larsson
and Patriksson (1992) refer to this approach as Disaggregated Simplicial Decompo-
sition (DSD); they also provide encouraging experimental results. Jayakrishnan et

10

al. (1994) proposed another route-based method, where shifts are based on Gradi-
ent Projection (GP). In general, route-based methods seem to achieve high accuracy
levels.

A third category of solution methods is the origin-based approach. The �rst mini-
mization formulation of the tra�c assignment problem proposed by Beckmann et al.
(1956) was in fact origin-based. To the best of our knowledge, there have been few
attempts to pursue this approach in developing computational methods. Bruynooghe,
Gibert and Sakarovitch (1969) made an attempt to develop such a method; however,
Gibert (1968) subsequently concluded that the presence of cycles makes origin-based
methods quite complicated. As we shall see in chapter 2, cycles and the ways to avoid
them have a key role in the method proposed in this thesis.

In the late 70's and early 80's Gallager and Bertsekas developed algorithms for routing
in packet-switched communication networks, a problem that is mathematically equiv-
alent to the tra�c assignment problem. (Gallager, 1977; Bertsekas, 1979; Bertsekas
et al. 1979; Bertsekas et al. 1984; Bertsekas, 1998, pp. 390-391) The main concepts
of the algorithm presented here, which was developed independently by the author,
are similar to the ones used by Gallager and Bertsekas. These concepts, which we
�nd to be rather involved, are described and explained in detail in chapter 2. The
discussion of the work of Gallager and Bertsekas is therefore postponed to section
2.10.

1.5 Route ow solutions

In many cases the information provided by a link-based solution is su�cient. Many
global performance measures like the total amount of vehicle miles traveled (VMT),
the total amount of time spent on traveling, and the average (space mean) speed
on the network, which is the ratio between the two, do not require more than total
link ows. The knowledge of the total ow on each and every link also allows local
analyses of bottlenecks and related issues.

Nevertheless, link-based solutions have some limitations, as they do not provide a
complete picture of the travel pattern. Given total link ows only, obtaining one
possible route ow pattern is not a trivial task, let alone determining which route
ow pattern best represents reality.

From a theoretical-methodological point of view the absence of an underlying route
ow pattern causes several di�culties. The �rst problem is that there is no direct
way to verify feasibility of total link ow solutions, while the feasibility of origin-based

11

or route-based solutions can be directly veri�ed as demonstrated in section 1.2. In
addition, total link ows are not su�cient for the implementation of certain concepts
used by some of the advanced algorithms mentioned in section 1.4. Moreover, when
tra�c assignment is one component of a larger problem, it has to be solved many
times for slightly di�erent O-D ows and/or slightly di�erent network conditions.
Equilibrium link costs from a previous solution may provide a reasonable initial esti-
mate for link costs under the new conditions. However, in general, equilibrium total
link ows from a previous solution can not provide a feasible initial solution under
the new conditions, especially if for some O-D pairs the new O-D ows are lower than
the previous O-D ows, or if some links from the previous network are omitted in
the new network. More detailed solutions, either origin-based or route-based, can be
easily adjusted for such changes, keeping the rest of the solution intact. Notice that
in all of these theoretical-methodological problems it does not matter which speci�c
origin-based representation or route-based representation is used.

Practitioners may also be interested in the detailed route ow pattern. Rossi et
al. (1989) raise the question of consistent impact fee assessment. In this situation, a
transportation agency is responsible for determining the anticipated impact of several
developments, either residential or commercial, on the tra�c pattern in the area. The
agency then needs to plan improvement projects to accommodate the increased tra�c.
Finally the agency needs to determine how much of the cost of each project should be
levied on each of the developers. To perform the last task in a consistent fashion the
agency needs to know how many travelers from a speci�c development will enjoy each
of the projects, in other words how much of the tra�c increase on every link is due
to each of the developments. Link-based solutions for the before and after scenarios
can only provide the total increase on each link. To obtain the changes in link usage
a more detailed solution is required.

Another example for a practical application of the detailed route ow solution is the
estimation of vehicle emissions. Simplistic emission models suggest a constant amount
of emission per distance traveled. Such simplistic models do not take into account the
e�ect of \cold starts", that is the substantially higher emission rate of engines during
the �rst few minutes of driving, while the engine is still cold. More advanced emission
models require the knowledge of the entire trip pro�le, including acceleration periods
and so forth. Static macroscopic models may not provide a fully detailed trip pro�le;
however, the knowledge of route ows is still a major improvement upon total link
ows.

The problem of \window" models is another example where total link ows do not
provide su�cient information. In this application there is an available transportation
model for a large region, and the goal is to construct a model for a smaller area,
referred to as a \window", within the larger region (Hearn, 1984). One of the main
di�culties in this problem is the representation of external trips, that is trips that

12

either start or end outside of the window, but use links within the window, thereby
a�ecting the congestion in the area of interest. External ows are represented by
entry and exit nodes. Total link ows allow one to determine the total ow from each
entry node and to each exit node; however, to determine the distribution of the ows
from a speci�c entry node among the internal destination as well as the exit nodes,
the complete route ow pattern in the original regional model is required. See Hearn
(1984) for additional discussion.

As mentioned in section 1.3 the user equilibrium condition does not allow one in
general to determine the route ow pattern uniquely. In the applications described
above practitioners need to know which is the route ow pattern that represents
reality in the best way. Rossi et al. (1989) proposed maximum entropy as a criterion
for the most likely route ow solution, subject to user equilibrium. Rydergren recently
presented an e�ective dual method to obtain the entropy maximizing solution once
equilibrium link ows are known (Larsson et al., 1998). The contribution of our
research in this area is presented in chapter 3.

The proposed solution method for the tra�c assignment problem is presented in
chapter 2. Chapter 3 discusses the bypass proportionality assumption and its relation
to the entropy maximizing route ow pattern. Chapter 4 presents computational
results of the origin-based solution method for the basic tra�c assignment problem
on real size practical networks. The conclusions from this research are presented in
chapter 5.

2. ORIGIN-BASED ALGORITHM FOR THE TRAFFIC
ASSIGNMENT PROBLEM

2.1 Overview

The origin-based solution method for the tra�c assignment problem described herein
is an iterative method, which considers ows from each origin separately in a sequen-
tial fashion. Flows from di�erent origins interact on the network through congestion
e�ects; however, this interaction has a minor roll in the description of the algorithm
and the proof of its convergence. To simplify the discussion and the notation we focus
on the single origin tra�c assignment problem. Nevertheless, the proposed method
is perfectly capable of dealing with the regular multiple origin problem as is briey
described towards the end of this section, and further discussed in section 2.9. From
now on, unless speci�ed otherwise, we assume that there is only one origin, denoted
by p.

One of the main concepts in this algorithm is the separation of the assignment problem
into two questions:

1. which links may be used?

2. how much ow should be assigned to each of these links?

A temporary answer to the �rst question is described by a subnetwork Ap � A, which
includes all the links that might be used by ows originating at p. This network is
referred to as the restricting subnetwork. Once a restricting subnetwork has been
determined, we address the second question of determining the ows within this
subnetwork, while assuming that the ow on any link outside Ap is zero.

The algorithm therefore consists of two main steps

1. update the restricting subnetwork Ap

2. shift ows within Ap

13

14

A key point in this method is that restricting subnetworks are always a-cyclic, i.e.
they do not contain any directed cycles. As shown in section 1.3 there is always
an a-cyclic equilibrium solution, and if link costs are strictly positive then any equi-
librium solution is a-cyclic; however, most solution methods do not maintain the
a-cyclic property throughout the iterative process. Maintaining a-cyclic restricting
subnetworks ensures that the solution in this method is a-cyclic at every iteration.

The restriction to a-cyclic solutions has several essential advantages. It permits a sim-
ple route ow interpretation. It enables a de�nition of maximum cost. It also allows
for a de�nition of topological order, i.e. a one to one function o : N ! f1; 2; 3; :::; jN jg
such that [i; j] 2 Ap) o(i) < o(j). It is evident that o(p) = 1. The main reason for
restricting to a-cyclic solutions is computational e�ciency. (The topological order is
also used quite intensively in proving convergence, but the problems that it overcomes
may not occur if solutions are not restricted to be a-cyclic.) Many computations on
a-cyclic networks can be done in a single pass over the nodes, either in ascending or
descending topological order. In such computations each link a may be considered
only when either its head ah or its tail at are considered. As a result, the time required
by such a computation is a linear function of the number of links in the network. Most
computations in the proposed method belong to this category, as will be pointed out
along the way. This is probably one of the main reasons for the excellent convergence
performance of this method which will be demonstrated in section 4.1.

In addition to being a-cyclic, we require that the restricting subnetwork be spanning,
i.e. that it contains at least one route from the origin to every other node. This
requirement is somewhat technical, but still helpful in the de�nition of maximum
cost, average cost, etc.

One possible initial restricting subnetwork is a tree of minimumcost routes under free
ow travel conditions. When using such a tree as the restricting subnetwork, there is
only one possible assignment, commonly known as the \all or nothing assignment".

To update the restricting subnetwork, �rst unused links are removed, then the maxi-
mum cost ui among all routes from the origin p to node i is computed for all nodes,
and �nally every link [i; j] 2 A that satis�es ui < uj is added to the restricting sub-
network. It will be shown that the new restricting subnetwork is spanning, a-cyclic,
and contains the current solution. (Comment: the terms unused links and maximum
cost were used here in an intuitive imprecise fashion. Precise de�nitions are given
in section 2.8.) The way ows are shifted within the given restricting subnetwork is
more complicated to explain, and is demonstrated here schematically using examples.

Figure 1 shows an extremely simple network with one origin, one destination and two
routes. The current ows and costs indicated suggest that ows should be shifted

15

f -ow; t-cost; t0-cost derivative

Figure 1. Flow shift between simple alternatives

from the right route to the left route; the more di�cult question is to determine
how much ow to shift. First-order optimization methods suggest using the negative
gradient as a search direction, and a line search to determine how much to move
along that search direction. In section 2.4 we show that the �rst-order constrained
derivative (reduced gradient) corresponds in this case to the di�erence between route
costs, and the resulting search direction agrees with intuition. On the other hand,
the cost di�erence by itself does not provide any reasonable basis to determine how
much ow to shift. In fact there is a clear mismatch between the units of cost, say
minutes, and the units of ow, vehicles per hour (vph). This units mismatch between
the �rst-order derivative and the variable space is often ignored in the optimization
literature. To overcome this mismatch the gradient should be divided (or multiplied)
by some conversion factor. Using the gradient as it is actually implies that the
gradient is divided by a conversion factor of 1 minute/vph. If we change cost units
either to seconds or to hours, the same logic may lead us to use conversion factors
of 1 second/vph or 1 hour/vph respectively. These are clearly substantially di�erent
conversion factors.

The importance of more appropriate conversion factors depends on the circumstances.
In a fully sequential algorithm each ow shift is considered separately; hence a better
conversion factor may provide a better starting point for the line search, but not
much more than that. To better utilize the advantages associated with e�cient
computations on a-cyclic networks, one may wish to consider all ow shifts for a

16

single origin simultaneously. In that case a multi-dimensional search direction is
needed. If the same conversion factor is used in all dimensions, then the direction
remains the same, and the bene�t is again mainly a better starting point for the line
search. However, it is often more appropriate to use di�erent conversion factors for
di�erent components of the gradient. Using such factors may yield a fairly di�erent,
and hopefully better search direction.

In the following discussion we provide some intuition for the conversion factors used
in the proposed algorithm. Consider Figure 1 again. Since both link costs and cost
derivatives are known, we can estimate how much ow � should be shifted from the
right route to the left route in order to equalize the costs along both routes. By �rst
order approximations route costs are linear functions of �

cr � (80 + 30)[minutes] � �[vph] � (2 + 3)[minutes=vph] (2.1)

cl � (50 + 40)[minutes] + �[vph] � (1 + 4)[minutes=vph]

and they become equal for

� =
(80 + 30) � (50 + 40)[minutes]

(2 + 3) + (1 + 4)[minutes=vph]
= 2[vph]

This derivation suggests that in this example the appropriate conversion factor is the
sum of route cost derivatives. Notice that units in this case do match.

Figure 2 shows a slightly more complicated network, still with one origin and one
destination, but this time the left alternative consists of two routes: [p; 1; 2; 5; q] and
[p; 1; 3; 5; q]. The average cost incurred by travelers shifted to the left alternative
depends on the way that these travelers are distributed among the two routes. We
assume that the new travelers are distributed by the same proportions as the current
travelers, i.e. 30% use route [p; 1; 2; 5; q] incurring a cost of 80[minutes] and 70% use
route [p; 1; 3; 5; q] incurring a cost of 110[minutes]. Therefore the average cost of the left
alternative is 0:3�80+0:7�110 = 101[minutes]. As discussed later, there are e�cient ways
to compute these average costs, which are basic elements of the proposed algorithm.

Assuming that the shifted travelers are distributed by the same proportions as the
current travelers, we can also �nd the linear �rst order approximation of the new
route costs and average costs. Suppose that � vph (vehicles per hour) are shifted
from the right alternative to the left alternative. This shift results in a decrease of �
vph on links [p; 4]; [4; q], an increase of � vph on links [p; 1]; [5; q], an increase of 0:3�

17

f -ow; t-cost; t0-cost derivative

Figure 2. Flow shift between composite alternatives

vph on links [1; 2]; [2; 5] and an increase of 0:7� vph on links [1; 3]; [3; 5]. By linear
approximation the link costs are (units are omitted for simplicity)

t[p;4] � 80 � 2 � � t[1;2] � 20 + 2 � 0:3�

t[4;q] � 30 � 3 � � t[2;5] � 10 + 1 � 0:3�

t[p;1] � 30 + 1 � � t[1;3] � 25 + 2 � 0:7�

t[5;q] � 20 + 1 � � t[3;5] � 35 + 2 � 0:7�

the route costs are

c[p;4;q] � (80 + 30) � (2 + 3) � �

c[p;1;2;5;q] � (30 + 20 + 10 + 20) + (1 + 0:3 � 2 + 0:3 � 1 + 1) � �

c[p;1;3;5;q] � (30 + 25 + 35 + 20) + (1 + 0:7 � 2 + 0:7 � 2 + 1) � �

and the average costs are

cr = c[p;4;q] � (80 + 30)� (2 + 3) � �

cl = 0:3 � c[p;1;2;5;q]+ 0:7 � c[p;1;3;5;q]
� 0:3 � (30 + 20 + 10 + 20) + 0:7 � (30 + 25 + 35 + 20)

+
�
(0:3 + 0:7) � 1 + 0:32 � 2 + 0:32 � 1 + 0:72 � 2 + 0:72 � 2 + (0:3 + 0:7) � 1

�
� �

18

To equalize the average costs of both alternatives the ow shift should be equal to
the di�erence between average costs divided by some, rather complicated, conversion
factor. Computing conversion factors in this way may become even more complicated
as the network grows, and as interactions between the various routes become more
complex; for example, adding link [3; 4] to the above �gure makes this computation
much more complicated. To avoid this complication the proposed algorithm uses
an approximation, which is described in detail in section 2.5, that can be computed
rather e�ciently. The ratio between average cost di�erence and the approximated
conversion factor is considered as the desirable ow shift.

The accurate conversion factors described above correspond, not suprisingly, to ob-
jective function second-order constrained derivatives, i.e. to the diagonal elements of
the Hessian matrix. The desirable ow shift can therefore be viewed as a second-order
Newton-type correction, i.e. as a product of an approximation of the inverse Hessian
and the gradient. Like any other second-order method the units of the resulting
search direction always match the variable units.

Second-order methods are known to provide better convergence rate in terms of ac-
curacy improvement per iteration at the neighborhood of the optimum (equilibrium)
point. On the other hand, the overhead associated with inverse Hessian computation
often prohibits pure second-order methods, and in many cases even approximated
second-order methods are known to be inferior to �rst-order methods in the initial
stages of the optimization. In the proposed algorithm the time required to compute
conversion factors, i.e. the approximation of the inverse Hessian, is similar to the
time required to compute average costs, i.e. �rst-order derivatives. This amounts to
probably around one quarter of the overall computation time (this last estimate is
fairly crude and does not rely on any quantitative assessment). The computational
results in chapter 4 suggest that this is a reasonable tradeo� between computation
headover and search direction e�ectiveness.

In the discussion of desirable ow shifts so far we ignored feasibility constraints. These
desirable ow shifts may very well lead to violation of the non-negativity constraints,
and hence they must be truncated. The aggregation of truncated shifts can be used as
a search direction, which may then be scaled by a step size to obtain the optimal point
along that search direction. This regular convex line search procedure tends to lead to
residual ows that reduce the e�ectiveness of the restrictions update procedure, and
may in fact prevent convergence. Section 2.7 describes an alternative boundary search
procedure in which the desirable ow shifts are �rst scaled by the step size, and only
then truncated if necessary and aggregated to obtain a new solution. This procedure
is shown to be e�ective in eliminating residual ows. We prove that the incorporation
of boundary search in the proposed method guarantees global convergence.

19

f -ow; t-cost; t0-cost derivative

Figure 3. Residual ow

To better understand the di�erence between the convex and the boundary search
procedures, consider the situation in Figure 3. In this �gure solid lines represent
the current restricting subnetwork. It is evident that the minimum cost route to
destination q includes the dashed link from 3 to 2. The restrictions update procedure
does not add this link to the network because the maximum cost to node 3 is 25,
which is more than 19, the maximum cost to node 2. In fact, adding the dashed link
[3,2] creates a cycle with the solid link [2,3]. This, then, is an essential issue and not
just a technical problem with this speci�c restrictions update procedure.

In order to add link [3,2] without creating a cycle, one must �rst eliminate the ow on
the link [2,3]. In this situation shifting the ow of 10 vph from route [p; 1; 2; 3; q0] to
route [p; 3; q0] seems a fairly reasonable thing to do. The desirable shift computed by
the Newton-type technique described above suggests a shift of (25�10)=(0:15+0:10) =
60 vph. This computation of the desirable shift does not take feasibility into account;
as a result the desirable shift in this case is higher than the maximum feasible shift
of 10 vph. To ensure feasibility the convex line search procedure suggests considering
only a shift of 10 vph, and aggregating it together with other shifts into a feasible
search direction. Then a step size, i.e. a scaling factor, that minimizes the objective
function along that search direction is chosen. If the chosen step size is 0.25, the result
is to shift 2.5 vph and leave 7.5 vph on link [2,3]. No matter how many iterations are
performed, unless a step size of 1.0 is chosen in one of these iterations, some residual
ow would always remain on link [2,3].

In the boundary search, if a step size of 0.25 is considered, the desirable shift of 60
vph is �rst scaled by 0.25 resulting in a shift of 15 vph, which is only then truncated

20

x-current solution; y-estimated minimum; y0- projection of y
xc-convex search new solution; xb-boundary search new solution

Figure 4. Boundary search

if necessary, and �nally aggregated with other shifts. As a result the ow on link [2,3]
is eliminated with any step size between 0.167 and 1.0. In addition, even a smaller
step size of say 0.1 leads to a shift of 6 vph, which is much more substantial than a
shift of 1 vph in the case of the convex search.

Figure 4 provides another attempt to describe the basic ideas behind the boundary
search in the context of a general two-dimensional convex minimization problem,
where non-negativity of the variables are the only constraints. In this �gure the
current solution is denoted by x, the estimated minimum point is denoted by y. Its
projection onto the feasible (non-negative) region is denoted by yo. The thin line
describes the convex line search, and xc denotes the chosen solution along that line.
The dotted line describes the unconstrained line search, and the thick line which is the
projection of that line on the feasible set describes the boundary search. xb denotes
the chosen point for the boundary search. As implied from its name, the boundary
search is much more likely to �nd boundary solutions, although it does consider inner
points as well. The application of these ideas to our problem is not straightforward.
Projection is done in the decision variables space, the non-basic approach proportions,
which have not been de�ned yet. This projection a�ects link ows in a non-linear
complex fashion. Convex combinations are meaningful mainly in the link ow space.
A precise description of the boundary search is given in section 2.7.

21

In general the broken line describing the boundary search travels along facets of the
feasible polyhedron. As such, the number of segments in this broken line can be as
high as the number of dimensions in the problem. Determining the vertices of this
broken line may therefore be a rather demanding computational task. Fortunately,
it is not necessary to perform such a task in the proposed method. The method
evaluates step sizes of 2�k for k = 0; 1; 2; 3; : : : one by one, and stops once a certain
condition is satis�ed which guarantees descent of the objective function. Therefore it
is su�cient to produce the point along the search line that corresponds to each step
size as needed. The computation required to obtain one such point, i.e. to scale the
unconstrained shifts, then truncate them if necessary, and �nally aggregate them to
obtain a new solution is similar to the computation required for a single assignment
procedure. If all origins are considered simultaneously, and the same step is applied
to all of them, the computational e�ort to evaluate one possible step size value is
on the order of the number of origins times the number of links. In comparison,
the convex search requires a similar e�ort to obtain the feasible search direction, i.e.
the point for step size 1.0; however, evaluation of additional step size values is done
by averaging the two vectors of total link ows, which requires a substantially lower
computational e�ort. In the proposed method ows from each origin are considered
separately in a sequential fashion, and a di�erent step size is chosen and applied to
each of them separately. In that context the time required to evaluate additional step
size values is a linear function of the number of links for both the convex search and
the boundary search.

Building on the two main steps - update restricting subnetwork, and shift ows, an
algorithm for the single origin problem may be described as follows:

Find initial solution
Until convergence

update restrictions
shift ows

Updating the restrictions involves a substantial amount of data structure reorgani-
zation; therefore, this step typically requires much more computational e�ort than
shifting ows. Therefore, it may be useful to perform several ow shift iterations after
every update of the restrictions.

To apply this method to the multiple origin problem, one could perform these steps for
each origin in a sequential fashion. There are several di�erent ways to organize these
steps. The results reported here were obtained using a procedure of the following
form:

22

Find initial solution
Until convergence

Perform a full iteration:
for every origin p

update restricting subnetwork Ap

shift ows within Ap

Perform x quick iterations:
for every origin p

shift ows within the current restricting subnetwork Ap

The remainder of this chapter is organized as follows. Sections 2.3-2.7 describe the
details of the ow shift step, in the context of the restricted single origin tra�c as-
signment problem, which is formally introduced in section 2.2. Approach proportions
are proposed as solution variables for this problem, and their properties are examined
in section 2.3. Optimality conditions are derived in section 2.4. Section 2.5 discusses
second order derivatives, the di�culties in computing them accurately, and motivates
the approximation to be used thereafter. Algorithmic maps for ow shifts and their
aggregation are presented in section 2.6. The boundary search is described in sec-
tion 2.7 followed by a proof of convergence of the resulting iterative method for the
restricted single origin problem. Section 2.8 deals with the unrestricted single origin
problem, the procedure for updating the restrictions is de�ned precisely, and a proof
of convergence for the resulting method is given. Finally, in section 2.9 the complete
multiple origin tra�c assignment problem is considered, and a method for its solution
is presented.

2.2 Restricted single origin tra�c assignment problem

Throughout most of this chapter we assume that there is only one origin p. To
simplify the notation we therefore omit the p index from almost all variables. In this
context fa denotes the origin-based link ow, and dj denotes the O-D ow (demand)
from origin p to node j, which is de�ned for every node j 2 N , even though it might
be zero for most of them.

It should be noted that any multiple origin problem with link cost functions t̂ can
be temporarily converted to a single origin problem for a speci�c origin p by �xing
the ows from all other origins at some current values. The ows from origin p
remain solution variables, while all other ows are viewed as background ows f̂a =P

p0 6=p fap0, and link costs are viewed as functions of ows from the current origin only,

ta(fa) = ta(fap) = t̂a(fap + f̂a).

23

In the next few sections we further assume that the solution is restricted by some
given subnetwork, Ap � A, which is an a-cyclic spanning subnetwork rooted at p, i.e.
it does not contain any directed cycles and it contains at least one route from p to
every node j 2 N . In particular it can not contain any link terminating at p, and
the only route from p to itself is the empty route [p]. The set of route segments from
node i to node j that are included in the subnetwork Ap is denoted by Rij [Ap] =
fr 2 Rij : a � r) a 2 Apg.

The Restricted Single Origin Tra�c Assignment Problem (RSOTAP) is to assign the
demand onto routes in the restricting subnetwork, so that the cost of every used route
does not exceed the cost of any alternative route in the restricting subnetwork. This
problem can be formulated as a minimization problem

[RSOTAP] min T =
X
a2A

faZ
0

ta(x)dx

s:t:
X

r2Rpj[Ap]

hrpj = dj 8j 2 N (2.2)

2.3 Approach proportions

For reasons that are discussed later, we prefer to use approach proportions as solu-
tion variables. The relationships between origin-based link ows, route ows, and
approach proportions are studied in chapter 3. The derivation in that chapter also
provides some motivation for the following de�nitions. Except for this motivation,
the following construction is completely self contained.

Suppose � = (�a)a2A is a vector that satis�es:X
a2Ap;ah=j

�a = 1 8j 2 N ; j 6= p (2.3a)

�a = 0 8a =2 Ap (2.3b)

� � 0 (2.3c)

Since Ap is spanning, there is at least one link terminating at every node other than
the origin, and therefore the above conditions can be satis�ed.

24

Consider the following formal expression

�i!j =
X

s2Rij[Ap]

 Y
a�s

�a

!
(2.4)

An intuitive interpretation for this value is provided by (2.16), once some properties
of this expression are explored.

Lemma 2. If � satis�es feasibility requirements (2.3) then

�p!j = 1 8j 2 N (2.5)

Proof:
By induction on j in increasing topological order. For j = p, the only route from p to
itself is the empty route at p, and the product over the empty set is 1 by de�nition.
Suppose the statement is true for all nodes of lower topological order; in particular,
it holds for all predecessors of j, that is 8a 2 Ap; ah = j �p!at = 1 and therefore:

�p!j =
X

s2Rpj[Ap]

Y
a�s

�a =
X

a2Ap;ah=j

�a �

0
@ X

s02Rpat[Ap]

Y
a0�s0

�a0

1
A

=
X

a2Ap;ah=j

�a � �p!at =
X

a2Ap;ah=j

�a = 1 (2.6)

where the last equality is feasibility requirement (2.3a).

Notice that

�p!i � �i!j =
X

s2Rpj[Ap];i2s

Y
a�s

�a �
X

s2Rpj[Ap]

Y
a�s

�a = �p!j (2.7)

therefore, by lemma (2)

0 � �i!j � 1 8i; j 2 N (2.8)

Given a feasible vector �, consider the following route ows:

hrpq (�) = dq �
Y
a�r

�a 8r 2 Rpq (2.9)

25

If route r contains a link a =2 Ap then by (2.3b) �a = 0 hence hrpq (�) = 0. Summing
route ows over Rpq or over Rpq[Ap] is therefore the same. These route ows represent
a feasible assignment since by lemma (2)X

r2Rpq[Ap]

hrpq(�) = �p!q � dq = dq (2.10)

De�ne the origin-based segment ow gs as the total amount of ow from origin p that
utilizes route segment s, that is

gs(�) =
X
q2N

X
r2Rpq [Ap]:s�r

hrpq(�) (2.11)

Notice that even if s 2 Rpq, it is possible that gs(�) 6= hspq(�) since there may
be ows that use the route segment s and then continue to some other destination.
These ows are included in the origin-based segment ow gs, but not in the route ow
hspq. A special case of origin-based segment ow for s=[j] is the origin-based node
ow g[j] = gj, which is the aggregation of all ows that originate at p and arrive at
j, either on their way to another destination, or stop at j, if j is their destination.

gj(�) =
X
q2N

X
r2Rpq[Ap]:j2r

hrpq(�) =
X
q2N

�p!j � �j!q � dq =
X
q2N

�j!q � dq (2.12)

For a general segment

gs(�) =
X
q2N

X
r2Rpq[Ap];s�r

hrpq(�) =
X
q2N

�p!st �
Y
a�s

�a � �sh!q � dq =
Y
a�s

�a � gsh(�)

(2.13)

where st; sh are the �rst (tail) and last (head) nodes of route segment s respectively.
The origin-based link ow may be viewed as a special case of origin-based segment
ow for s = a

fa(�) = ga(�) = �a � gah(�) (2.14)

For every node except the origin,X
a2A;ah=j

fa =
X

a2A;ah=j

�a � gj = gj 8j 2 N ; j 6= p (2.15)

We refer to the collection of route segments from p to j that include link a where
ah = j as the a approach to j. �a is therefore interpreted as the approach proportion.
Using (2.14) one may obtain approach proportions from origin-based link ows, but
only if the origin-based node ow is strictly positive. The advantages of having

26

approach proportions even when origin-based node ow is zero may not be apparent
at this point, and are discussed later.

A similar interpretation for �i!j is obtained by considering the total origin-based ow
on all route segments that pass through node i on their way to node j; that is

g[i;�;j](�) =
X

s2Rij[Ap]

gs(�) =
X

s2Rij[Ap]

X
q2N

X
r2Rpq[Ap];s�r

hrpq(�)

=
X
q2N

�p!i � �i!j � �j!q � dq = �i!j � gj (2.16)

�i!j is therefore the proportion of ow that arrives at node j through node i.

Our next goal is to �nd e�cient ways of computing origin-based link ows and origin-
based node ows from the vector of approach proportions �. For that purpose we
use the following descending recursive equation for �

�i!j =

8><
>:

1 i = j
0 o(i) > o(j)P

a2Ap;at=i

�a � �ah!j o(i) < o(j)
(2.17)

Notice that if o(i) > o(j) then Rij[Ap] = ; and hence �i!j = 0. There is also an
ascending recursive equation for �,

�i!j =

8><
>:

1 i = j
0 o(i) > o(j)P

a2Ap;ah=j

�i!at � �a o(i) < o(j)
(2.18)

which is used later on. Using (2.17) we �nd that

gj =
X
q2N

�j!q � dq = dj +
X

q2N ;o(j)<o(q)

0
@ X

a2Ap;at=j

�a � �ah!q

1
A � dq

= dj +
X

a2Ap;at=j

�a �

 X
q2N

�ah!q � dq

!
= dj +

X
a2Ap;at=j

�a � gah

= dj +
X

a2Ap;at=j

fa (2.19)

27

Equation (2.19) together with (2.15) shows thatX
a2A;ah=j

fa = gj = dj +
X

a2Ap;at=j

fa 8j 2 N ; j 6= p (2.20)

which is the common ow conservation requirement for origin-based link ows. Equa-
tions (2.19) and (2.14) allow one to compute origin-based link ows and origin-based
node ows from � in a single descending pass over the nodes.

2.4 Optimality conditions

f (�) : [0; 1]jAj ! RjAj is a function from the restricted feasible set of approach
proportions onto the restricted feasible set of origin-based link ows. Minimizing
T (f) over the latter is equivalent to minimizing T (f (�)) over the prior. Under the
monotonicity and separability conditions assumed above, it is known that T (f) is
convex as a function of f . As is shown below, in general T (f (�)) is not convex as a
function of �.

One common technique for dealing with such constrained optimization problems is
to form a Lagrangian. Unfortunately, in this case a direct Lagrangian derivation
was not found to be helpful, and the Lagrange multipliers do not seem to have any
meaningful interpretation. An alternative method is to choose a set of basic variables
whose values are obtained from the non-basic variables using the constraints. In
our case, once Ap has been determined, the constraints are easily decomposed into
a Cartesian product by head node. For each head node j we choose one approach
bj 2 Ap; (bj)h = j as the basic approach, and denote all other approaches (if there are
any) as the non-basic approaches NBj = fa 2 Ap; ah = j; a 6= bjg; NB =

S
j2N NBj .

Feasibility constraint (2.3a) is then replaced by

�bj = 1�
X

a2NBj

�a 8j 2 N n fpg (2.21)

The set of all basic approaches B = fbj : j 2 N ; j 6= pg � Ap is a-cyclic, spanning,
and contains one predecessor for every node (other than the origin). B is therefore a
spanning tree, referred to as the basic tree.

From de�nitions one can easily verify that h; f ; t; T are all continuously di�erentiable
functions of �. When taking the partial derivatives of a general function of the ap-
proach proportions x (�) we should distinguish between two possible interpretations:

28

1. Ignore feasibility constraint (2.21), and assume that approach proportions are
completely independent. This unconstrained derivative is denoted by the usual
derivative notation @x

@�a
.

2. Consider constraint (2.21). The constrained derivative is denoted by @x
@c�a

. No-
tice that

@x

@c�a

=
@x

@�a

�
@x

@�b(ah)

(2.22)

The goal of this section is to derive the constrained �rst order optimality conditions.
We start with the unconstrained derivative of route ow

@hrpq
@�a

= �ra � dq �
Y

a0�r;a0 6=a

�a0 (2.23)

The unconstrained derivative of the origin-based link ow is

@fa0

@�a
=
X
q2N

X
r2Rpq[Ap];a0�r

@hrpq
@�a

(2.24)

which we evaluate for four cases:

1. a = a0

@fa
@�a

=
X
q2N

X
r2Rpq[Ap];a�r

dq �
Y

a00�r;a00 6=a

�a00

=
X
q2N

�p!at � dpq � �ah!q = gah (2.25)

2. o(ah) = o(a0h); a
0 6= a

fr 2 Rpq[Ap]; a � r; a0 � rg = ; =)
@fa0

@�a
= 0 (2.26)

29

3. o(a0h) < o(ah)

@fa0

@�a
=

X
q2N

X
r2Rpq[Ap];a�r;a0�r

dq �
Y

a00�r;a00 6=a

�a00

=
X
q2N

dq � �p!a0t
� �a0 � �a0

h
!at � �ah!q = �a0 � �a0

h
!at � gah (2.27)

4. o(ah) < o(a0h)

@fa0

@�a
=

X
q2N

X
r2Rpq[Ap];a�r;a0�r

dq �
Y

a00�r;a00 6=a

�a00

=
X
q2N

dq � �p!at � �ah!a0t
� �a0 � �a0h!q = �a0 � �ah!a0t

� ga0h (2.28)

To �nd the constrained derivatives with respect to the approach proportion of some
non-basic approach a, denote the head node by j = ah, its basic approach b = bj =
b(ah), and consider the same four cases:

1. a0 = a or a0 = b

@fa
@c�a

= gj (2.29)

@fb
@c�a

= �gj (2.30)

2. o(ah) = o(a0h); a
0 6= a; a0 6= b

@fa0

@c�a

= 0 (2.31)

3. o(a0h) < o(ah)

@fa0

@c�a

= �a0 � gj �
�
�a0h!at � �a0h!bt

�
(2.32)

4. o(ah) < o(a0h)

@fa0

@c�a
= �a0 � ga0h �

�
�ah!a0t

� �bh!a0t

�
= 0 (2.33)

30

node (j) common nodes of j lcnj
9 1,5,9 5
12 1,6,7,12 7
4 1,4 1

Figure 5. Common nodes and last common nodes in an a-cyclic network

where the last equality is due to the fact that bh = ah. Intuitively, approach pro-
portions a�ect the distribution of ows towards the origin; indeed, the zero partial
derivative in case 4 shows that shifting proportions between approaches to a certain
node does not impact ows on succeeding links. This fact is not easily captured in a
direct Lagrangian derivation, hence complicating such derivation.

Case 3, of course, is the interesting one. In some cases it is possible to demonstrate
that �a0

h
!at = �a0

h
!bt and hence the constrained partial derivative is zero even in

this case. Suppose that node i is common to all routes that arrive at node j; that is
i 2 s 8s 2 Rpj[Ap], then �p!j = �p!i ��i!j hence �i!j = 1. Furthermore, for every
node i0 such that o(i0) � o(i) we �nd that �i0!j = �i0!i � �i!j = �i0!i. Note that the
origin p and the node itself j are always common nodes for j.

De�nition: the last common node of node j in Ap, lcnj is the common node of highest
topological order, excluding j itself.

Some examples for common nodes and last common nodes in an a-cyclic restricting
subnetwork are given in Figure 5.

If Ap contains only one link terminating at j, that is j is a single termination node,
then the last common node of j is the predecessor node. Otherwise, if j is a multiple
termination node, i.e. there are at least two links terminating at j, then lcnj must

31

come prior to all of those links, and can not be the tail of any one of them. In both
cases lcnj is a common node to all predecessor nodes of j, that is to all nodes i such
that [i; j] 2 Ap.

Let us now reconsider the constrained partial derivative in case 3 if in addition we
assume that o(a0h) � o(lcn(ah)). In this case l = lcn(ah) is also a common node to at
and to bt; therefore �a0

h
!at = �a0

h
!bt = �a0

h
!l hence

@fa0
@c�a

= 0.

In conclusion, the e�ect of an approach proportion is limited to the portion of the
network connecting the last common node to the approach termination node.

We are now ready to derive �rst order optimality conditions for an approach propor-
tion of a speci�c non-basic approach a. Denote the termination node by j = ah, and
its basic approach b = bj = b(ah).

@T

@c�a
=
X
a02Ap

@T

@fa0
�
@fa0

@c�a

= ta � gj � tb � gj +
X

a02Ap;o(a0h)<o(j)

ta0 � �a0 � gj �
�
�a0h!at � �a0h!bt

�
(2.34)

At a �rst glance the expression for the �rst order derivative (2.34) may not reveal any
intuitive interpretation. In the following paragraphs we examine the average cost to
a node, and the approach average cost. This derivation eventually leads to a rather
simple and intuitive expression for the �rst order derivative given in (2.42).

Consider the average cost weighted by ow over all route segments from the origin p
to node j, which we evaluate using (2.13).P

r2Rpj [Ap]

gr � crP
r2Rpj[Ap]

gr
=

P
r2Rpj[Ap]

Q
a�r

�a � gj � cr

gj
=

X
r2Rpj[Ap]

cr �
Y
a�r

�a (2.35)

Notice that the left hand term is well de�ned only if the denominator, i.e. the node
ow, is not zero, while the right hand term is well de�ned even if the node ow is
zero. This is one case where using approach proportions simpli�es the discussion.
Following this derivation we de�ne �j as the average cost to node j by

�j =
X

r2Rpj[Ap]

cr �
Y
a�r

�a (2.36)

32

The a = [i; j] approach was de�ned as the set of all route segments from the origin
p to node j that use link a. A similar derivation for ow-weighted average approach
cost is given byP

r2Rpj[Ap];a�r

gr � crP
r2Rpj[Ap];a�r

gr
=

P
r2Rpj[Ap];a�r

Q
a0�r

�a0 � gj � cr

fa
=

X
r2Rpj[Ap]

a�r

cr �
Y
a0�r
a0 6=a

�a0 (2.37)

leads to the de�nition of average approach cost �a as

�a =
X

r2Rpj[Ap];a�r

cr �
Y

a0�r;a0 6=a

�a0 (2.38)

One can verify the following recursive equations

�a = ta + �at (2.39)

�j =
X

a2Ap;ah=j

�a � �a (2.40)

which allow one to compute these average cost values for all nodes and all approaches
in a single ascending pass over the network. Finally

�a = ta + �at

= ta +
X

r2Rpat[Ap]

Y
a00�r

�a00 �
X
a0�r

ta0

= ta +
X
a02Ap

ta0 �
X

r2Rpat[Ap]:a0�r

Y
a00�r

�a00

= ta +
X
a02Ap

ta0 � �p!a0t
� �a0 � �a0

h
!at

= ta +
X

a02Ap;o(a0h)<o(ah)

ta0 � �a0 � �a0
h
!at (2.41)

Using (2.41) we can rewrite (2.34) as

@T

@c�a
= gj � (�a � �b) (2.42)

This expression can be interpreted as follows: shifting �% from approach proportion
�a to approach proportion �b is equivalent to shifting (� � gj) vph from approach a
to approach b. The cost incurred by these travelers while in approach a was on the

33

average �a; once shifted to approach b the cost incurred by them is �b. The total cost
di�erence is

� � gj � (�a � �b) = � �
@T

@c�a

(2.43)

as might be expected intuitively.

From (2.42) the �rst order necessary conditions for optimality are that at least one
of the following conditions holds

gj = 0 (2.44a)

�a = �b (2.44b)

�a = 0; �a > �b (2.44c)

�b = 0; �b > �a (2.44d)

So far we did not make any assumption about the way basic approaches are chosen.
From now on we assume that the basic approach is an approach of minimum average
cost; therefore, the necessary conditions for optimality are

�a � �bj 8j 2 N n fpg;8a 2 NBj (2.45a)

�a � gj �
�
�a � �bj

�
= 0 8j 2 N n fpg;8a 2 NBj (2.45b)

Figure 6 shows an example of a network that satis�es conditions (2.45), but still does
not satisfy the user equilibrium conditions. In this example c[p;4;q] = 35; c[p;1;2;5;q] =
40; c[p;1;3;5;q] = 30; therefore the cost of the used route [p; 4; q] is greater than the
cost of one of the unused routes [p; 1; 3; 5; q]. �[4;q] = 35 < 40 = �[5;q]; therefore,
[4; q] is the basic approach, and conditions (2.45) hold at node q. As for node 5,
�[2;5] = 30 > 20 = �[3;5] hence [3; 5] is the basic approach. Condition (2.45b) holds in
this case, but only because g5 = 0.

First order conditions are not su�cient for optimality only if the function T is not
convex. The non-convexity of T as a function of � in this case can be veri�ed directly.
For simplicity assume that link costs are �xed. The solution can be described by a
vector of the non-basic approach proportions, [2; 5]; [5; q]. The current solution is
represented by (1; 0). Consider the direction d = (�1; 1). The directional derivative
along that direction is positive; however, if we continue in the same direction all
the way to (0; 1) we obtain a solution of lower objective function, which contradicts
convexity.

34

necessary conditions hold; su�cient conditions are violated
�-approach proportion; f -ow; t-cost

Figure 6. Average approach cost optimality conditions

The following lemma shows that by omitting the node ow from (2.45b) su�cient
conditions for optimality are obtained.

Lemma 3. Conditions

�a � �bj 8j 2 N n fpg;8a 2 NBj (2.46a)

�a �
�
�a � �bj

�
= 0 8j 2 N n fpg;8a 2 NBj (2.46b)

are su�cient for restricted user equilibrium.

Proof:
We refer to link a with �a > 0 as a contributing link, in contrast to a used link which
must have strictly positive ow fa > 0. Accordingly we consider as contributing route
segments those that contain contributing links only. Notice that by (2.14) every used
link is necessarily a contributing one, therefore if there is a used route that violates the
user equilibrium conditions, it can also be viewed as a contributing route. Suppose
there is a contributing route segment r = (r0 + [ik]) 2 Rpk that has an alternative
route segment s = (s0 + [jk]) 2 Rpk of lower cost. w.l.o.g. assume that k is the node
of lowest topological order for which such routes exist. Clearly i 6= j; otherwise, r0; s0

would be such route segments for i, and o(i) < o(k). Since o(i) < o(k), the cost of all
contributing route segments from p to i are equal, and in particular cr = �[ik]. Since

35

o(j) < o(k) the cost of every contributing route segment from the p to j and the
average of such costs is not greater than the cost of any alternative route segment,
hence cs � �[jk]. Therefore �[ik] = cr > cs � �[jk] � �bk and �[ik] > 0, in contradiction
to conditions (2.46).

As was shown in Figure 6, in some cases it is essential to require that the average
approach cost condition holds even if the node ow is zero. In other cases such a
requirement is not necessary. For example, if in the same �gure the cost of link [p; 4]
was 10 instead of 20, then the cost of the used route would be c[p;4;q] = 25, meaning
this is a route of minimum cost. Therefore, this solution would be at equilibrium
even though the su�cient average approach cost conditions (2.46) still does not hold
at node 5. However, conditions (2.46) can be easily satis�ed in this case (t[p;4] = 10)
by setting �[2;5] = 0:0;�[3;5] = 1:0. Since every user equilibrium � satis�es (2.45), a
similar correction at nodes of zero ow yields a solution that satis�es (2.46), while
keeping the same origin-based link ows and the same route ows. From here on,
therefore, we only consider su�ciency conditions (2.46).

2.5 Second order derivatives and their approximation

To minimize T one should shift ow from non-basic to basic approaches. A Newton-
type shift of ow is based on the ratio of the �rst order derivative and the second
order derivative. The �rst goal of this section is to derive the second order derivative.
Unfortunately this derivation leads to a rather complicated expression, which we
do not how know to compute e�ciently. Therefore, in the following sections an
approximation is used. Motivation for that approximation is provided in this section.
The formal recursive de�nition for the approximated second order derivative is given
in the next section.

The diagonal second order derivatives of the ow on any link a0 with respect to any
other approach proportion a is always zero.

@2fa0

@�a
2
=

@2fa0

@c�a
2
= 0 (2.47)

The o�-diagonal second order derivatives are not zero, as link ows are multiplicative
and not linear functions of approach proportions. The second order derivative of the
objective function with respect to link ow is

@2T

@fa
2 =

@ta
@fa

= t0a (2.48)

36

and with respect to approach proportions

@2T

@c�a
2
=
X
a02Ap

"
@2T

@fa0
2 �

�
@fa0

@c�a

�2

+
@T

@fa0
�

�
@2fa0

@c�a
2

�#

= t0a � g
2
j + t0b � g

2
j +

X
a02Ap

o(a0
h
)<o(j)

t0a0 � �a0
2 � g2j �

�
�a0

h
!at � �a0

h
!bt

�2
(2.49)

We have shown that changing the approach proportion of link a terminating at j does
not a�ect link ows prior to lcnj. Remember that lcnj is also a common node to at
and to bt hence

�i!at = �i!bt = �i!lcnj 8i 2 N ; o(i) � o(lcnj) (2.50)

@2T

@c�a
2
= t0a � g

2
j + t0b � g

2
j +

X
a02Ap

o(lcnj)<o(a0h)<o(j)

t0a0 � �a0
2 � g2j �

�
�a0

h
!at � �a0

h
!bt

�2
(2.51)

Developing recursive equations similar to (2.39-2.40) for the second order derivative
is more challenging, due to the interaction between approaches, that is, the fact that
route segments from two approaches are likely to share links in a complicated manner.
If the interaction between approaches is ignored, the following approximation can be
made

�a = t0a +
X

a02Ap;o(a0h)<o(j)

t0a0 � �a0
2 � �2

a0
h
!at

= t0a +
X

a02Ap;a0h=at

t0a0 � �
2
a0 +

X
a02Ap;o(a0h)<o(at)

t0a0 � �a0
2 �

0
@ X

a002Ap;a00h=at

�a00 � �a0h!a00t

1
A

2

� t0a +
X

a02Ap;a0h=at

t0a0 � �
2
a0 +

X
a02Ap;o(a0h)<o(at)

t0a0 � �a0
2 �

X
a002Ap;a00h=at

�
�a00 � �a0h!a00t

�2

= t0a +
X

a002Ap;a00h=at

�2
a00

0
@t00a00 + X

a02Ap;o(a0h)<o(a
00

t)

t0a0 � �a0
2 � �2

a0
h
!a00t

1
A

= t0a +
X

a002Ap;a00h=at

�2
a00 � �a00 (2.52)

37

Using (2.50) again, we �nd a similar approximation forX
a02Ap;o(a0h)�o(lcnj)

t0a0 � �a0
2 � �2

a0
h
!at =

X
a02Ap;o(a0h)�o(lcnj)

t0a0 � �a0
2 � �2

a0
h
!lcnj

=
X

a02Ap;a0h=lcnj

t0a0 � �
2
a0 +

X
a02Ap;o(a0h)<o(lcnj)

t0a0 � �a0
2 �

0
@ X

a002Ap;a00h=lcnj

�a00 � �a0h!a00t

1
A

2

�
X

a02Ap;a0h=lcnj

t0a0 � �
2
a0 +

X
a02Ap;o(a0h)<o(lcnj)

t0a0 � �a0
2 �

X
a002Ap;a00h=lcnj

�
�a00 � �a0

h
!a00t

�2

=
X

a002Ap;a00h=lcnj

�2
a00

0
@t00a00 + X

a02Ap;o(a0h)<o(a
00

t)

t0a0 � �a0
2 � �2

a0
h
!a00t

1
A =

X
a002Ap;a00h=lcnj

�2
a00 � �a00

(2.53)

Denoting

�j =
X

a2Ap;ah=j

�2
a � �a (2.54)

and using the assumption that there is no interaction between approaches, (2.51) can
be rewritten as

@2T

@c�a
2

= t0a � g
2
j + t0b � g

2
j +

X
a02Ap

o(lcnj)<o(a0h)<o(j)

t0a0 � �a0
2 � g2j �

�
�a0h!at � �a0h!bt

�2

� t0a � g
2
j +

X
a02Ap;o(lcnj)<o(a0h)<o(j)

t0a0 � �a0
2 � g2j � �

2
a0
h
!at

+t0b � g
2
j +

X
a02Ap;o(lcnj)<o(a0h)<o(j)

t0a0 � �a0
2 � g2j � �

2
a0h!bt

� g2j �
�
�a + �b � 2 � �lcnj

�
(2.55)

Equations (2.52) and (2.54) allow us to compute �a for all links and �j for all nodes
in a single ascending pass.

38

2.6 Flow shifts and their aggregation

For this section average cost functions are rede�ned recursively by

�p(�; t) = 0 (2.56a)

�j(�; t) =
X

a2Ap;ah=j

�a � �a(�; t) (8j 6= p) (2.56b)

�a(�; t) = ta + �at(�; t) = ta +
X

a02Ap;a0h=at

�a0 � �a0(�; t) (2.56c)

and similarly the derivative approximating functions are rede�ned recursively by

�p(�; t
0) = 0 (2.57a)

�j(�; t
0) =

X
a2Ap;ah=j

�2
a � �a(�; t

0) (8j 6= p) (2.57b)

�a(�; t
0) = t0a + �at(�; t

0) = t0a +
X

a02Ap;a0h=at

�2
a0 � �a0(�; t

0) (2.57c)

These de�nitions are motivated by the discussion in the previous section. Notice
that in these functions t; t0 and � are separate variables, since we wish to use these
functions in cases where t 6= t(f(�)) and t0 6= t0(f(�)).

The �rst step in building the search direction is to determine the amount of ow to
be shifted between two alternative approaches a and b; ah = bh = j. Assume w.l.o.g.
that �b � �a, and choose b as the current basic approach for j. Our goal is to choose
a value � to be subtracted from �a and added to �b. By (2.42) and (2.55) a Newton
type shift would be

@T
@c�a
@2T
@c�a2

�
gj � (�a � �b)

g2j �
�
�a + �b � 2 � �lcnj

� = 1

gj
�

�a � �b
�a + �b � 2 � �lcnj

(2.58)

Here, g, �, �, � are all continuous functions of t, t0, and �; however, both the node
ow and the cost derivatives may have a value of zero. In order to obtain a well-
de�ned shift for all possible values of t, t0, and �, some modi�cation is required.
We wish to make the modi�cation in such a way that the resulting algorithmic map
is also closed, a property that helps in the proof of convergence. To overcome the
problem of zero derivative estimate, we choose a small positive constant �� > 0, and
de�ne

za!b(�; t; t
0) =

�a(�; t)� �b(�; t)

max(��; �a(�; t0) + �b(�; t0)� 2 � �lcnj (�; t
0))

(2.59)

39

za!b is a continuous function that can be interpreted as the desirable amount of ow
(in units of ow, say vph) that should be shifted from a to b in order to equalize costs,
ignoring feasibility constraints.

Handling zero node ow in a way that yields a closed and converging algorithmic map
requires a di�erent treatment. We de�ne the change in approach proportions by the

point to set map �a!b : [0; 1]jAj �<
jAj
+ �<

jAj
+ ! 2[0;1] as follows

�a!b
1 (�; t; t0) =

8<
:
n
min

�
�a;

za!b(�;t;t
0)

gj(�)

�o
gj > 0

f�ag gj = 0;�a > �b
[0; �a] gj = 0;�a = �b

(2.60)

Since �a!b
1 (�; t; t0) � [0; �a], feasibility is guaranteed.

Lemma 4. �a!b
1 is a closed map; that is if �k ! �, tk ! t, t0k ! t0, �k 2

�a!b
1 (�k; tk; t0k), and �k ! �, then � 2 �a!b

1 (�; t; t0).

Proof:
There are three cases:

1. gj(�) > 0
The function �a!b

1 (�; t; t0) is a continuous point to point function in the neigh-
borhood of �; t; t0.

2. gj(�) = 0, �a(�; t)� �b(�; t) > � > 0.
Choose M such that

M > �a(�; t
0) + �b(�; t

0)� 2 � �lcnj (�; t
0) ; M > ��

There is k0 such that for every k > k0

�a(�
k; tk)� �b(�

k; tk) > �

�a(�
k; t0

k) + �b(�
k; t0

k)� 2 � �lcnj (�
k; t0

k) < M

gj(�
k) <

�

M

Therefore, za!b(�
k;tk;t0)

gj(�k) > 1 > �k, hence

�a!b
1 (�k; tk; t0

k
) = f�k

ag

�k = �k
a ! �a

� = �a

40

and �a!b
1 (�; t; t0) = f�ag so � 2 �a!b

1 (�; t; t0).

3. gj(�) = 0, �a(�; t) = �b(�; t).

�k 2 �a!b
1 (�k; tk; t0k) � [0; �k], therefore � 2 [0; �a] = �a!b

1 (�; t; t0).

The next task is to determine the e�ect of the change in approach proportions on
link ows. For any vector of changes in approach proportion �� de�ne

�f(�;��) = f(�+��)� f(�) (2.61)

Suppose ��a 2 ��a!b
1 (�; t; t0); ��b = ���a; ��a0 = 0 8a0 6= a; a0 6= b. By

(2.47) fa0 is a linear function of �a (zero second order derivative), therefore

�fa0(�;��) = fa0(�+��)� fa0(�) = ��a �
@fa0

@c�a

=

8><
>:

��a � gj(�) a0 = a
���a � gj(�) a0 = b
��a � �a0 � gj(�) �

�
�a0

h
!at � �a0

h
!bt

�
o(a0h) < o(a0t)

0 otherwise

(2.62)

The directional derivative of T along �f is

�f(�;��) � t = ��a � ta � gj(�)���a � tb � gj(�)

+
X

a02Ap;o(a0h)<o(j)

��a � ta0 � �a0 � gj(�) �
�
�a0

h
!at � �a0

h
!bt

�
= ��a � gj(�) � (�a(�; t)� �b(�; t)) � 0 (2.63)

Equality holds only if: ��a = 0; gj(�) = 0; or �a(�; t) = �b(�; t), and in all three
cases �f = 0. �f is therefore either zero or a feasible direction of descent of T .

In a fully sequential method, shifts are computed and applied for each non-basic ap-
proach sequentially. Link costs are updated after each shift. Such a method does
not take full advantage of the a-cyclic structure of the solution. We mentioned that
the average approach cost �a and estimated derivatives �a and �j can be computed
e�ciently for the entire network in a single ascending pass over the nodes. Once
new approach proportions are determined, then new origin-based link ows can be
computed in a single descending pass over the nodes. If all shifts are to be deter-
mined simultaneously, the complete search direction for the origin could be computed
e�ciently in one ascending pass and one descending pass over the nodes. It is not
demonstrated here, but the search direction can be computed as e�ciently if shifts

41

are determined sequentially in either ascending or descending topological order, as
long as link costs remain �xed and are not updated.

Aggregating shifts from approaches to the same node is a relatively simple matter,
as they are independent in the following sense: if a, a0 are two alternative non-basic
approaches to node j = ah = a0h then gj ; �a; �b; �a; �b; �lcnj are all independent of �a0;
hence za!b and �a!b

1 are also independent of �a0 . As a result, applying such shifts
simultaneously or in any sequential order produces the same results, assuming that
only the weights for averaging are updated and not link costs. If the basic approach
b is given, the aggregated shift is de�ned by the following map

�j:b
1 (�; t; t0) =

8<
:�� :

��a 2 ��a!b
1 (�; t; t0) 8a 2 NBj

��b = �
P

a2NBj
��a

��a0 = 0 a0h 6= j

9=
; (2.64)

This aggregated shift satis�es feasibility requirements. Since one route can not contain
two approaches to the same node, the change in link ows for the aggregated shift is
the sum of the changes of the pairwise shifts. Therefore, if �� 2 �j:b

1 (�; t; t0) then
�f(�;��) is either zero or a direction of descent of T .

In many cases there is only one minimum cost approach, and therefore a unique way
to choose the basic approach. In general, however, several alternative approaches
may have equal cost; in this case the choice of the basic approach is arbitrary. The
algorithmic map for node-shifts takes that arbitrariness into account and is de�ned
as follows

�j
1(�; t; t

0 : Ap) =
[

b 2 Ap : bh = j;
�b � �a 8a 2 Ap; ah = j

�j:b
1 (�; t; t0) (2.65)

Notice that the choice of the basic approach depends not only on the current values
of t, t0 and �, but also on the given restricting subnetwork Ap.

Lemma 5. �j
1(�; t; t

0 : Ap) is a closed map.

Proof:
Suppose �k ! �, tk ! t, t0k ! t0, ��k 2 �j

1(�
k; tk; t0k : Ap), and ��k ! ��.

Let bk be the basic approach used to �nd ��k. There are only a �nite number of
possible basic approaches; therefore, there is a subsequence K that uses the same
basic approach b0, that is bk = b0 8k 2 K. If there is an alternative approach a
of lower cost, �a(�; t) < �b0(�; t) then for all k > k0 also �a(�k; tk) < �b0(�

k; tk)

42

contradicting the choice of bk as a basic approach. Therefore, b0 is a legitimate basic
approach for �, t, t0.

Since �a!b0

1 (�; t; t0) is a closed map, ��a 2 �a!b0

1 (�; t; t0) 8a 2 NBj hence

�� 2 �j:b0

1 (�; t; t0) � �j
1(�; t; t

0 : Ap)

As mentioned before, the aggregation to origin-based shift can be done in three ways.

Simultaneous: node shifts are computed independently

�1(�; t; t
0 : Ap) =

(
�� =

X
j2N ;j 6=p

��j : ��j 2 �j
1(�; t; t

0 : Ap)

)
(2.66)

Ascending: each node shift takes into account the shifts at nodes of lower topological
order

�"
1(�; t; t

0 : Ap) =

8<
:�� =

X
j2N ;j 6=p

��j :
��j 2 �j

1 (�
j ; t; t0 : Ap)

�
j = �+

P
j02N ;o(j0)<o(j)

��j0

9=
; (2.67)

Descending: each node shift takes into account the shifts at nodes of higher topological
order

�#
1(�; t; t

0 : Ap) =

8<
:�� =

X
j2N ;j 6=p

��j :
��j 2 �j

1 (�
j ; t; t0 : Ap)

�
j = �+

P
j02N ;o(j0)>o(j)

��j0

9=
; (2.68)

Notice in all three cases link costs and cost derivatives are not updated. All three
maps are feasible and closed. Evaluating the directional derivative in the simultaneous
aggregation is somewhat cumbersome, due to the multiplicative interaction among the
approach proportions. As for the sequential aggregations, we �nd that the resulting
vector of link ow changes is a sum of node-shift changes, using di�erent values of
�, but the same values of t and t0. As a result the aggregated change is either
zero or a direction of descent of T . For example if �� 2 �#

1(�; t; t
0 : Ap) then

�f(�;��) =
P
j2N

�f(�j;��j); therefore �f(�;��) � t � 0, and equality holds if

and only if �f(�;��) = 0.

43

Comment: in the multiple-origin problem one might want to aggregate the ow shifts
over all nodes to come up with a global search direction. Such aggregation causes
no problems, since feasibility closedness, and non-positive directional derivative are
guaranteed.

2.7 Boundary search

In the previous section various possible search directions at di�erent levels of aggre-
gation were described. In all cases we showed that applying the search direction as is
(with step 1.0) leads to a new feasible solution. We also showed that locally the search
direction has a non-positive directional derivative. This property although highly de-
sirable does not guarantee that applying the search direction as is leads to a lower
value of the objective function. To overcome this problem, it is common to choose a
convex combination of the current solution and the new solution that minimizes the
objective function. Since the feasible set is convex, the combination is guaranteed to
be feasible.

The main problem with the common convex line search is that it tends to lead to
inner point solutions. In the tra�c assignment problem this implies that it tends
to leave residual ows on sub-optimal routes. Residual ows may have a negligible
e�ect on the objective function value; thus in many methods they are not a reason
for concern. Residual ows cause signi�cant problems when restrictions are to be
updated, as was discussed in section 2.1, and may in fact prevent global convergence.
Even proving restricted convergence was found to be quite di�cult if convex search
is used. Experimental results also indicated that the convex search is problematic.

The proposed alternative is boundary search, which was described schematically in
the overview. As mentioned there, the key point in the boundary search is to apply
the step size prior to any consideration of feasibility constraints. In our case this is
done while determining the shift between a pair of approaches, that is by replacing
equation (2.60) with

�a!b
� (�; t; t0) =

8<
:
n
min

�
�a; � �

za!b(�;t;t
0)

gj(�)

�o
gj > 0

f�ag gj = 0;�a > �b
[0; �a] gj = 0;�a = �b

(2.69)

where � is the step size. Aggregation to �j
�(�; t; t

0 : Ap) and �#
�(�; t; t

0 : Ap) is done
in the same way as before.

44

Finding the step size that minimizes T in this case is more complicated than in the
convex search for two reasons. First, for every value of � there are several possible
values of �� and hence several possible values of �f(�;��). Second, even if there
was a way to make the choices consistent, thereby obtaining a function �f(�), the
direction of �f would vary with �, thus complicating the evaluation of the directional
derivative substantially. The boundary search considers a broken line that changes
direction every time the boundary is reached by one of the components. Figure 4
shows one such change of direction for a two dimensional problem. In problems of
realistic size, the number of dimensions is more likely to be in the range of hundreds
or thousands; thus changes of direction can come quite frequently.

On the other hand, even with convex line search, �nding the optimal step size is not
necessarily cost e�ective, and typically some approximation is used. One possible
strategy is to examine � = 2�k and to choose the largest � (smallest k � 0) such that

�f � t(f + � ��f) � 0 (2.70)

Assuming that the search direction is a direction of descent, i.e. �f � t(f) < 0, the
continuity of cost guarantees that when � is small enough, condition (2.70) is satis�ed.
We can also �nd 0 < �0 � � for which condition (2.70) holds with strong inequality.
Since T (f) is a convex function of f , condition (2.70) ensures that

�f � t(f + x ��f) � 0 80 � x � � (2.71)

�f � t(f + x ��f) < 0 80 � x � �0 (2.72)

T (f + � ��f)� T (f) =

�Z
0

�f � t(f + x ��f)dx

�

�0Z
0

�f � t(f + x ��f)dx < 0 (2.73)

T (f +�f) < T (f) (2.74)

Figure 7 illustrates the di�erent possible search procedures in both the approach pro-
portions and link ows spaces. �0 denotes the current approach proportions solution,
and �1 the new solution for step size 1.0. f0 and f1 denote the corresponding link
ows solutions. The thin line represents convex combinations of �0 and �1, this
line segment corresponds to the thin curve in the link ows space. Notice that the
same substantial amount of computational e�ort is required to produce each addi-
tional point along that line. The dashed line represents convex combinations of f0

and f1, this line corresponds to the dashed curve in the approach proportions space;
searching along that line has the advantage that once the end points are known, new

45

a) Approach proportions space b) Link ows space

Figure 7. Boundary search and its alternatives

points along the line segment are obtained by simple averaging, thus reducing the
computational e�ort especially if all origins are considered simultaneously.

The boundary search is described in the approach proportions space by the thick
piecewise line connecting �0, �a, �b, �c, and �1. The corresponding thick curve in
the link ows space, is a general curve that connects f0, fa, f b, f c, and f1. For any
step size value, we choose a point along the piecewise line in the approach proportions
space, and then compute the corresponding link ows. For example �0:5 and f0:5

represent the approach proportions and link ows for step size 0.5 respectively. The
line segment connecting �0 and �0:5 is of no particular interset to us, since T is not
convex as a function of �. �f is the vector connecting f0 and f0:5. We know that
the directional derivative along that vector at f0 is negative. Also, by convexity, we
know that the directional derivative along the line segment connecting f0 and f0:5

is monotonically increasing. Therefore, to ensure descent of the objective function,
all we need to do is to verify that the directional derivative along �f at f0:5 is non-
positive. If it is, we are done; otherwise, we examine smaller step size values.

Demonstrating that condition (2.70) holds for some positive � in the case of the
boundary search requires a more careful argument, since �f changes with �. Fur-
thermore, even if � converges to zero, �� does not necessarily converge to zero;
only �f does. Using this result and the continuity of approach average cost, one
can show that if �a(�; t(f)) > �b(�; t(f)) then for a su�ciently small perturbation

46

�a(�; t(f + �f)) > �b(�; t(f + �f)). Therefore, for a small enough � if �� 2

�#
�(�; t; t

0), �f = �f(�;��), then

��a � gj(�+��) � (�a(�; t(f +�f))� �b(�; t(f +�f))) � 0 (2.75)

�f � t(f +�f) � 0 (2.76)

If �f 6= 0 then �f � t < 0 and the same arguments yield a strong inequality. The
following lemma shows a stronger result, that there is actually a strictly positive lower
bound on the step size that ensures this descent condition.

Lemma 6. There exists �0 > 0 such that for all 0 < � � �0 and for all � and Ap,

every choice of �� 2 �#
�(�; t(f(�)); t

0(f(�)) : Ap) satis�es

�f(�;��) � t (f +�f(�;��)) � 0 (2.77)

Proof:
The main idea of the proof is as follows. Under current conditions the cost of ev-
ery non-basic approach is not lower than the cost of the alternative basic approach.
For some approaches this situation remains even after the change; therefore, their
contribution to the directional derivative is negative (which is desirable). For those
non-basic approaches that have lower cost after the change, the original cost di�er-
ence cannot be too large, and hence the ow shift can not be too large. Then the
contribution of such changes to the directional derivative although positive can not
be too large in magnitude. Finally, if there is any substantial change in the ows,
it must be due to some relatively large cost di�erence for some non-basic approach,
which remains relatively large even after the change, thus contributing a negative
component to the directional derivative. We show that for a su�ciently small step
size, the latter negative component dominates the prior positive component.

In the descending aggregation map the shift from every non-basic approach is deter-
mined by an average approach cost based on the original approach proportions �,
and a node ow based on the new approach proportions � + ��. To simplify the
notation in this proof we use the following abbreviations:

gj = gj(�+��) (2.78)

�a = �a(�; t(f(�))) (2.79)

�̂a = �a(�; t(f(�+��))) (2.80)

za!b = za!b(�; t(f(�)); t
0(f(�))) (2.81)

�f = �f(�;��) (2.82)

47

Let x be the largest ow shift, in units of ow, from non-basic to basic approach, that
is

x = max
j2Nnfpg;a2NBj

���a � gj(�+��) (2.83)

Remark: if x = 0 for some positive �, then �f(�;��) = 0 for all � and the lemma
is proven.

8a 2 NB

�fa = ��a � gah +
X
j2N

o(j)>o(ah)

X
a02NBj

��a0 � gj � �a �
�
�ah!a0t

� �ah!(bj)t

�
(2.84)

8b 2 B

�fb = �
X

a2NBbh

��a � gah +
X
j2N

o(j)>o(ah)

X
a02NBj

��a0 � gj � �b �
�
�bh!a0t

� �bh!(bj)t

�
(2.85)

By (2.8) 0 � �i!j � 1; therefore, 8a 2 Ap

j�faj � jAj � x (2.86)

Let t0max = max
�
t0a(f(�)) : a 2 A;� 2 [0; 1]jApj

	
be the maximum cost derivative;

then

jta(f(�+��))� ta(f(�))j � j�fa � t
0
maxj � jAj � x � t0max (2.87)

j�̂a � �aj �

������
X
a2Ap

�fa � t
0
max

������ � jAj2 � x � t0max (2.88)

For all j 2 N n fpg; a 2 NBj ; b = bj; �a � �b hence

�̂a � �̂b � �2 � jAj2 � x � t0max (2.89)

For those j 2 N n fpg; a 2 NBj ; b = bj such that �̂a � �̂b

gj ���a � (�̂a � �̂b) � 0 (2.90)

48

For those j 2 N n fpg; a 2 NBj; b = bj such that �̂a < �̂b

�a � �b � 2 � jAj2 � x � t0max (2.91)

za!b � 2 � jAj2 � x � t0max=�� (2.92)

���a � gj � � � za!b (2.93)

gj ���a (�̂a � �̂b) � 4
�

��
� jAj4 � x2 � t0max

2
(2.94)

X
j2N

X
a2NBj

�̂a<�̂b

gj ���a � (�̂a � �̂b) � 4
�

��
� jAj5 � x2 � t0max

2
(2.95)

There exist j0 2 N ; a0 2 NBj0 ; b0 = bj0 such that x = ���a0 � gj0 ; hence

x = ���a0 � gj0 � � � za0!b0 � � � (�a0 � �b0) =�� (2.96)

�a0 � �b0 � x �
��
�

(2.97)

�̂a0 � �̂b0 � x �
��
�
� 2 � x � jAj2 � t0max (2.98)

gj0 ���a0 � (�̂a0 � �̂b0) � �x2 �
���
�
� 2 � jAj2 � t0max

�
(2.99)

where the transformation from (2.97) to (2.98) is by (2.88).

�f � t(f +�f) =
X
j2N

X
a2NBj

gj ���a � (�̂a � �̂b)

� 4
�

��
� jAj5 � x2 � t0max

2
� x2 �

���
�
� 2 � jAj2 � t0max

�
= x2 �

�
4
�

��
� jAj5 � t0max

2
+ 2 � jAj2 � t0max �

��
�

�
(2.100)

Notice that all the elements in parentheses except for � are constants independent of
�, and that as � converges to zero, this expression becomes negative.

Using �0 from Lemma 6, we de�ne the algorithmic map for the boundary search as
follows

�#(� : Ap) =

�
�� : 9� 2 [�0; 1] : �� 2 �#

�(�; t(f(�)); t
0(f(�)) : Ap)

�f(�;��) � t (f +�f(�;��)) � 0

�
(2.101)

According to this de�nition, one can choose a step size of �0 at every iteration.
Apparently the proof of convergence is valid even with such an ine�cient choice of

49

step size. This map also allows for the approximated search procedure described
above; that is, to consider � = 2�k and choose the largest step size that leads to a
value of �� that satis�es the above descent condition. In cases where the map for
a certain step size allows for several options, it is su�cient to examine one of them
arbitrarily.

By Lemma 6, the map �# is non-empty. The map �# is closed, since if ��k 2
�#

�k
(�k : Ap),�k ! �,��k ! ��, then for some subsequence �k ! � 2 [�0; 1] and

�� 2 �#
�(� : Ap).

Lemma 7. If �� 2 �#
�(� : Ap) then T (f(� + ��)) � T (f(�)) and equality holds

i� �f(�;��) = 0.

Proof:
The same arguments used to show (2.74) are valid here, since if �f(�;��) 6= 0 then
�f � t(f(�)) < 0, and �f � t(f(�+��)) � 0.

The next theorem proves convergence of the algorithm described above for RSOTP.

Theorem 1. The algorithm de�ned by �#(� : Ap) converges to restricted equilibrium.

Proof:
Suppose �k+1 = �

k + ��k and ��k 2 �#(�k : Ap). There exist a subsequence K
such that �k+l ! �

�l 80 � l � jN j. Hence

�
k+l+1 ��k+l = ��k+l ! ���l = ��l+1 ���l 8l : 1� l< jN j

� � � �
k0+1 ! �

k0+2 � � � ! �
k0+l � � � ! �

k0+jN j � � �
� � � �

k1+1 ! �
k1+2 � � � ! �

k1+l � � � ! �
k1+jN j � � �

...
...

...
...

� � � �
k+1 ! �

k+2 � � � ! �
k+l � � � ! �

k+jN j � � �
#

�
�1 ! �

�2 � � � ! �
�l � � � ! �

�jN j

(2.102)

Since the map is closed, ���l 2 �#(��l : Ap). T (f(�k)) is a monotonically non-
increasing sequence, hence the limiting point of every subsequence is equal, and thus

T (f(��l)) = T � 80 � l � jN j (2.103)

Therefore, �f(��l;���l) = 0;

f(��l) = f� 80 � l � jN j (2.104)

50

Let t� = t(f�); t0� = t0(f�). To complete the proof we show by induction that ��l

satis�es restricted approach equilibrium conditions (2.46) for all nodes of topological
order less than or equal to l. For l = 1, there are no approaches to the origin, hence the
conditions hold in the empty sense. Suppose the theorem is true for l. ���l can have
non-zero components only for links terminating at nodes of topological order higher
then l. Therefore equilibrium conditions will remain for all nodes of topological order
no greater then l. Let j be the node of topological order l+ 1, o(j) = l+ 1. Suppose
approach equilibrium conditions are not met for a; b; ah = bh = j; �a(��l; t�) >
�b(��l; t�); ��l

a > 0. If gj > 0, then �f(��l;���l) 6= 0, contradiction. If gj = 0 then
���la = ���la and therefore ��l+1

a = 0 and the approach equilibrium conditions are
met.

2.8 Restrictions update

So far the restricting subnetwork was assumed given. Determining a restricting sub-
network that includes the globally optimal solution is not a trivial task, and an itera-
tive scheme seems necessary. A reasonable initial guess may be the tree of minimum
cost routes under free ow travel conditions; however, the only feasible assignment un-
der such restrictions is the all-or-nothing assignment. This section presents a simple
procedure to determine a new restricting subnetwork based on the current approach
proportions solution. This procedure is used to de�ne the algorithmic map for a
full unrestricted iteration; a proof of global convergence for the resulting algorithm
follows.

It was assumed that the restricting subnetwork is a-cyclic and spanning. The tree of
minimum cost routes does satisfy these requirements. We will show that given any
feasible solution the proposed procedure produces a spanning a-cyclic restricting sub-
network. Another useful property of this procedure is that the new restricted feasible
set contains the current solution. Without this property the solution must be mod-
i�ed while updating the restrictions. Unless carefully performed, such modi�cations
may increase the objective function value, and thus disturb the global convergence of
the algorithm.

In the description of the procedure we distinguish between the following two terms.
A link a is considered to be a used link if its ow is strictly positive, fa > 0. It
is considered to be a contributing link if �a > 0. The used subnetwork is de�ned
accordingly by Au

p(f) = fa 2 A : fa > 0g, and the contributing subnetwork is de�ned
by Ac

p(�) = fa 2 A : �a > 0g. Clearly every used link is also a contributing one,
but not necessarily vice versa: even if all approaches to a certain node carry zero
ow, approach proportions must still sum to one. One advantage of the contributing

51

subnetwork over the used subnetwork is that the former is spanning; i.e., it contains
at least one route from the origin to every other node, while the latter is not. To
some extent this is only a technical issue; however, it does simplify the discussion
substantially.

In order for the new restricted feasible set to include the current solution, the new
restricting subnetwork must include the contributing subnetwork. Feasibility require-
ments ensure that the contributing subnetwork Ac

p(�) is spanning and a-cyclic. Tak-
ing the contributing subnetwork Ac

p(�) as the basis for the new restricting subnetwork
guarantees it is spanning; the remaining question is which links if any should be added
in order to allow improved solutions. Links from the current tree of minimum cost
routes are possible candidates, but determining whether any of them creates a cycle
and which ones should be excluded can be a rather cumbersome and time consuming
operation.

The proposed condition is based on the maximum contributing cost from the origin
p to node j, de�ned as

uj(�; t) = max
r2Rpj[Ac

p(�)]
cr(t) = max

r2Rpj[Ac
p(�)]

X
a2r

ta (2.105)

In this de�nition the only role of � is to determine which routes to consider, while
the cost of each of these routes is based on some link costs t that do not necessarily
depend on �. This exibility in the de�nition is used mainly for proving convergence.
When updating the restrictions, consistent approach proportions and link costs are
used. Once the value of uj = uj(�; t(f(�))) is computed for all the nodes, every link
[i; j] 2 A such that ui < uj is added to the restricting subnetwork. The resulting
restricting subnetwork is

Ap(�) = Ac
p(�) [f[i; j] 2 A : ui(�; t(f(�))) < uj(�; t(f(�)))g

This condition is relatively easy to verify since maximum contributing costs to all
nodes can be computed in a single ascending pass over the nodes. Note that the
contributing subnetwork is spanning; hence the maximum contributing cost is well
de�ned for every node.

Comment: A similar de�nition of maximum used cost is valid only for used nodes.
Hagstrom (1997) proposed a rigorous but quite involved method to extend the def-
inition of maximum used cost to all nodes. Algorithm performance is expected to
be similar whether the condition for adding links is based on either maximum con-
tributing cost or extended maximum used cost. The condition based on maximum

52

contributing cost is preferred as it simpli�es the discussion and the code implemen-
tation.

Lemma 8. Ap(�) is a-cyclic.

Proof:
Suppose that [v0; v1; : : : ; vn = v0] is a cycle such that [vk; vk+1] 2 Ap(�) 80 � k �
n� 1. For brevity let uj = uj(�; t(f(�))). Notice that if [vk; vk+1] 2 Ac

p(�), then by
de�nition uvk � uvk + t[vk ;vk+1] � uvk+1. Since A

c
p(�) is a-cyclic there must be at least

one new link [vk0; vk0+1] for which uvk0 < uvk0+1 . Therefore uv0 � uv1 � : : : � uvk0 <
uvk0+1 � : : : � uvn = uv0 , contradiction.

Comment: Dial (1971) de�nes e�cient links by a similar condition, using minimum
cost rather than maximum contributing cost. Intuitively Dial's condition is more
appealing. Indeed when applied once, the subnetwork of e�cient links is a-cyclic. In
our case restrictions are updated iteratively. E�cient links by current solution link
costs are likely to create cycles with both the contributing and the used subnetworks.

The algorithmic map for a full unrestricted iteration is de�ned as follows:

�#(�) = �#(� : Ap(�)) (2.106)

Theorem 2. If �1 is a feasible solution for TAP, ��k 2 �#
�
�

k
�
and �k+1 =

�
k +��k then every limit point of

�
�

k
	
is a global equilibrium solution of TAP.

The �rst part of this proof is similar to the proof of Theorem 1. The main di�erence is
that in the previous proof it was su�cient to show that the limiting sequence is `well
behaved', while here we must show that from some point onwards every sequence of
consecutive iterations is `well behaved'. This part of the proof becomes somewhat less
cumbersome under the assumption that link costs are strictly positive. A proof under
this assumption is given �rst, followed by a proof for the general case where zero link
costs are allowed. The �rst part of the proof is common to both assumptions.

Proof:
The number of possible restricting subnetworks is �nite, and therefore in any se-
quence of restricting subnetworks there is one subnetwork that appears in�nitely
many times. The feasible set is compact and therefore every sequence has a converging

53

subsequence. Applying these arguments jN j times yields a series of jN j consecutive
subsequences of the form:

� � � �
k0+1 ! �

k0+2 � � � ! �
k0+l � � � ! �

k0+jN j � � �
� � � �

k1+1 ! �
k1+2 � � � ! �

k1+l � � � ! �
k1+jN j � � �

...
...

...
...

� � � �
k+1 ! �

k+2 � � � ! �
k+l � � � ! �

k+jN j � � �
#

�
�1 ! �

�2 � � � ! �
�l � � � ! �

�jN j

(2.107)

such that each subsequence converges, and for every subsequence the restricting sub-
network produced by all solutions is the same. Formally, there exists a subsequence
K such that 8k 2 K, 8l : 1� l�jN j

Ap(�
k+l) = A�l

p (2.108)

�
k+l ! �

�l (2.109)

As a result �k+l+1 � �k+l = ��k+l ! ���l = �
�l+1 � ��l 8l : 1� l < jN j. The

restriction update function A is not a closed map, and therefore A�l
p and Ap(��l) are

not necessarily equal. The algorithmic map of the restricted iteration is closed, and
therefore ���l 2 �#

�
�
�l : A�l

p

�
.

In every iteration the objective function value either decreases or remains the same.
T
�
�

k
�
is therefore a bounded monotonically non-increasing series; hence it converges

to some value T �, in particular T
�
�
�l
�
= T �. To prove that T � is the global unre-

stricted minimum value of the objective function it is su�cient to show that ��jN j

is an equilibrium solution for TAP. Since T
�
�

k
�
! T � for every subsequence K 0,

showing that T � is a global minimum proves that every limit point of
�
�
k
	
is an

equilibrium solution for TAP.

By Lemma 7 T
�
�
�l
�
= T

�
�
�l+1
�
only if �f

�
�
�l;���l

�
= 0 and therefore f

�
�
�l
�
=

f� for every l : 1� l�jN j. Eventually it is shown that these are the equilibrium link
ows, but it is important that we do not make such an assumption during the proof;
therefore, we refer to f� as the limiting link ows. The limiting link costs and cost
derivatives are denoted accordingly by t� = t(f�); t0� = t0(f�).

De�ne the minimum limiting cost

w�
j = min

r2Rpj

cr(t
�) (2.110)

54

consider the subnetwork

A�
p =

�
a 2 A : w�

at + t�a = w�
ah

	
(2.111)

and denote

R�
ij = Rij[A

�
p] (2.112)

R� =
[

i;j2N

R�
ij (2.113)

It follows that these are the sets of minimumcost routes under the limiting conditions,
in particular r 2 R�

pj () cr(t�) = w�
j . SinceA is �nite there exists a strictly positive

value � > 0 such that

8a 2 A nA�
p : w�

at
+ t�a > w�

ah
+ � (2.114)

Since f(�k+l)! f� there exists k0 such that 8k 2 K; k � k0;8l : 1� l�jN j;

8a 2 A :
��fk+la � f�a

�� < �0��
4�jAj�t0max

8r 2 R :
��cr �f ��k+l

��
� cr (f�)

�� < �
4

where t0max = max
�

max
a2A

ft0a(f(�))g.

Assumption A: t > 0 (link costs are strictly positive)

We want to show that every contributing route in �k+jN j for all k 2 K; k > k0 is a
\good" route, in the sense that it is included in A�

p. This does not necessarily mean

that it is a route of minimum cost for the current solution, since t(f(�k+jN j)) and t�

can be slightly di�erent. However, if this is true for all k 2 K; k > k0, it is also true
in the limit. Hence ��jN j is an equilibrium solution for TAP.

For that purpose we are interested to know at every iteration �k+l which are the
\good nodes", i.e. those nodes that all contributing routes to them are \good" routes.
Formally we de�ne

�Nk+l =
�
j 2 N : Rpj[A

c
p(�

k+l)] � R�
pj

	
(2.115)

which is considered the set of temporary \good nodes" since it is possible that nodes
enter and leave this set from one iteration to the next within a speci�c sequence (row).

Comment: suppose k1; k2 2 K; k0 < k1; k1 + jN j < k2. Showing that all contributing
routes are \good" at iteration k1 + jN j does not immediately guarantee anything

55

about iteration k2 + 1, since we do not know anything about the conditions in the
iterations between, except for the fact that the objective function cannot increase.
The only iterations for which we monitor ows and costs are those included in one of
the sequences fk + l : 1 � l � jN jg for some k 2 K; k � k0.

Under assumption A, that link costs are strictly positive, A�
p is a-cyclic and has a

topological order o�. Using this topological order we can de�ne the set

��N
k+l

=
n
j 2 �Nk+l : 8i 2 N ; o�(i) < o�(j)) i 2 �Nk+l

o
(2.116)

which is considered the set of permanent \good nodes", since it will be shown that
��Nk+l �

��Nk+l+1.

Comment: the following parts of the proof are rather intensive in notation. To
help tracking we adopt the following convention, variables with smile above (�i; �r) are

associated with \good" routes, while variables with frown above (̂i; r̂) are associated
with \bad" routes.

We show by induction on l that 8k 2 K; k � k0;
��� ��Nk+l

��� � l, in particular ��Nk+jN j = N .

Hence

Rpj [A
c
p(�

k+jN j)] � R�
pj 8j 2 N ;8k 2 K : k > k0

Rpj[A
c
p(�

�jN j)] � R�
pj 8j 2 N

implying that ��jN j is an equilibrium solution for TAP.

For l = 1, Rpp[A
c
p(�

k)] = R�
pp = [p]. Assume for l,

��� ��Nk+l
��� � l, show for l+1. Suppose��� ��Nk+l+1

��� � l < N , let

j = argmin
n
o�(j0) : j 0 2 N n

��N k+l+1
o

(2.117)

By the choice of j, for every i 2 N : o�(i) < o�(j)) i 2
��Nk+l+1. So o�(j) � 1 =��� ��Nk+l+1

��� � l or o�(j) � l+ 1. We can also conclude that the only possible reason for

56

j not to be a permanent \good node" is that it is not even a temporary \good node",
that is j =2 �Nk+l+1. This means that there exists a \bad" contributing route to j

r̂ = ŝ+ [̂i; j] 2 Rpj[A
c
p(�

k+l+1)] nR�
pj (2.118)

If [̂i; j] 2 A�
p then ŝ =2 R�

p̂i
and since ŝ 2 Rp̂i[A

c
p(�

k+l+1)], therefore î 2 N n ��Nk+l+1; but

[̂i; j] 2 A�
p also implies that o�(i) < o�(j), in contradiction to the choice of j; hence

[̂i; j] =2 A�
p.

Case 1: j 2 ��N k+l

[̂i; j] =2 A�
p) [̂i; j] =2 Ac

p(�
k+l)) �k+l

[̂i;j]
= 0 (2.119)

Let �a = [�i; j] be any contributing approach, i.e. [�i; j] 2 Ac
p(�

k+l). Since j 2
��Nk+l,

every contributing route is a \good route"; hence, for every contributing approach
�[�i;j](�

k+l; t�) = w�
j and �[�i;j](�

k+l; t(�k+l)) < w�
j +

�
4 .

On the other hand, [̂i; j] =2 A�
p; therefore, w

�
î
+ t�

[̂i;j]
> w�

j + � and hence

�[̂i;j](�
k+l; t(�k+l)) > �[̂i;j](�

k+l; t�)�
�

4
� w�

î
+ t�

[̂i;j]
�

�

4
> w�

j +
3�

4
�[̂i;j](�

k+l; t(�k+l)) > �[�i;j](�
k+l; t(�k+l)) (2.120)

Therefore [̂i; j] is not a basic approach; hence ��k+l
[̂i;j]

� 0, and therefore �k+l+1
[̂i;j]

=

0 () [̂i; j] =2 Ac
p(�

k+l+1); but this contradicts the choice of the \bad" route in

(2.118), showing that indeed
��Nk+l �

��N k+l+1 as proposed earlier.

Case 2: j =2 ��N k+l

[̂i; j] =2 A�
p hence w

�
î
+ t�

[̂i;j]
> w�

j + �; therefore

�[̂i;j](�
k+l; t(�k+l)) > �[̂i;j](�

k+l; t�)�
�

4
� w�

î
+ t�

[̂i;j]
�

�

4
> w�

j +
3�

4
(2.121)

In contrast we show that the average cost of the basic approach is not greater than
w�
j +

�
4. A�

p is spanning; hence, there is [�i; j] 2 A�
p, o

�(�i) < o�(j) � l + 1. By

57

the induction assumption
��� ��Nk+l

��� � l, so o�(�i) � l implying that �i 2 ��Nk+l; hence

�[�i;j](�
k+l; t�) = w�

�i
+ t�

[�i;j]
= w�

j .

If u�i(�
k+l; t(�k+l)) < uj(�k+l; t(�k+l)), then the link [�i; j] must be in the restricting

subnetwork A�l
p . Hence the average cost of the basic approach can not be higher than

the average cost of the [�i; j] approach; that is

�bj (�
k+l; t(�k+l)) � �[�i;j](�

k+l; t(�k+l)) < �[�i;j](�
k+l; t�) +

�

4
= w�

j +
�

4
(2.122)

Otherwise u�i(�
k+l; t(�k+l)) � uj(�k+l; t(�k+l)) hence

�bj (�
k+l; t(�k+l)) � uj(�

k+l; t(�k+l)) � u�i(�
k+l; t(�k+l))

< u�i(�
k+l; t�) +

�

4
= w�

�i
+

�

4
� w�

j +
�

4
(2.123)

Let â = [̂i; j]; then

�â(�
k+l; t(�k+l))� �bj (�

k+l; t(�k+l)) >
�

2
(2.124)

zâ!bj(�; t(�
k+l); t0(�k+l)) >

�

2 � jAj � t0max

> 0 (2.125)

where t0max = max
�

max
a2A

ft0a(f(�))g The desirable shift is �rst scaled by the step size,

and then truncated only if non-negativity is about to be violated. �â can remain a
contributing approach only if the scaled desirable shift is applied as is and nothing
is truncated. Since the cost di�erence and the desirable shift are strictly positive,
this can only happen if the amount of ow in the approach is greater than the scaled
desirable shift. In such a case

���k+l
â = �k+l �

zâ!bj (�; t(�
k+l); t0(�k+l))

gj(�k+l+1)
�

�0 � �

2 � jAj � t0max � gj(�
k+l+1)

(2.126)

so the actual shift can not be too small. This shift is aggregated with other shifts;
however, shifts due to other nodes change the ow on â and bj in the same direction,
while the shift due to node j decrease the ow on â and increase the ow on bj. In
other words, if gj(�k+l+1) � gj(�k+l) then

�fâ(�
k+l;��k+l) = ��k+l

â � gj(�
k+l+1) + �k+l

â �
�
gj(�

k+l+1) � gj(�
k+l)

�
� �

�0 � �

2 � jAj � t0max

(2.127)

58

while if gj(�k+l+1) > gj(�k+l) then

�fbj(�
k+l;��k+l) =

X
a2NBj

��k+l
a � gj(�

k+l+1) + �k+l
bj

�
�
gj(�

k+l+1)� gj(�
k+l)

�

� ��k+l
â � gj(�

k+l+1) �
�0 � �

2 � jAj � t0max

(2.128)

Therefore, there is at least one link in which the actual aggregated change of ow
is at least �0��

2�jAj�t0max
in magnitude. On the other hand k0 was chosen so that for all

k 2 K; k � k0; 81 � l � jN j;8a 2 A

j�fa(�
k+l;��k+l)j � jfa(�

k+l)� f�a j+ jfa(�
k+l+1)� f�a j <

�0 � �

2 � jAj � t0max

(2.129)

and this is a contradiction. End of proof (assumption A: t > 0).

Assumption B: t � 0 (allow zero link costs)

As under assumption A, we consider the set of temporary \good nodes"

�Nk+l =
�
j 2 N : Rpj[A

c
p(�

k+l)] � R�
pj

	
(2.130)

In this case, since link costs may be zero, A�
p may contain cycles; hence, we can

not assume that there is a topological order for this subnetwork. This is the main
di�culty in proving the theorem under assumption B.

We show that a set of permanent \good nodes" can be de�ned using the minimum
limiting cost values w� as follows

��Nk+l =
n
j 2 �Nk+l : 8i 2 N ;w�

i < w�
j) i 2 �Nk+l

o
(2.131)

As before, we show by induction on l that 8k 2 K; k � k0;
��� ��Nk+l

��� � l; in particular,

��N jN j = N and hence

Rpj [A
c
p(�

k+jN j)] � R�
pj 8j 2 N ; k 2 K; k > k0

Rpj [A
c
p(�

�jN j)] � R�
pj 8j 2 N

implying that ��jN j is an equilibrium solution for TAP.

59

For l = 1, p 2 ��N k+1. Suppose
��� ��Nk+l

��� � l. First we show that ��Nk+l � ��Nk+l+1, then

we show that ��Nk+l (N) ��Nk+l (��N k+l+1.

Show ��N k+l � ��Nk+l+1. Suppose the opposite and let

J0 = argmin
n
w�
j : j 2

��Nk+l n ��Nk+l+1
o

(2.132)

j = argmin
�
o�l(j0) : j 0 2 J0

	
(2.133)

where o�l is a topological order for the restricting subnetwork A�l
p . Since j 2 J0 �

��Nk+l, for every i 2 N : w�
i < w�

j) i 2
��Nk+l. On the other hand since J0 is

de�ned as the argmin, w�
i < w�

j implies that i =2
��Nk+l n

��Nk+l+1. In conclusion,

i 2 N : w�
i < w�

j) i 2 ��Nk+l+1. Therefore, the only possible reason for j not to
be a permanent \good node" is that it is not even a temporary \good node", that is
j =2 �Nk+l+1. Since j =2 �Nk+l+1, there exists a \bad" contributing route to j

r̂ = ŝ+ [̂i; j] 2 Rpj[A
c
p(�

k+l+1)] nR�
pj (2.134)

Consider two cases, either �k+l
[̂i;j]

> 0 or �k+l
[̂i;j]

= 0.

Case 1: �k+l

[̂i;j]
> 0 () [̂i; j] 2 Ac

p(�
k+l)

Since j 2 ��Nk+l, for every s 2 Rp̂i[A
c
p(�

k+l)], s+[̂i; j] 2 Rpj [Ac
p(�

k+l)] � R�
pj; therefore,

s 2 R�
p̂i
and [̂i; j] 2 A�

p. So Rp̂i[A
c
p(�

k+l)] � R�
p̂i
hence î 2 �Nk+l. [̂i; j] 2 A�

p implies

w�
î
� w�

j . Since w�
î
� w�

j , for every i 2 N such that w�
i < w�

î
then w�

i < w�
j , and

since in addition j 2
��Nk+l we �nd that i 2 �Nk+l. Combining that with the fact that

î 2 �Nk+l we get that î 2
��Nk+l; i.e. î is a permanent \good node".

Now r̂ = ŝ+ [̂i; j] =2 R�
pj, but [̂i; j] 2 A�

p; therefore ŝ =2 R�
p̂i
. Since ŝ 2 Rp̂i[A

c
p(�

k+l+1)]

we obtain that î =2 �Nk+l+1 and in particular î =2
��Nk+l+1. We found that î 2

��N k+l n
��Nk+l+1, and also that w�

î
� w�

j = min
n
w�
j : j 2

��N k+l n
��N k+l+1

o
; therefore, î 2 J0.

Finally, since j = argmin
�
o�l(j0) : j0 2 J0

	
, î 2 J0 implies that o�l(j) < o�l(̂i), but

o�l is a topological order of A�l
p and [̂i; j] 2 Ac

p(�
k+l) � A�l

p , so by the de�nition of

topological order o�l(̂i) < o�l(j), which is a contradiction.

60

The arguments for Case 1 can be summarized as follows:

j 2
��N k+l; [̂i; j] 2 Ac

p(�
k+l)) [̂i; j] 2 A�

p; î 2 �Nk+l (2.135)

[̂i; j] 2 A�
p) w�

î
� w�

j (2.136)

î 2 �Nk+l;w�
î
� w�

j ; j 2
��Nk+l) î 2

��Nk+l (2.137)

r̂ = ŝ+ [̂i; j] =2 R�
pj; [̂i; j] 2 A�

p) ŝ =2 R�
p̂i

(2.138)

ŝ =2 R�
p̂i
; ŝ 2 Rp̂i[A

c
p(�

k+l+1)]) î =2 �Nk+l+1

) î =2
��Nk+l+1 (2.139)

î 2
��N k+l n

��N k+l+1;w�
î
� w�

j) î 2 J0 (2.140)

î 2 J0; j = argmin
�
o�l(j 0) : j0 2 J0

	
) o�l(̂i) > o�l(j) (2.141)

[̂i; j] 2 Ac
p(�

k+l) � A�l
p) o�l(̂i) < o�l(j) (2.142)

and (2.141) contradicts (2.142).

Case 2: �k+l
[̂i;j]

= 0 () [̂i; j] =2 Ac
p(�

k+l)

[̂i; j] was not a contributing approach at iteration k+ l, but it became a contributing

approach at iteration k + l + 1. Therefore, link [̂i; j] is a new link which was added
to the restricting subnetwork at this iteration, meaning that it satis�ed the condition
ui(�k+l; t(�k+l)) < uj(�k+l; t(�k+l)).

For [̂i; j] to be a contributing approach at iteration k+l+1 it must be in the restricting
subnetwork A�l

p , but this is not su�cient. Since �
k+l

[̂i;j]
= 0; �k+l+1

[̂i;j]
> 0) ��k+l

[̂i;j]
> 0;

this can only happen if [̂i; j] is a basic approach at iteration k + l.

Let �a = [�i; j] be any contributing approach, i.e. [�i; j] 2 Ac
p(�

k+l). Since j 2
��Nk+l,

every contributing route is a \good route"; hence, for every contributing approach
�[�i;j](�

k+l; t�) = w�
j . As a basic approach, the average cost of the [̂i; j] approach at

iteration k + l can not be greater than the cost of any other approach. So

w�
î
+ t�

[̂i;j]
� �[̂i;j](�

k+l; t�) � �[̂i;j](�
k+l; t(�k+l)) +

�

4

� �[�i;j](�
k+l; t(�k+l)) +

�

4
� �[�i;j](�

k+l; t�) +
�

2
= w�

j +
�

2
(2.143)

Therefore [̂i; j] 2 A�
p. Now r̂ = ŝ+ [̂i; j] =2 R�

pj, but [̂i; j] 2 A�
p; therefore ŝ =2 R�

p̂i
, Since

ŝ 2 Rp̂i[A
c
p(�

k+l+1)] we obtain that î =2 �Nk+l+1 and in particular î =2 ��N k+l+1.

61

We saw that the link [̂i; j] must be in the restricting subnetwork A�l
p ; therefore, the

topological order of this restricting subnetwork must satisfy o�l(̂i) < o�l(j). The
choice of j as argmin

�
o�l(j0) : j 0 2 J0

	
implies that î =2 J0.

We found that [̂i; j] 2 A�
p; therefore, w

�
î
� w�

j = min
n
w�
j0 : j

0 2
��Nk+l n

��Nk+l+1
o
, and

also that î =2
��Nk+l+1, so the only way that î =2 J0 is if î =2

��Nk+l.

Since j 2
��Nk+l every i 2 N such that w�

i < w�
î
must be a permanent \good node".

In particular, since î is not a permanent \good node" w�
î
� w�

j ; but we saw that
w�
î
� w�

j ; therefore, w
�
î
= w�

j .

Furthermore, the only possible reason for î not to be a permanent \good node" is if it
is not even a temporary \good node"; that is î =2 �Nk+l. This means that there exists
a \bad" contributing route to î

ŝ 2 Rp̂i[A
c
p(�

k+l)] nR�
pj (2.144)

uî(�
k+l; t�) � cs(t

�) > w�
î
+ � (2.145)

Combining that result with the fact that w�
î
= w�

j implies that

uî(�
k+l; t(�k+l)) > uî(�

k+l; t�)�
�

4
> w�

î
+
3�

4
= w�

j +
3�

4
(2.146)

On the other hand j 2
��Nk+l so Rpj[Ac

p(�
k+l] � R�

pj; therefore, uj(�
k+l; t�) = w�

j , so

uj(�
k+l; t(�k+l)) < uj(�

k+l; t�) +
�

4
= w�

j +
�

4
< uî(�

k+l; t(�k+l)) (2.147)

which contradicts the fact that [i; j] is a new link that was added to the restricting
subnetwork by the condition ui(�k+l; t(�k+l)) < uj(�k+l; t(�k+l)).

62

The arguments for Case 2 can be summarized as follows:

�k+l

[̂i;j]
= 0;�k+l+1

[̂i;j]
> 0) ui(�

k+l; t(�k+l)) < uj(�
k+l; t(�k+l)) (2.148)

�k+l

[̂i;j]
= 0;�k+l+1

[̂i;j]
> 0) ��k+l

[̂i;j]
> 0 (2.149)

�k+l+1
[̂i;j]

> 0) o�l(̂i) < o�l(j) (2.150)

j 2
��N k+l) �[�i;j](�

k+l; t�) = w�
j (2.151)

��k+l
[̂i;j]

> 0) �[̂i;j](�
k+l; t(�k+l)) � �[�i;j](�

k+l; t(�k+l)) (2.152)

) [̂i; j] 2 A�
p by (2.143) (2.153)

[̂i; j] 2 A�
p) w�

î
� w�

j ; ŝ =2 R�
p̂i

(2.154)

ŝ =2 R�
p̂i
) î =2 �Nk+l+1) î =2

��N k+l+1 (2.155)

o�l(̂i) < o�l(j)) î =2 J0 (2.156)

+

w�
î
� w�

j ; î =2
��N k+l+1) î =2

��N k+l (2.157)

+

w�
î
� w�

j ; j 2
��N k+l) î =2 �Nk+l;w�

î
= w�

j (2.158)

î =2 �Nk+l) uî(�
k+l; t�) > w�

î
+ � > uj(�

k+l; t(�k+l)) (2.159)

and (2.148) contradicts (2.159). End of proof (Nk+l � Nk+l+1).

It remains to show that if
��Nk+l (N , then

��Nk+l (��N k+l+1.

The main di�culty in this part of the proof is to choose a node that will become
a permanent \good node" in this iteration. Given the lack of a topological order
for the `star' subnetwork A�

p, this is not a trivial task. The topological order of the
current restricting subnetwork is not as helpful as one might expect, since the current
restricting subnetwork does not necessarily allow for an equilibrium solution; in other
words some links may be in the `wrong' direction.

The minimum limiting cost values w� provide the �rst condition for choosing such a
node. In addition we require that there is at least one \good" route to this node in
the restricting subnetwork. Such nodes can be viewed as \mixed" nodes, since they
have some \bad" contributing routes but also some \good" routes available in the re-
stricting subnetwork. We choose that \mixed" node with minimum topological order
according to the current restricting subnetwork. It turns out that every approach to
this node is either completely \good", i.e. consists of \good" routes only, or com-

63

pletely \bad", i.e. consists of \bad" routes only. As a result in a single iteration all
\bad" approaches are evacuated, and the node becomes a permanent \good" node.

We start the procedure of choosing a new \good" node by considering a set of pre-
liminary candidates which is de�ned in a similar way to (2.132)

J0 = argmin
n
w�
j : j 2 N n

��N k+l
o

(2.160)

This set is not empty since
��N k+l (N . De�ne the set of \mixed" candidates by

J1 =
�
j 2 J0 : Rpj[A

�l
p] \R�

pj 6= ;
	

(2.161)

We need to show that this is not an empty set. Consider some j0 2 J0, and a \good"

route �r 2 R�
pj0
. Let i1 be the last node in �r that is included in

��Nk+l, and let j1 be the

following node in �r. j1 =2
��N k+l and w�

j1
� w�

j0
= min

n
w�
j : j 2 N n

��Nk+l
o
; therefore,

j1 2 J0. Furthermore, the only possible reason for j1 not to be a permanent \good
node" is if it is not even a temporary \good node", that is j1 =2 �Nk+l. Consider any
contributing route to i1 at iteration k + l

s 2 Rpi1[A
c
p(�

k+l)] � Rpi1[A
�l
p] \ R�

pi1
(2.162)

�r 2 R�
pj0
; [i1; j1] � �r hence [i1; j1] 2 A�

p, so s+ [i1; j1] 2 R�
pj1
.

i1 2
��Nk+l; therefore, ui1(�

k+l; t�) = w�
i1
and hence ui1(�

k+l; t(�k+l)) < w�
i1
+ �

4 .

j1 =2 �Nk+l; therefore, uj1(�
k+l; t�) > w�

j1
+ � and hence uj1(�

k+l; t(�k+l)) > w�
j1
+ 3�

4 .
In addition, [i1; j1] 2 A�

p therefore w
�
i1
� w�

j1
. In conclusion

ui1(�
k+l; t(�k+l)) < w�

i1
+

�

4
< w�

j1
+
3�

4
< uj1(�

k+l; t(�k+l)) (2.163)

Hence [i1; j1] is in the restricting subnetwork A�l
p , and therefore s+[i1; j1] 2 Rpj1 [A

�l
p].

So j1 is a \mixed" node as we wanted, in other words j1 2 J1 hence J1 6= ;. Since J1
is not an empty set, we can choose

j = argmin
�
o�l(j0) : j 0 2 J1

	
(2.164)

where o�l is a topological order of the restricting subnetwork A�l
p . We know that

j 2 J1 � J0 hence j =2
��Nk+l, i.e. j was not a \good" node in iteration k + l. We

want to show that j 2 ��Nk+l+1, i.e. that j is a permanent \good" node from iteration

64

k+ l+1 untill the end of the sequence. Consider a contributing route to j at iteration
k + l + 1,

r = s+ [i; j] 2 Rpj[A
c
p(�

k+l+1)] (2.165)

If i 2
��Nk+l �

��N k+l+1 and [i; j] 2 A�
p, then s 2 Rpi[Ac

p(�
k+l+1)] � R�

pi; hence,
r = s+ [i; j] 2 R�

pj . Therefore, a contributing route

r̂ = ŝ+ [̂i; j] 2 Rpj[A
c
p(�

k+l+1)] (2.166)

may be \bad" only if either î =2
��N k+l or [̂i; j] =2 A�

p. We show that in both cases
not only the route is \bad", but the entire approach is completely \bad"; i.e. every
contributing route in the [̂i; j] approach is \bad". As a result we show that the [̂i; j]
approach is evacuated in this iteration, i.e. �k+l+1

[̂i;j]
= 0 hence [̂i; j] =2 Ac

p(�
k+l+1) in

contradiction to the choice (2.166).

We next show that �[̂i;j](�
k+l; t�) > w�

j + �.

If [̂i; j] =2 A�
p then �[̂i;j](�

k+l; t�) � w�
î
+ t�

[̂i;j]
> w�

j + �.

If [̂i; j] 2 A�
p and î =2

��Nk+l, then w�
î
� w�

j = min
n
w�
j0 : j

0 2 N n
��Nk+l

o
. Hence î 2 J0,

so î is a preliminary candidate. [̂i; j] 2 Ac
p(�

k+l+1) � A�l
p ; therefore, o

�l(̂i) < o�l(j), so

from the choice of j in (2.164) we learn that î =2 J1; i.e. î is not a \mixed" candidate.
Since î is a preliminary candidate, but not a \mixed" candidate, the [̂i; j] approach
consists of \bad" routes only; formally

î 2 J0; î =2 J1) Rp̂i[A
�l
p] \R�

p̂i
= ; (2.167)

In particular, every contributing route s 2 Rp̂i[A
c
p(�

k+l)] � Rp̂i[A
�l
p] is a \bad" route;

i.e. s =2 R�
p̂i
and hence cs(t

�) > w�
î
+�; a similar result can be obtained for any average

of contributing routes in the approach. Combining this with the assumption that
[̂i; j] 2 A�

p, and hence w�
î
+ t[̂i;j] = w�

j leads to the desired result that �[̂i;j](�
k+l; t�) >

w�
î
+ �+ t[̂i;j] = w�

j + �.

Our conclusion so far is that if r̂ = ŝ + [̂i; j] is a \bad" contributing route, then
�[̂i;j](�

k+l; t�) > w�
j + � and therefore �[̂i;j](�

k+l; t(�k+l)) > w�
j +

3�
4 .

The next step is to show that �bj � w�
j +

�
4. Since j 2 J1 is a \mixed" node, there

exists a route �r = �s+ [�i; j] 2 Rpj[A�l
p]\R

�
pj. [�i; j] is in the restricting subnetwork A�l

p ;

therefore, o�l(�i) < o�l(j), so from the choice of j in (2.164) we learn that �i =2 J1; i.e. �i

65

is not a \mixed" candidate. �s 2 Rp�i[A
�l
p] \ R�

p�i
and hence �i =2 J1 only if �i =2 J0; i.e. �i

is not even a preliminary candidate.

In addition [�i; j] 2 A�
p implies w�

�i
� w�

j = min
n
w�
j0 : j

0 2 N n
��Nk+l

o
; therefore, �i =2 J0

only if �i 2
��Nk+l, and as a result

�[�i;j](�
k+l; t�) = w�

�i
+ t�

[�i;j]
= w�

j (2.168)

�bj (�
k+l; t(�k+l)) � �[�i;j](�

k+l; t(�k+l)) < �[�i;j](�
k+l; t�) +

�

4
= w�

j +
�

4
(2.169)

as proposed. The rest of the proof continues in a similar fashion to the proof under
assumption A. Let â = [̂i; j]; then

�â(�
k+l; t(�k+l))� �bj (�

k+l; t(�k+l)) >
�

2
(2.170)

zâ!bj (�; t(�
k+l); t0(�k+l)) >

�

2 � jAj � t0max

> 0 (2.171)

where t0max = max
�

max
a2A

ft0a(f(�))g

The desirable shift is �rst scaled by the step size, and then truncated only if non-
negativity is about to be violated. �â can remain a contributing approach only if the
scaled desirable shift is applied as is and not truncated. Since the cost di�erence and
the desirable shift are strictly positive, this can only happen if the amount of ow in
the approach is greater than the scaled desirable shift. In such a case

���k+l
â = �k+l �

zâ!bj (�; t(�
k+l); t0(�k+l))

gj(�k+l+1)
�

�0 � �

2 � jAj � t0max � gj(�
k+l+1)

(2.172)

so the actual shift can not be too small.

This shift is aggregated with other shifts; however, shifts due to other nodes change
the ow on â and bj in the same direction, while the shift due to node j decreases the
ow on â and increases the ow on bj. In other words, if gj(�k+l+1) � gj(�k+l) then

�fâ(�
k+l;��k+l) = ��k+l

â � gj(�
k+l+1) + �k+l

â �
�
gj(�

k+l+1) � gj(�
k+l)

�
� �

�0 � �

2 � jAj � t0max

(2.173)

66

while if gj(�k+l+1) > gj(�k+l) then

�fbj(�
k+l;��k+l) =

X
a2NBj

��k+l
a � gj(�

k+l+1) + �k+l
bj

�
�
gj(�

k+l+1)� gj(�
k+l)

�

� ��k+l
â � gj(�

k+l+1) �
�0 � �

2 � jAj � t0max

(2.174)

Therefore, there is at least one link in which the actual aggregated change of ow is
at least �0��

2�jAj�t0max
in magnitude.

On the other hand, k0 was chosen so that 8k 2 K; k � k0; 81 � l � jN j;8a 2 A,

j�fa(�
k+l;��k+l)j � jfa(�

k+l)� f�a j+ jfa(�
k+l+1)� f�a j <

�0 � �

2 � jAj � t0max

(2.175)

and this is a contradiction. End of proof (assumption B: t � 0).

2.9 Multiple origins

The origin-based solution method presented above can be easily extended to the case
of multiple origins. An initial solution is found by assigning all the ows to the routes
of minimum cost under free ow travel conditions, which is known as the all-or-
nothing solution. Given a feasible solution the procedure described above is applied
to each origin separately in a cyclic fashion.

A formal discussion of the multiple origins problem requires the addition of origin in-
dices that were omitted so far. In particular the origin-based link ow vector becomes
a two dimensional array, f = (fap)a2A;p2No. Similarly the origin-based approach pro-
portions array is � = (�ap)a2A;p2No. The de�nition of the algorithmic map �# uses
many components that are origin dependent, including the topological order, average
approach cost and its derivative, maximum contributing cost, and more. The exten-
sion of the method to the multiple origin case relies on the algorithmic map �#p(�),
which is basically de�ned in the same way as �#; that is, �� 2 �#p(�) if and only
if ��p 2 �#(�p); ��p0 = 0 (8p0 6= p) where in �# link costs and their derivatives
are based on total ows, aggregated over all origins, using the given origin-based ap-
proach proportion array. In the complete algorithm, the changes obtained by �#p are
applied to the origins in cyclic order, given by No = fp1; p2; : : : ; png.

67

To prove convergence of this method, consider a sequence �k;i; 0 � i � n, where
�

1;0 is some feasible a-cyclic solution, �k;i = �
k;i�1 + ��k;i; ��k;i 2 �#pi(�k;i�1);

�
k+1;0 = �

k;n. As in the single origin case there exist a subsequence K such that
8k 2 K; 8l : 1� l�jN j;

Api(�
k+l;i�1
pi

) = A�l
pi

81 � i � n (2.176)

�
k+l;i ! �

�l;i 80 � i � n (2.177)

As a result 8l : 1� l< jN j;81� i � n

�
k+l;i ��k+l;i�1 = ��k+l;i ! ���l;i = ��l;i ���l;i�1 (2.178)

���l;i 2 �#pi
�
�
�l;i�1 : A�l

pi

�
(2.179)

The objective function value is a bounded monotonically non-increasing series, and
hence converges to T �; in particular, T

�
�
�l;i
�
= T �. By Lemma 7, T

�
�
�l;i
�
=

T
�
�
�l;i�1

�
only if �f

�
�
�l;i�1;���l;i

�
= 0 and therefore f

�
�
�l;i
�
= f� for 1� l�jN j;

0 � i � n. From here on the same proof as for Theorem 2 can be applied to each
origin separately to show that f� is indeed a user equilibrium solution.

2.10 Algorithm of Gallager and Bertsekas

In the late 1970s and early 1980s, Gallager and Bertsekas developed algorithms for
routing in communication networks. Gallager describes his major interest as \dis-
tributed algorithms for quasi-static routing". These algorithms are therefore prescrip-
tive, rather than descriptive like transportation models. Their goal is to minimize
the expected delay per message on the network; in that sense they seek the system-
optimal solution rather than the user-equilibrium. Despite the di�erent framework,
the mathematical formulation of the routing problem is equivalent to TAP.

Gallager (1977) proposed a destination-based point of view, which is equivalent by
symmetry to our origin-based point of view. For every destination q and every node
i he de�nes routing variables that determine what portion of the node ow from i to
q continues on each of the links that go out from node i. These routing variables are
equivalent to our approach proportions. He requires that the solution described by
these routing variables is spanning and loopfree, i.e. a-cyclic. He derives necessary
and su�cient conditions for optimality similar to section 2.4. In every iteration
Gallager's algorithm \reduces the fraction of tra�c sent on non-optimal links and
increase the fraction on the best link;" in our terminology this is described as a shift
of ow from non-basic to basic approach. The magnitude of the shift in Gallager's
method is determined by the di�erence between average approach costs divided by

68

node ow. This shift is scaled by a predetermined �xed step size, and then truncated if
necessary to maintain feasibility. There is no discussion of the order in which shifts are
computed and aggregated; we may therefore assume that they occur simultaneously.

The most important di�erence between Gallager's algorithm and our algorithm is the
way new links are introduced into the solution. Gallager's condition is based on the
de�nition of improper link. In our terminology an improper link is a contributing
link (positive approach proportion) such that the average cost to its tail is higher
than the average cost to its head, i.e. �at > �ah;�a > 0. In fact since the step
size is predetermined, the shift ��a is known, and hence link a may be considered
as improper only if it remains contributing after the current iteration, that is if
�a � ��a. Cycles are avoided by prohibiting the introduction of any new link if
there is a contributing route to the link tail that contains an improper link. This
condition is quite di�erent from the maximum cost condition described in section 2.8.
The advantages and disadvantages of the two conditions have yet to be studied.

Bertsekas (1979) improved Gallager's algorithm in two aspects. First he used approx-
imations of the second order derivative of the objective function. He argued that the
recursive de�nitions (2.57) provide a lower bound, while replacing them with

��p(�; t
0) = 0 (2.180a)

��j(�; t
0) =

X
a2Ap;ah=j

�2
a � t

0
a +

0
@ X

a2Ap;ah=j

�a �
p
��at(�; t

0)

1
A

2

8j 6= p (2.180b)

��a(�; t
0) = t0a + ��at(�; t

0) (2.180c)

provides an upper bound in the sense that �j �
@2T
@d2j

� ��j.

Bertsekas et al. (1984) proposed an improved upper bound that takes the interaction
between alternative routes into account. For nodes with two approaches only, one
basic and one non-basic, Bertsekas proposed a shift similar to (2.59), except that the
denominator term due to the approximated second order derivative �a+ �b � 2 � �lcnj
is replaced by ��a + ��b. If there are more than two approaches to a single node, he
suggested either to consider each pair separately the way we did, or to determine new
proportions for all approaches to a single node simultaneously by solving a piecewise
linear equation. Comment: the notion of last common node, which we used to improve
the approximation of the second order derivative, does not appear in any of the
reviewed papers (Gallager, 1977; Bertsekas, 1979; Bertsekas et al. 1979; Bertsekas et
al. 1984).

69

The second improvement introduced by Bertsekas is the line search. He proposed
a piece-wise line search similar to our boundary search as described in section 2.7.
He discussed the importance of such search techniques for the elimination of resid-
ual ows, especially on improper links. He also proposed considering step sizes of
�k; k = 0; 1; 2; : : : where � 2 [0:1; 0:5], again similar to our search strategy. The
only di�erence between Bertsekas's search procedure and our search procedure is the
stopping condition. Bertsekas uses an Armijo type condition

T (�k)� T (�k+1) � �rT (�k) ��f (2.181)

where � 2 [0:1; 0:01], while we consider a bisection type condition

rT (�k+1) ��f � 0 (2.182)

To summarize, the main algorithmic concepts used in our method are similar to
the ones used by Gallager and Bertsekas, in particular the origin-based (destination-
based) point of view, the absence of cycles, and the use of approach proportions
(routing variables). The most important di�erence is the way restricting subnetworks
are updated and new links are introduced. Other di�erences include the approxima-
tion of second order derivatives, the consideration of last common nodes, and the line
search stopping condition. The speci�c implementations may also di�er in the data
structure used as well as in other details like the introduction of quick iterations in
which restricting subnetworks are not modi�ed.

70

3. ROUTE FLOW ENTROPY MAXIMIZATION AND BYPASS
PROPORTIONALITY

The previous chapter presented a method for �nding an equilibrium origin-based link
ow solution for the standard (separable) tra�c assignment problem. As mentioned
in section 1.3, this solution is not unique, since by Wardrop's user equilibrium condi-
tion only total link ows are determined uniquely, while origin-based and route-based
solutions are not. The importance of obtaining a realistic route ow pattern is dis-
cussed in section 1.5. In this chapter additional assumptions regarding the route ow
pattern are considered in an attempt to determine which is the most likely one.

Rossi et al. (1989) and several other researchers suggested that the entropy maxi-
mizing route ow solution is the most likely one. We propose an alternative condi-
tion, referred to as the bypass proportionality condition, which is more intuitive and
straightforward. This condition is described in detail in section 3.1, �rst from an
intuitive point of view, and then in a formal mathematical fashion.

As it turns out, the two conditions lead to similar results. In section 3.2 we show
that bypass proportionality is a necessary but not su�cient condition for route ow
entropy maximization under any feasible constraint on total link ows. In particular,
the Maximum Entropy User Equilibrium (MEUE) solution must satisfy the bypass
proportionality condition.

Section 3.3 shows that the bypass proportionality assumption provides a constructive
route ow interpretation for any feasible a-cyclic origin-based link ow array. This
interpretation also maximizes route ow entropy. Therefore, in the context of route
ow interpretations for origin-based solutions the two assumptions are equivalent.
The speci�c route ow interpretation described provides motivation for the de�nitions
in section 2.3. Section 3.4 extends the constructive solution of section 3.3 to the
general case when only total link ows are known.

So far we assumed that link costs are non-negative, but may be zero. It should be
noted that with zero cost links some equilibrium routes may contain cycles, and some
routes may in fact be in�nite. As demonstrated by Akamatsu (1996), the entropy
maximizing solution uses all of these routes, including in�nite routes. To avoid this
unappealing situation, we assume in this chapter that all user equilibrium routes are
simple, i.e. they contain no cycles, either because all link costs are strictly positive,
or because of the special structure of the network.

71

72

3.1 Bypass Proportionality

Consider a segment of a main road route with an alternative bypass. Wardrop's user
equilibrium assumption implies that the proportion of users choosing the bypass is
such that the cost of each alternative is the same. Interpreting that proportion as
the probability that a certain user chooses the bypass, one may ask whether that
probability depends on the trip origin or trip destination. The basic user equilibrium
tra�c assignment model assumes that all users are identical, in the sense that they
all decide in the same way to minimize route cost, which is the same for all users
regardless of their origin and destination. More complex models suggest that route
generalized cost may vary by trip purpose, user group and other attributes, but
typically not by origin and destination. Hence, it seems reasonable to assume that
the probability of choosing the bypass is independent of the origin and the destination.

The same arguments suggest that the probability of choosing the bypass is also inde-
pendent of decisions made prior to the point of diversion, and after the merge point.
The bypass proportionality assumption is that the proportion of users choosing a by-
pass is the same for all origins, destinations, initial routes (the route segment from
the origin to the bypass diverge), and �nal routes (the route segment from the bypass
merge to the destination).

For example, consider the network of Figure 8. In this network the main route
passes through nodes 1, 2, 3, 4, 5, and 6. Suppose that 800 vph use main route
segment 3 ! 4 ! 5, while 200 vph divert to bypass 3 ! 8 ! 5. The bypass
proportionality assumption suggests that in this case every user remains on the main
route with probability 0.8 and chooses the bypass with probability 0.2. In particular
if the demand from origin B to destination D is 200 vph, then 80% of that ow, i.e.
160 vph, chooses main route B! 2 ! 3 ! 4! 5! 6!D, while 20%, i.e. 40 vph,
divert to the bypass and use route B! 2! 3! 8! 5! 6!D.

Similarly, suppose that the demand from origin A to destination C is 350 vph; of
this ow 150 vph begin on initial route A! 7 ! 2 ! 3 from origin A to diverge
node 3. Suppose that out of this ow, 100 vph end their trip on the direct link from
merge node 5 to destination C, while the other 50 vph choose �nal route 5! 6!C.
The bypass proportionality assumption is that the same proportions (80/20) apply
to each of these groups; in particular 80% of the ow in the last group, i.e. 40 vph
follow main route A! 7 ! 2 ! 3 ! 4 ! 5 ! 6 !C, and the remaining 10 vph
choose the bypass and follow route A! 7! 2! 3! 8! 5! 6!C.

The term bypass proportionality stems intuitively from the situation presented above.
In general it may not be possible to distinguish between the \main route" and the

73

Figure 8. Bypass proportionality assumption

\bypass;" therefore a formal discussion must consider any pair of alternative route
segments s; s0 2 Rndnm that begin at some diverge node nd 2 N and end at somemerge
node nm 2 N . To formulate the bypass proportionality condition mathematically
consider two groups of users: one group begins at origin p1, uses an initial route
segment ri1 to the diverge node nd, continues through either alternative segment s or

s0 to the merge node nd, and ends through a �nal route segment rf1 to their destination
q1. The other group begins at origin p2, uses another initial route segment ri2 to the
diverge node nd, chooses between the same alternative segments s and s0, and ends
through a �nal route segment rf2 to their destination q2. Consider the following

route combinations: ri1 + s + rf1 ; r
i
1 + s0 + rf1 ; r

i
2 + s + rf2 ; r

i
2 + s0 + rf2 . The bypass

proportionality assumption suggests that the proportion of users that chooses each
alternative segment is the same in both groups; hence, the ow ratios are equal

h(ri1+s+r
f
1)p1q1

h(ri1+s
0+rf1)p1q1

=
h(ri2+s+r

f
2)p2q2

h(ri2+s
0+rf2)p2q2

(3.1)

Cross multiplying implies that

h(ri1+s+r
f
1)p1q1

� h(ri2+s
0+rf2)p2q2

= h(ri1+s
0+rf1)p1q1

� h(ri2+s+r
f
2)p2q2

(3.2)

Condition (3.1) is probably more intuitive; however, it is only applicable if the de-
nominators are strictly positive, in which case (3.1) and (3.2) are equivalent. In the

74

following de�nition, condition (3.2) is used, since it can be applied to all possible
combinations of zero ows as well.

De�nition: A route ow vector h = (hrpq)p2No;q2Nd(p);r2Rpq
satis�es the (strong) bypass

proportionality condition i� it satis�es condition (3.2) for every diverge node nd 2
N , merge node nm 2 N , pair of alternative route segments s; s0 2 Rndnm, pair of
origins p1; p2 2 No, pair of destinations q1 2 Nd(p1), q2 2 Nd(p2), initial routes

ri1 2 Rp1nd; r
i
2 2 Rp2nd , and �nal routes rf1 2 Rnmq1; r

f
2 2 Rnmq2.

Notice that this de�nition requires that (3.2) holds even if some of the route combi-
nations contain cycles. For the sake of simplicity, in the following ows are explicitly
restricted to simple routes, i.e. to routes that do not contain cycles. In that context
an alternative condition is considered, referred to as the weak bypass proportional-
ity condition which requires that (3.2) holds only if all four route combinations are

simple. That is (ri1+s+r
f
1); (r

i
1+s

0+rf1) 2 Rp1q1, and (r
i
2+s+r

f
2); (r

i
2+s

0+rf2) 2 Rp2q2.

The bypass proportionality assumption corresponds to a behavioral postulate that
actual ows satisfy the bypass proportionality condition.

3.2 Route ow representation for total link ows

Suppose that f� 2 F� is a feasible vector of total link ows. A route ow representation
for f� is a feasible route ow pattern that is consistent with the given total link ows,
that is a vector h such thatX

p2No

X
q2Nd(p)

X
r2Rpq;a�r

hrpq = fa� 8a 2 A (3.3a)

X
r2Rpq

hrpq = dpq 8p 2 No; 8q 2 Nd(p) (3.3b)

hrpq � 0 8p 2 No; 8q 2 Nd(p); 8r 2 Rpq (3.3c)

Notice that constraint (3.3a) on total link ows does not guarantee that the demand
is satis�ed; hence an explicit constraint on the demand (3.3b) is necessary. The fea-
sibility of f� does ensure, by the de�nition of F�, that it has at least one route ow
representation. In general such representation is not likely to be unique, and the
expected question is which is the most likely or most reasonable route ow represen-
tation.

75

One possible criterion is route ow entropy maximization. When applied to the user
equilibrium total link ows, this criterion leads to the MEUE solution mentioned
earlier; however, the results of the following discussion are valid for any feasible total
link ows vector. The route ow entropy maximizing representation of f� is the
optimal route ow solution for:

max E(h) = �
X
p2No

X
q2Nd(p)

X
r2Rpq

hrpq

�
ln

�
hrpq
dpq

�
� 1

�
(3.4a)

subject toX
p2No

X
q2Nd(p)

X
r2Rpq

a�r

hrpq = fa� 8a 2 A (3.4b)

X
r2Rpq

hrpq = dpq 8p 2 No; 8q 2 Nd(p) (3.4c)

hrpq � 0 8p 2 No; 8q 2 Nd(p); 8r 2 Rpq (3.4d)

Comment: we assumed that the sets Nd(p) are such that dpq > 0 for all p 2 No; q 2

Nd(p); hence the division by dpq in the summation above is valid. Let R̂pq denote the
set of routes r 2 Rpq such that there is some feasible solution for (3.4) with hrpq > 0.
Problem (3.4) is therefore equivalent to:

max E(h) = �
X
p2No

X
q2Nd(p)

X
r2R̂pq

hrpq

�
ln

�
hrpq
dpq

�
� 1

�
(3.5a)

subject toX
p2No

X
q2Nd(p)

X
r2R̂pq

a�r

hrpq = fa� 8a 2 A (3.5b)

X
r2R̂pq

hrpq = dpq 8p 2 No; 8q 2 Nd(p) (3.5c)

hrpq � 0 8p 2 No; 8q 2 Nd(p); 8r 2 R̂pq (3.5d)

76

In the optimal solution every route in R̂ =
S

p2No

S
q2Nd(p)

R̂pq must have positive

ow; therefore, the optimal solution of (3.5) is an inner point, at which the objective
function is di�erentiable. The Lagrangian is:

L =�
X
p2No

X
q2Nd(p)

X
r2R̂pq

hrpq

�
ln

�
hrpq
dpq

�
�1

�
�
X
a2A

�a

0
BB@fa� �X

p2No

X
q2Nd(p)

X
r2R̂pq

a�r

hrpq

1
CCA

�
X
p2No

X
q2Nd(p)

pq

0
@dpq � X

r2R̂pq

hrpq

1
A (3.6)

and the inner point optimality conditions are that for every origin p, destination q
and route r 2 R̂pq

@L

@hrpq
= � ln

�
hrpq
dpq

�
+
X
a�r

�a + pq = 0 (3.7)

hrpq = dpq � exp

pq +

X
a�r

�a

!
(3.8)

Using this derivation we can verify that the optimal solution for (3.4) satis�es the weak
bypass proportionality condition. Suppose nd; nm 2 N ; s; s0 2 Rndnm ; p1; p2 2 No;

q1 2 Nd(p1); q2 2 Nd(p2); ri1 2 Rp1nd; r
i
2 2 Rp2nd; r

f
1 2 Rnmq1; r

f
2 2 Rnmq2 . If all four

route combinations can have positive ow, i.e. (ri1 + s + rf1); (r
i
1 + s0 + rf1) 2 R̂p1q1

(ri2 + s + rf2); (r
i
2 + s0 + rf2) 2 R̂p2q2, we can substitute (3.8) in (3.2), denote wr =

exp
�P

a�r �a
�
and obtainh

dp1q1 � exp (p1q1) �wri1
� ws � wrf1

i
�
h
dp2q2 � exp (p2q2) � wri2

�ws0 � wrf2

i
=h

dp1q1 � exp (p1q1) � wri1
� ws0 � wrf1

i
�
h
dp2q2 � exp (p2q2) � wri2

� ws � wrf2

i
(3.9)

which is clearly true.

Suppose w.l.o.g. that (ri1 + s + rf1) =2 R̂p1q1 and hence hri1+s+r
f
1 ;p1q1

= 0. If the right

hand side of (3.2) is not zero, then there is � > 0 such that h(ri1+s
0+rf1)p1q1

> � > 0 and

h(ri2+s+r
f
2)p2q2

> � > 0. If all four route combinations are simple, we can shift � ow

from (ri1 + s0 + rf1) to (ri1 + s + rf1) and from (ri2 + s + rf2) to (ri2 + s0 + rf2) and get

77

a) Bypass proportionality holds b) Maximum route ow entropy

Figure 9. Bypass proportionality vs. entropy maximization

another feasible solution where h(ri1+s+r
f
1)p1q1

= � > 0; hence (ri1+s+rf1 ; p1q1) 2 R̂p1q1,

contradiction.

We showed that the route ow entropy maximizing representation for any feasible
total link ows constraint satis�es the weak bypass proportionality condition. In par-
ticular, the solution to MEUE, which is de�ned by maximizing route ow entropy
under the user equilibrium total link ows, must satisfy the weak bypass proportion-
ality condition.

Our conjecture is that if ows are not explicitly restricted to simple routes, the route
ow entropy maximizing representation satis�es the strong bypass proportionality
condition. In the case of user equilibrium, the restriction to simple routes is done im-
plicitly; i.e. routes that contain cycles are not equilibrium routes, either because link
costs are strictly positive, or because of the special structure of the network. Therefore
the MEUE solution also satis�es the strong bypass proportionality condition.

The next question is whether satisfying bypass proportionality is su�cient for en-
tropy maximization. To answer this question consider the networks in Figure 9, with
diagonal O-D ows, d1;3 = d3;1 = d2;4 = d4;2 =10 vph, and zero ow for all other O-D
pairs. The total ow on each link in both �gures is 10 vph; therefore, both are feasible
solutions for the same route ow representation problem. In Figure 9a all ows from
1 to 3 and from 3 to 1 use the counter-clockwise links, while ows from 2 to 4 and
from 4 to 2 use the clockwise links. In Figure 9b ows between each O-D pair are
evenly distributed, half going clockwise, and half going counter-clockwise. One can

78

verify that the route ows representation in both networks satisfy the bypass propor-
tionality condition; however, route ow entropy is maximized only by the route ow
representation of Figure 9b. From this example we learn that bypass proportionality
is only a necessary, but not a su�cient condition for entropy maximization.

3.3 Route ow interpretation for origin-based link ows

In the previous section, entropy maximization and bypass proportionality were con-
sidered in determining the most likely route ow representation for a given total link
ow pattern. In this section similar criteria are considered when route ows are fur-
ther restricted by a speci�c origin-based link ow array, f = (fap). One reason to
consider this question is when origin-based solution methods are used to �nd the
entropy maximizing user equilibrium assignment; however, such methods have not
yet been proposed. In chapter 2 an origin-based method to solve the basic user equi-
librium tra�c assignment problem was presented. During the iterative process this
method produces feasible a-cyclic origin-based solutions that converge to a user equi-
librium solution. Even though these solutions are not necessarily in agreement with
the entropy maximizing route ow representation for the same total link ows, route
ow interpretations for them are helpful in understanding the origin-based solutions,
and useful for evaluation purposes. Therefore, in this section we use the two criteria,
entropy maximization and bypass proportionality, to determine the most likely route
ow interpretation for a general feasible a-cyclic origin-based link ow array.

Given a feasible a-cyclic origin-based link ow array, f = (fap), a route ow interpreta-
tion is a non-negative vector of route ows h that satis�es

P
q2Nd(p)

P
r2Rpq;a�r

hrpq = fap

for every origin p 2 No and every link a 2 A. Notice that in the case of origin-
based solutions the feasibility of f is su�cient to ensure the feasibility of every route
ow interpretation, without adding the O-D ow constraints explicitly. This was not
the case in the previous section, where satisfying total link ow constraints was not
su�cient and explicit O-D ow constraints were needed.

As before, we denote the used subnetwork for origin p by Au
p = fa 2 A : fap > 0g �

A, and the set of route segments from node i to node j that are included in this
subnetwork by Rij[Au

p] =
�
r 2 Rij : a � r) a 2 Au

p

	
. By assuming that f is a-cyclic

we mean that each of the used subnetworks Au
p is a-cyclic. Since used subnetworks

are a-cyclic, every route segment included in them is simple, and every combination
of such route segments is also simple. Therefore in this section, the earlier distinction
between strong and weak bypass proportionality is irrelevant.

79

The entropy maximizing interpretation is the optimal solution for:

max E(h) = �
X
p2No

X
q2Nd(p)

X
r2Rpq

hrpq �

�
ln

�
hrpq
dpq

�
� 1

�
(3.10a)

subject toX
q2Nd(p)

X
r2Rpq

a�r

hrpq = fap 8p 2 No; 8a 2 A (3.10b)

hrpq � 0 8p 2 No; 8q 2 Nd(p); 8r 2 Rpq (3.10c)

In every interpretation of f , a route r can carry a positive ow only if it is included
in the used subnetwork, i.e. hrpq > 0) r 2 Rpq[Au

p]. Therefore, problem (3.10) can
be rewritten as:

max E(h) = �
X
p2No

X
q2Nd(p)

X
r2Rpq[Au

p]

hrpq �

�
ln

�
hrpq
dpq

�
� 1

�
(3.11a)

subject toX
q2Nd(p)

X
r2Rpq[Au

p]
a�r

hrpq = fap 8p 2 No; 8a 2 A (3.11b)

hrpq � 0 8p 2 No; 8q 2 Nd(p); 8r 2 Rpq[A
u
p] (3.11c)

The Lagrangian is:

L =�
X
p2No

X
q2Nd(p)

X
r2Rpq[Au

p]

hrpq

�
ln

�
hrpq
dpq

�
� 1

�

�
X
p2No

X
a2Au

p

�ap

0
BB@fap � X

q2Nd(p)

X
r2Rpq[Au

p]
a�r

hrpq

1
CCA (3.12)

80

and the inner point optimality conditions are that for every origin p, destination q
and route r 2 Rpq[Au

p]

@L

@hrpq
= � ln

�
hrpq
dpq

�
+
X
a�r

�ap = 0 (3.13)

hrpq = dpq � exp

 X
a�r

�ap

!
(3.14)

Notice that (3.14) is very similar to (3.8), except that the Lagrange multipliers related
to the links are origin-dependent, and the O-D Lagrange multiplier is omitted. As in
the previous section, this derivation allows us to examine the bypass proportionality
condition for the optimal solution of (3.10). If all four route combinations are included

in the used subnetworks, i.e. (ri1+s+r
f
1); (r

i
1+s

0+rf1) 2 Rp1q1[A
u
p1
]; (ri2+s+r

f
2); (r

i
2+

s0 + rf2) 2 Rp2q2[A
u
p2
], we can substitute (3.14) in (3.2) to obtainh

dp1q1 � wri1p1
� wsp1 � wrf1 p1

i
�
h
dp2q2 � wri2p2

� ws0p2 � wrf2 p2

i
=h

dp1q1 � wri1p1
� ws0p1 � wrf1p1

i
�
h
dp2q2 � wri2p2

� wsp2 � wrf2p2

i
(3.15)

where wrp = exp
�P

a�r �ap
�
. Equation (3.15) holds if

wsp1 � ws0p2 = ws0p1 � wsp2 (3.16)

This equation is certainly true if p1 = p2; however, in general it may not hold.

It is also necessary to check the bypass proportionality condition if one of the four
route combinations is not included in the used subnetwork. Suppose w.l.o.g. that
(ri1+ s+ rf1) =2 Rp1q1[A

u
p1
], and therefore either ri1 =2 Rp1nd [A

u
p1
], or rf1 =2 Rnmq1[A

u
p1
], or

s =2 Rndnm [A
u
p1
]. In any case, hri1+s+r

f
1 ;p1q1

= 0. In the �rst two cases, (ri1 + s0 + rf1) is

also not in Rp1q1[A
u
p1
], and condition (3.2) holds. However, in the last case, the fact

that s =2 Rndnm[A
u
p1
] does not necessarily imply that s =2 Rndnm [A

u
p2
], unless p1 and p2

are the same origin.

In conclusion, solution (3.14) satis�es condition (3.2) for groups of users that start
from the same origin. One should note that bypass proportions in a general feasible
origin-based link ow array may be di�erent from one origin to the other, in which
case there is no route ow interpretation that satis�es the global bypass proportion-
ality condition, as de�ned in section 3.1. Therefore a weaker condition should be
considered, that equation (3.2) holds when the two groups of users have the same
origin, i.e. p1 = p2. This is referred to as the origin-based bypass proportionality

81

condition. As shown above, the entropy maximizing route ow interpretation (3.14)
does satisfy the origin-based bypass proportionality condition.

In section 3.2, when only total link ows were given, we found that there may be
more than one route ow representation that satis�es the bypass proportionality
condition. In the following we show that when the more detailed origin-based link
ows are given, there is only one route ow interpretation that satis�es the origin-
based bypass proportionality condition. As is shown, this interpretation also satis�es
the inner point optimality conditions of the entropy maximization problem, thus
demonstrating that the two conditions are equivalent.

The following derivation uses an additional de�nition for aggregating route ows. The
O-D segment ow gspq is the aggregation of all ows from origin p to destination q
that share a speci�c route segment s. The route segment s does not have to start at
the origin p or end at the destination q. It can be part of a route, or possibly part of
several di�erent routes from p to q. It is de�ned mathematically as the sum over all
routes r 2 Rpq such that the route segment s is part of the route r, that is:

gspq =
X

r2Rpq;s�r

hrpq (3.17)

Recall that the origin-based node ow from origin p to node j, gj;p is the aggregation
of all the ows that originate at p and arrive at j, either on their way to another
destination, or to stop at j, if it is the destination. It was shown in (2.15) that
gjp =

P
[i;j]2A f[i;j]p. When the node ow is strictly positive, the proportion of ow

that arrives to j from a speci�c approach [i; j] 2 A is denoted by

�[i;j]p =
f[i;j]p

gjp
(3.18)

For a given origin p and link a = [i; j] 2 Au
p consider a route segment s1+[i; j] for some

s1 2 Rpi[Au
p], an alternative route segment s2 2 Rpj[Au

p], destinations q; q
0 2 Nd(p)

and �nal routes r 2 Rjq[Au
p]; r

0 2 Rjq0 [Au
p]. The origin-based bypass proportionality

assumption (with empty initial routes ri = r0i = [p]) implies that:

hs1+[i;j]+rpq � hs2+r0;pq0 = hs2+rpq � hs1+[i;j]+r0;pq0 (3.19)

82

Notice that: X
s12Rpi[Au

p]

hs1+[i;j]+rpq = g[i;j]+rpq (3.20)

X
s22Rpj[Au

p]

X
q02Nd(p)

X
r02Rjq0 [A

u
p]

hs2+r0;pq0 = gjp (3.21)

X
s22Rpj [Au

p]

hs2+rpq = grpq (3.22)

X
s12Rpi[Au

p]

X
q02Nd(p)

X
r02Rjq0 [A

u
p]

h(s1+[i;j]+r0)pq0 = f[i;j]p (3.23)

Summing (3.19) over all possible s1, s2, q0, r0 and using (3.20), (3.21), (3.22), and
(3.23) we obtain

g([i;j]+r)pq � gjp = grpq � f[i;j]p (3.24)

Since [i; j] 2 Au
p, f[i;j]p > 0, hence gjp > 0; therefore, we can rewrite (3.24) as

g([i;j]+r)pq = �[i;j]p � grpq (3.25)

which may be interpreted as an approach proportionality condition. Since Au
p is a-

cyclic, if r 2 Rpq[Au
p] then there can not be a longer route r0 2 Rpq[Au

p] that contains
r; therefore the route ow and the O-D segment ow are equal, hrpq = grpq. By a
similar argument g[q]pq = dpq, and hence for any route r 2 Rpq[Au

p]

hrpq = grpq = g[q]pq �
Y
a�r

�ap = dpq �
Y
a�r

�ap (3.26)

The route ow interpretation given by (3.26) satis�es the inner point optimality
conditions for the entropy maximization problem with Lagrange multipliers �ap =
ln(�ap). In conclusion, when a feasible a-cyclic origin-based link ow array is given,
route ow entropy maximization, the origin-based bypass proportionality condition
and the approach proportionality condition are equivalent.

We can therefore view the route ows resulting from (3.26) as a function of the origin-
based link ows h(f). Notice that approach proportions are immediately available
for any feasible origin-based link ow array. (At nodes with zero origin-based ow,
approach proportions can be chosen arbitrarily.) The main e�ort in obtaining the
route ow interpretation by (3.26) is to enumerate all used routes. In some cases route

83

enumeration may be avoided; for example, as demonstrated by Akamatsu (1997), the
expression for route ow entropy can be decomposed as follows,

E(f) = E(h(f)) = �
X
p2No

X
q2Nd(p)

X
r2Rpq[Au

p]

hrpq � ln

�
hrpq
dpq

�

= �
X
p2No

X
q2Nd(p)

X
r2Rpq[Au

p]

hrpq � ln

 Y
a�r

�ap

!

= �
X
p2No

X
q2Nd(p)

X
r2Rpq[Au

p]

X
a�r

hrpq � ln (�ap)

= �
X
p2No

X
a2A

ln (�ap) �

2
4 X
q2Nd(p)

X
r2Rpq[Au

p];a�r

hrpq

3
5

= �
X
p2No

X
a2A

ln (�ap) � fap

= �
X
p2No

X
a2A

ln

�
fap
gahp

�
� fap

= �
X
p2No

X
a2A

(ln (fap)� ln (gahp)) � fap

= �
X
p2No

X
a2A

ln (fap) � fap +
X
p2No

X
j2N

ln (gjp) �
X

a2A;ah=j

fap

= �
X
p2No

X
a2A

ln (fap) � fap +
X
p2No

X
j2N

ln (gjp) � gjp (3.27)

Akamatsu considers the �rst term as the link entropy

Elink(f) = �
X
p2No

X
a2A

ln (fap) � fap (3.28)

and the second term as the node entropy

Enode(f) = �
X
p2No

X
j2N

ln (gjp) � gjp (3.29)

Hence by this derivation, the overall entropy is the di�erence between the link entropy
and the node entropy.

E(f) = Elink(f)� Enode(f) (3.30)

84

The computation of route ow entropy by the last expression does not require route
enumeration, and can be done substantially faster than computing entropy using
route ows directly.

Practitioners are often interested in route-based solutions as they provide detail that
is not available by link-based solutions. As discussed in section 1.5, such detail is
important in several applications, impact fee assessment, certain emission estimation
procedures, \window" models, and more. Using the approach proportionality condi-
tion (3.25) and the related route ow interpretation (3.26), the detail provided by an
origin-based solution is practically equivalent to route-based solutions.

3.4 Extended approach proportionality

In section 3.3 the origin-based bypass proportionality assumption was used to derive
the approach proportionality condition (3.25), which provided a constructive solution
for the entropy maximizing route ow interpretation problem. In this section we
examine the possibility to extend this result for solving (3.4) when only total link
ows are given, using the strong bypass proportionality assumption. In particular
we are looking for situations where the approach proportions are expected to be
equal across origins, that is �ap1 = �ap2 for some link a = [i; j] and some origins
p1 and p2. It is quite unlikely to expect the approach proportions to be equal for
all origins; however, if the routes from two origins arrive at the termination node
j from the same direction, such equality may hold. For example in Figure 10a the
approach proportions of links [6,8] and [7,8] are the same for both origins 1 and 2. (All
routes carry the same ow.) On the other hand in Figure 10b when additional routes
are considered, these approach proportions di�er by origin, even though the bypass
proportionality assumption still holds. (Again all routes carry the same ow.) The
general direction from the origins to the termination node is therefore not su�cient
condition for equal approach proportions, and the speci�c structure of used routes
must be considered.

To analyze the di�erence between the two cases, recall the following de�nitions.
Origin-based segment ow gsp� is the aggregation of O-D segment ows over all des-
tinations, that is:

gsp� =
X

q2Nd(p)

gspq =
X

q2Nd(p)

X
r2Rpq;s�r

hrpq (3.31)

85

a) Equal approach proportions b) Di�erent approach proportions
and same last common node and di�erent last common node

Figure 10. Extended approach proportionality

A common node from origin p to node j is a node that is common to all used route
segments from p to j. The set of common nodes from p to j is

COMpj =
\

s2Rpj[Au
p]

s (3.32)

This de�nition is slightly di�erent from the one used in chapter 2 as it is based on the
used subnetwork, which is not necessarily spanning. As a result the above de�nition
of common node is valid only for used nodes, that is nodes such that there is at least
one used route segment from the origin to them.

In Figure 10a, node 4 is a common node from origin 1 to node 8; the same node is
also a common node from origin 2 to node 8. In Figure 10b the only common nodes
from origin 1 to node 8 is the origin - node 1, and the node 8 itself. Similarly, the only
common nodes from origin 2 to node 8 is the origin - node 2, and the node 8 itself.
The only node that is common to node 8 for both origins is the node 8 itself. The
following lemma suggests that this is the essential criterion for approach proportions
to be equal.

Lemma 9. If h is a feasible route ow vector that satis�es the strong bypass pro-
portionality condition, and if for some node j 2 N which is used by two origins
p1; p2 2 No, there is a node n 6= j which is a common node from p1 to j and also from

86

p2 to j, then the proportion of every approach to j is the same for both origins. That
is:

fjg (COMp1j \ COMp2j) �[i;j]p1 = �[i;j]p2 8[i; j] 2 A (3.33)

Proof:
Let n 2 COMp1j \ COMp2j;n 6= j. Consider a speci�c approach [i; j] 2 A. For any
route segments s 2 Rni, and s0 2 Rnj, destinations q1 2 Nd(p1), q2 2 Nd(p2) initial

routes ri1 2 Rp1n; r
i
2 2 Rp2n, and �nal routes rf1 2 Rjq1; r

f
2 2 Rjq2 , the strong bypass

proportionality condition states that:

h(ri1+s+[i;j]+rf1)p1q1
� h(ri2+s

0+rf1)p2q2
= h(ri1+s

0+rf1)p1q1
� h(ri2+s+[i;j]+rf2)p2q2

(3.34)

Sum over all possible s, s0, q1, q2, ri1, r
f
1 , r

i
2, r

f
2 and note that:X

q12Nd(p)

X
ri12Rp1n

X
s2Rni

X
rf12Rjq1

h(ri1+s+[i;j]+rf1)p1q1
= f[i;j]p1

X
q22Nd(p)

X
ri22Rp2n

X
s02Rnj

X
r
f
22Rjq2

h(ri2+s
0+rf1)p2q2

= gjp2

X
q12Nd(p)

X
ri12Rp1n

X
s02Rnj

X
rf12Rjq1

h(ri1+s
0+rf1)p1q1

= gjp1

X
q22Nd(p)

X
ri22Rp2n

X
s2Rni

X
rf22Rjq2

h(ri2+s+[i;j]+rf2)p2q2
= f[i;j]p2

to obtain

f[i;j]p1 � gjp2 = gjp1 � f[i;j]p2 (3.35)

Node j is used by both origins, hence gjp1 > 0 and gjp2 > 0, and therefore

�[i;j]p1 =
f[i;j]p1
gj;p1

=
f[i;j]p2
gj;p2

= �[i;j]p2 (3.36)

The condition in (3.33) is fairly general, but it may not be so easy to verify. When
all used routes from each origin are included in some a-cyclic subnetwork, an al-
ternative condition can be derived, which is easier to verify. For every such a-
cyclic subnetwork Au

p, a topological order can be de�ned, i.e. a one-to-one function
op : N ! f1; 2; 3 : : : jN jg such that [i; j] 2 Au

p) op(i) < op(j). The last common

87

node, lcnpj from origin p to node j is de�ned as the common node l with highest value
of op(l), except for j. If the last common node to j is the same for two origins, the
condition in (3.33) is satis�ed and approach proportions must be equal. The following
lemma shows that it is su�cient to compare only the last common nodes.

Lemma 10. If h is a feasible route ow vector that satis�es the strong bypass propor-
tionality condition, where the ows from each origin p are restricted to some a-cyclic
subnetwork Au

p, and if for some node j 2 N and two origins p1; p2 2 No, there is a
node n 6= j which is a common node from p1 to j and also from p2 to j, then the last
common node to j is the same for both origins. That is:

fjg (COMp1j \ COMp2j) lcnp1j = lcnp2j (3.37)

Proof:
Denote l1 = lcnp1j; l2 = lcnp2j . Suppose n 2 COMp1j \COMp2j;n 6= j. By de�nition
there is a destination q1 2 Nd(p1) and route segments ri1 2 Rp1n

�
Au
p1

�
, s1 2 Rnj

�
Au
p1

�
,

and rf1 2 Rjq1

�
Au
p1

�
such that h(ri1+s1+r

f
1)p1q1

> 0. Every used route segment from p2

to j is of the form (ri2 + s2), where ri2 2 Rp2n

�
Au
p2

�
, and s2 2 Rnj

�
Au
p2

�
. Again by

de�nition there is a destination q2 2 Nd(p2) and route segments rf2 2 Rjq2

�
Au
p2

�
such

that h(ri2+s2+r
f
2)p2q2

> 0. The bypass proportionality assumption states that

h
(ri1+s1+r

f
1)p1q1

� h
(ri2+s2+r

f
2)p2q2

= h
(ri1+s2+r

f
1)p1q1

� h
(ri2+s1+r

f
2)p2q2

(3.38)

which implies that h(ri1+s2+r
f
1)p1q1

> 0; hence (ri1 + s2) is a used route segment from

p1 to j, and therefore l1 2 (ri1 + s2). Using the topological order op1(l1) � op1(n);
hence l1 2 s2, i.e. l1 is common to all used route segments from p2 to j, and if l1 6= n
then in each of these segments l1 comes after n. Applying the same argument in the
opposite direction where l1 replaces n and l2 replaces l1 shows that l2 is common to
all used route segments from p1 to j, and if l1 6= l2 then in each of these segments
l2 comes after l1. But this is a contradiction to the choice of l1 as the last common
node from p1 to j. Therefore l1 = l2.

The conclusion from this section is that if ows from each origin are restricted to
a-cyclic subnetworks, then strong bypass proportionality implies that

lcnp1j = lcnp2j) �[i;j]p1 = �[i;j]p2 8p1; p2 2 No;8[i; j] 2 A (3.39)

which we refer to as the extended approach proportionality condition.

The origin-based method described in chapter 2 uses a-cyclic restricting subnetworks,
hence the de�nition of last common node is valid for the resulting solution. In fact,
the current implementation �nds the last common nodes in the approximation of the

88

objective function second order derivative (see section 2.5). This method therefore
provides a good starting point for embedding the extended approach proportionality
condition, so that whenever last common nodes are the same, approach proportions
are equal. The resulting solution is closer to satisfying the bypass proportionality
assumption and to maximizing route ow entropy. Additional research in that direc-
tion can hopefully lead to an origin-based solution method for �nding the entropy
maximizing user equilibrium route ows.

4. EXPERIMENTAL RESULTS

This chapter presents experimental results for three networks, Sioux-Falls (LeBlanc
et al. 1975, where O-D ows are divided by 10 to reproduce results in previous
literature), a sketch (aggregate) network for the Chicago region for the year 1990,
and the fully detailed regional network of Chicago also for the year 1990. Basic
characteristics of the three networks are presented in Table I.

The cost of travel in the Sioux-Falls network consists of travel time only, measured
originally in hours and here in minutes. The cost of travel in the two networks
of Chicago is a generalized cost, which is a linear combination of travel time, tolls
(cents), and distance (miles), converted to minute equivalents. Conversion coe�cients
are given in Table II. Network and trip generation data for the Chicago networks was
kindly provided by the Chicago Area Transportation Study (CATS). Cost conversion
coe�cients and the trip matrix were prepared by the UIC Transportation Laboratory
as a part of another project.

The basic �xed demand static tra�c assignment problem for each network was solved
by the origin-based method described in chapter 2 as well as by the state-of-the-
practice method of Frank and Wolfe. The Frank-Wolfe method used the L-deque
minimum cost routes algorithm of Pape (1974), considered by Pallottino and Scutella
(1998) to be one of the best choices for transportation networks at the current state-
of-the-art. All experiments were conducted with double precision arithmetic on a
SUN Ultra 10, 333 MHz, 576 MB RAM, using the Solaris v2.6 operating system. All
coding was done in C.

Comparison of the convergence performance of the two methods is given in section
4.1. Analysis of equilibrium solutions and their characteristics is given in section 4.2,

Network Sioux Falls Chicago sketch Chicago regional
Zones (origins) 24 387 1,790
Nodes 24 933 12,982
Links 76 2,950 39,018
O-D pairs 528 93,513 2,297,945

TABLE I: NETWORK CHARACTERISTICS

89

90

Network Chicago sketch Chicago regional
Tolls (minutes/cent) 0.02 0.1
Distance (minutes/mile) 0.04 0.25

TABLE II: COST CONVERSION COEFFICIENTS

followed by a discussion of the resulting memory requirements in section 4.3. A more
detailed description of the progress of the two methods is given in section 4.4.

4.1 Convergence performance

Convergence performance is one of the main, if not the most important criteria in
comparing solution methods. The �rst question in conducting such comparison is
which convergence measure to use. Denoting the minimum O-D cost by:

Cpq = minfcr : r 2 Rpqg (4.1)

we can de�ne the route excess cost ecr as the di�erence between the route cost and
the minimum O-D cost, that is:

ecr = cr �Cpq 8r 2 Rpq (4.2)

Clearly, at equilibrium the excess cost on all used routes must be zero. Excess cost on
used routes is therefore a basic measure of the violation of Wardrop's user equilibrium
principle.

The main global (aggregate) measure of convergence used here is the average excess
cost, weighted by route ow over all used routes of all O-D pairs,

AEC =
�
1=d̂
�
�
X

p2No

X
q2Nd(p)

X
r2Rpq

ecr � hrpq (4.3)

where d̂ was de�ned as the total O-D ow (demand). Average excess cost is equivalent
to the di�erence between the objective function and the lower bound obtained from
the solution to the linearized subproblem, divided by the total ow. This is a common
measure that can be calculated using link-based, origin-based or route-based solutions.
It is also common to consider the relative gap, which is the di�erence between the
current solution objective function and the best lower bound obtained so far, divided
by the absolute value of the best lower bound.

91

Another possible measure of convergence is the maximum excess cost over all used
routes of all O-D pairs,

MEC = maxfecr : r 2 R; hrpq > 0g (4.4)

Maximum excess cost is a sensitive and e�ective measure for solution accuracy; how-
ever, it requires a detailed solution, origin-based or route-based, and cannot be cal-
culated from a link-based solution.

In di�erent applications di�erent convergence measures may be preferred, as well
as di�erent convergence criteria. A method that is more e�ective in achieving high
accuracy levels, may be less e�ective in achieving low accuracy levels. It is therefore
important to consider the entire convergence process as a function of computation
time.

Figures 11, 15 and 19 show relative gap results for the three networks. Equivalent
average excess cost results are shown in Figures 12, 16 and 20, together with maxi-
mum excess cost results. Every point in these �gures represent one iteration, either
full or quick in the case of the origin-based method. All of these �gures show the
clear advantage of the origin-based solution method over the Frank-Wolfe method,
especially in achieving highly accurate solutions, as much as a relative gap of 1.0E-
14 and an average excess cost of 1.0E-12 to 1.0E-15. Indeed, some of these results
are possibly a�ected by the machine precision of approximately 2.6E-16. In fact ad-
ditional iterations exhibit instability, probably due to truncation errors. The main
purpose of solving the problem to such high accuracy is to examine the behavior of
the method, which we found to be quite pleasing. It is also pleasing to see that the
maximum excess cost in all three networks is in the range of 1.0E-9 to 1.0E-12. This
means for example that in the solution found for the Chicago regional network the
cost of any used route is not greater than the cost of any alternative route by more
than 1.0E-9 minute equivalents, which is clearly far below the sensitivity of the most
cautious traveler. The low values of maximum excess cost indicate that the origin-
based method is rather e�cient in eliminating residual ows, demonstrating that the
boundary search described in section 2.7 works well.

Additional comparisons of the convergence performance of the two methods and the
computational e�ort to achieve them are given in Tables III and IV. Again we can
see the clear advantage of the origin-based method. In the same time required by
the origin-based method to achieve machine accurate solutions with average excess
costs of about 1.0E-13, the Frank-Wolfe method yields substantially less accurate
solutions with average excess costs of about 1.0E-3. Equilibrium average route cost
for each network are given as a reference for the average excess cost results reported.
Using the Frank-Wolfe method for a substantially longer time provides only a limited
improvement, leading to average excess cost in the range of 1.0E-3 to 1.0E-5.

92

Chicago regional network

Figure 11. Relative gap vs. CPU time for the Chicago regional network

Figure 12. Excess cost vs. CPU time for the Chicago regional network

93

Chicago regional network

Figure 13. Detail of relative gap vs. CPU time for the Chicago regional network

Figure 14. Detail of excess cost vs. CPU time for the Chicago regional network

94

Chicago sketch network

Figure 15. Relative gap vs. CPU time for the Chicago sketch network

Figure 16. Excess cost vs. CPU time for the Chicago sketch network

95

Chicago sketch network

Figure 17. Detail of relative gap vs. CPU time for the Chicago sketch network

Figure 18. Detail of excess cost vs. CPU time for the Chicago sketch network

96

Sioux-Falls network

Figure 19. Relative gap vs. CPU time for the Sioux-Falls network

Figure 20. Excess cost vs. CPU time for the Sioux-Falls network

97

Sioux-Falls network

Figure 21. Detail of relative gap vs. CPU time for the Sioux-Falls network

Figure 22. Detail of excess cost vs. CPU time for the Sioux-Falls network

98

Network Sioux Falls Chicago sketch Chicago regional
CPU time 5 seconds 20 minutes 80 hours
FRANK-WOLFE
Iterations 1095 806 1,961
Relative gap 2.23E-04 3.03E-04 5.20E-05
Average excess cost 2.07E-03 5.40E-03 1.18E-03
ORIGIN-BASED
Iterations (full+quick) 985 1380 3277
Restriction updates 50 39 33
Relative gap 1.16E-14 3.29E-14 1.12E-14
Average excess cost 8.50E-14 4.08E-13 3.00E-13
Average route cost 12.45 20.60 28.59

TABLE III: CONVERGENCE COMPARISON FOR A GIVEN CPU TIME

Network Sioux Falls Chicago sketch Chicago regional
CPU time 577 seconds 252 minutes 122 hours
Iterations 100,000 10,000 3,000
Relative gap 2.00E-06 2.20E-05 3.40E-05
Average excess cost 2.83E-05 3.44E-04 1.04E-03

TABLE IV: FRANK-WOLFE METHOD BEST RESULTS

From a practical point of view, spending 20 minutes of CPU time to solve a medium
size network like the Chicago sketch network to machine accuracy is quite reasonable,
and may often be worth while. When large scale networks like the Chicago regional
network are considered, spending more than 80 hours of CPU time to solve one static
�xed demand tra�c assignment problem is perhaps possible, but probably not cost
e�ective.

Practitioners so far have been satis�ed with substantially less accurate solutions, using
a relative gap criterion in the range of 0.1 to 0.001. Figures 13, 17 and 21 present
relative gap results for this range of accuracies. Equivalent excess cost results are
shown in Figures 14, 18 and 22. As can be seen in these �gures, the origin-based
solution method is not inferior to the Frank-Wolfe method at any accuracy level, and
from a certain point onwards it becomes superior.

99

In the case of the Chicago regional network, for example, both methods have similar
performance during the �rst 30 minutes of CPU time, during which the Frank-Wolfe
method performs 10 iterations; the resulting solutions have a relative gap of about
0.05 and average excess cost of about one minute. It should be noted that if the
average excess cost is as high as one minute, it is quite possible that a decent portion
of the ow uses routes with excess costs of 5 or maybe even 10 minutes; in fact, the
origin-based solution at this point has a maximum excess cost of about 80 minutes.
Considering such solution as an \equilibrium" solution implies that travelers are not
sensitive to cost di�erences of 5 or 10 minutes, which is probably not a realistic
assumption.

From this point of view such a solution should not be considered as an accurate one.
To get a more accurate solution with average excess cost of 0.1 minutes the origin-
based method needs less than one hour of CPU time, while it takes more than two
hours for the Frank-Wolfe method to achieve the same accuracy. The next accuracy
level of 0.01 minutes average excess cost requires less than two hours of CPU time
with the origin-based method, and more than 10 hours for the Frank-Wolfe method,
which is �ve times longer. As accuracy requirements increase, the advantage of the
origin-based method becomes more signi�cant. The trends for the smaller networks
are very similar, except that CPU times are of course much shorter.

Another perspective on the same results using a logarithmic time scale is given for
relative gap in Figures 23, 25 and 27, and for excess cost in Figures 24, 26 and 28.
These �gures show the entire process while providing more detailed resolution for
the �rst part of it. The advantage of the origin-based method over the Frank-Wolfe
method is exempli�ed in these �gures. The linear trends in the Frank-Wolfe case
suggest a power function of the form

relative gap = a � (CPU time)b (4.5)

Regression values of a and b together with the r2 measure of goodness of �t for
the three networks are given in Table V. Extrapolating from these results one might
estimate that to obtain a machine accurate solution with a relative gap of say 1.0E-14
using the Frank-Wolfe method would take about 80,000 years for the Chicago regional
network, 10,000 years for the Chicago sketch network, and even for the miniature
network of Sioux-Falls it would take about 3,000 years of CPU time.

Comment: in general the average excess cost and relative gap are very similar mea-
sures of convergence. The ratio between them for a given network is almost constant,
which appears in the �gures presented here as a simple translation along the ordi-
nate. By preserving the cost units, excess cost also provides intuitive interpretations,
like those discussed above. In addition, average excess cost captures the uctuations
inherent to these iterative methods, which are smoothed by the relative gap.

100

Chicago regional network

Figure 23. Relative gap vs. CPU time for the Chicago regional network (log)

Figure 24. Excess cost vs. CPU time for the Chicago regional network (log)

101

Chicago sketch network

Figure 25. Relative gap vs. CPU time for the Chicago sketch network (log)

Figure 26. Excess cost vs. CPU time for the Chicago sketch network (log)

102

Sioux-Falls network

Figure 27. Relative gap vs. CPU time for the Sioux-Falls network (log)

Figure 28. Excess cost vs. CPU time for the Sioux-Falls network (log)

103

Network Sioux Falls Chicago sketch Chicago regional
a 0.0012 0.013 0.0163
b -1.0071 -1.2468 -1.3822
r2 0.9781 0.9747 0.989

TABLE V: FRANK-WOLFE CONVERGENCE REGRESSION

4.2 Characteristics of equilibrium solutions

In addition to fast convergence, origin-based solutions provide much more detail than
link-based methods like Frank-Wolfe. To begin with, one can examine the ows from
a speci�c origin, to gain better understanding of the equilibrium solution.

Figures 29-30 show two such examples from an equilibrium solution for the network
of Sioux-Falls. The ows from origin 1 (Figure 29) form a relatively simple network,
with only two additional (non-basic) links; that is, a tree may be obtained from this
network by eliminating two links. Figure 30 shows the ows from origin 12 for that
solution, which form a relatively complicated network with seven additional links.
One may observe eight di�erent routes from origin 12 to destination 16, which is the
maximumnumber of routes for one O-D pair in the equilibriumsolution of Sioux-Falls.

Several parameters describing the structure of the most accurate solutions obtained
by the origin-based method are presented in Table VI. As shown in section 4.1
these solutions are extremely well converged and hence may be viewed as equilibrium
solutions.

The key parameter describing the origin-based structure is the total number of used
links, which is the sum over all origins of the number of links used by travelers from
that origin. (Comment: in section 2.8 we distinguished between `used' links and
`contributing' links; in this section the more intuitive term `used' links is used, even
though in some cases these links may only be contributing and not actually used.)
The number of links in one set of spanning trees is given in comparison, this would be
the number of used links if no alternative routes were used. The di�erence between
the two is referred to as the number of additional links, which is also the number of
non-basic links as de�ned in section 2.4. Notice that in all of the networks the number
of additional links is substantially smaller than the total number of used links, 1-3%
in the two Chicago networks, meaning that in general the origin-based subnetworks
are fairly similar to trees. A similar conclusion can be drawn from the number of used
links terminating at nodes. In a tree there can be only one link terminating at every

104

Figure 29. Sioux-Falls equilibrium solution - link ows from origin 1

105

Figure 30. Sioux-Falls equilibrium solution - link ows from origin 12

106

Network Sioux Falls Chicago sketch Chicago regional
Zones (origins) 24 387 1,790
Nodes 24 933 12,982
Links 76 2,950 39,018
O-D pairs 528 93,513 2,297,945
Links with ow > capacity 60 (80%) 1,165 (40%) 12,256 (31%)
Origin-based used links 632 370,787 23,623,279
links in one set of trees 552 360,684 23,235,990
Additional links 80 10,103 387,289
Nodes with 1 approach 476 350,690 22,850,715
Nodes with 2 approaches 72 9,885 383,261
Nodes with 3+ approaches <4 <109 <2,014
Routes 716 219,437 27,251,576
Average routes per O-D pair 1.36 2.35 11.86
Maximum routes per O-D pair 8 327 136,498
Average # links per route 3.5 14.8 55.8
Additional routes 188 125,924 24,953,631

TABLE VI: EQUILIBRIUM SOLUTION STRUCTURE

node. In the equilibrium solution we �nd that this is the case for the vast majority
of the nodes. A small portion of the nodes, only 1-3% for the two Chicago networks,
have two used links terminating, and a negligible number of nodes have three or more
used links terminating.

The route-based structure is described by the total number of used routes, average
number of routes per O-D pair, the maximum number of routes used by a single O-D
pair, the average number of links in a route, and the number of additional routes,
de�ned as the di�erence between the total number of used routes and the number of
O-D pairs with positive ow. The number of additional routes is also the number of
degrees of freedom, or the number of decision variables, in determining the equilibrium
ows once the set of equilibrium routes is known. In a similar fashion the number of
additional links can be viewed as the number of degrees of freedom in determining the
origin-based link ows once the set of equilibrium routes and hence the equilibrium
origin-based subnetworks are known. As can be seen from Table VI, the number
of additional links is typically substantially smaller than the number of additional
routes, suggesting a reduced optimization complexity, which probably contributes to
the computational e�ciency of the origin-based method.

107

From all the values presented in Table VI the most unexpected one is perhaps the
maximum number of routes for a single O-D pair on the Chicago regional network.
Having as many as 136,498 di�erent alternative routes of equal cost between one O-D
pair may seem at least at a �rst look as an exaggeration. On the other hand, the
number of routes from a North-West corner to a South-East corner of a grid of 11 by
11 nodes when only North to South and West to East links are used is

�
20
10

�
= 184; 756.

The regional network of Chicago with almost 13,000 nodes and almost 40,000 links is
a much bigger network, with many grid-like portions where many similar alternatives
exist. Having 136,489 di�erent equilibrium routes for a single O-D pair on such a
network may therefore be somewhat surprising, but not completely inconceivable.
This argument demonstrates that such a value is possible, but it may still be an
outlier. To examine this issue, we consider the distribution of O-D pairs by the
number of equilibrium routes.

Figure 31 presents the frequency of O-D pairs by their number of equilibrium routes
for the range 1-100. As can be seen in this �gure, the distribution in all three networks
is rather uctuating. It is interesting to point out that typically prime numbers
of equilibrium routes are less frequent than product numbers. For example in the
Chicago regional network, there are 6,880 O-D pairs with 48 equilibrium routes, and
only 90 O-D pairs with 47 equilibrium routes; there are 2,346 O-D pairs with 96
equilibrium routes, and only 12 O-D pairs with 97 equilibrium routes. A product
number of equilibrium routes can be the result of a route structure that consists
of several sections, with some alternatives in each section, where the total number
of equilibrium routes is the product of the number of alternatives in each section.
For example if there are three sections, two alternatives in the �rst section, three
alternatives in the second section, and two alternatives in the last section, then the
total number of equilibrium routes will be 2�3�2 = 12. If such structures are common,
as suggested by Figure 31, a route-based representation is clearly ine�cient, since
every route is represented separately, and it does not take advantage of the special
structure of the routes.

Given the uctuations of the equilibrium route distribution, frequency representa-
tion is not likely to provide much insight, especially for large number of equilibrium
routes. To reduce the e�ect of these uctuations on the graphical representation we
consider their cumulative distributions. In addition to uctuations, the distribution
of equilibrium routes is also extremely skewed, in the case of the Chicago regional
network having a mode of 1, mean of 11.86 and maximum of 136,498. A regular
ascending cumulative distribution representation for such data is dominated by the
�rst few values, and the contribution of O-D pairs with large number of equilibrium
routes is completely unobservable. To resolve this problem we consider in Figure 32
an inverted (descending) cumulative distribution for the three networks.

108

Figure 31. Frequency distribution of O-D pairs by equilibrium routes

Figure 32. Inverted cumulative distribution of O-D pairs by equilibrium routes

109

For any given number of equilibrium routes, this �gure presents the number of O-D
pairs that have at least as many routes, or more. The results for the Chicago regional
network should be interpreted as follows. All 2,297,945 O-D pairs have at least one
route, 301,707 of them have 10 equilibrium routes or more, 31,147 of them have 100
equilibrium routes or more, 1,916 of them have 1,000 equilibrium routes or more,
128 of them have 10,000 equilibrium routes or more, and 6 of them have 100,000
equilibrium routes or more. From these values we learn that the O-D pair with
136,489 routes is not an outlier, as there are several other O-D pairs with almost as
many equilibrium routes.

4.3 Memory requirements

In this section the memory required by link-based, origin-based, and route-based
solution methods is discussed. Such a comparison depends on many assumptions
regarding the implementation. We follow the assumptions used in our implemen-
tation; in particular 8 bytes double precision reals and 4 bytes integers are assumed
throughout the analysis. In addition, this analysis considers only the main data struc-
tures. The remaining components have a negligible impact on the results for the large
regional network of Chicago, which is our main interest. As for the network of Sioux-
Falls, memory requirements are so small that even the length of an additional string
may be signi�cant, which is of course not taken into account. Table VII summarizes
memory requirements of di�erent components of the equilibrium solutions described
in the previous section. Values quoted in the following discussion refer to the Chicago
regional network.

One possible way to store an origin-based solution is by storing the entire origin-based
link ow array, that is one oating point value for every link for each origin. This is a
rather naive implementation, that leads to large memory requirements (558 MB). We
developed a special data structure that reduces memory requirements substantially
(to 112 MB). The memory required to store a link-based solution, that is to store the
total ow on every link (0.3 MB), is still much smaller. On the other hand, it is always
necessary to store the input data, and in particular the O-D trip table. The di�erence
between the total memory required by a link-based method (at least 28 MB) and our
origin-based method (140 MB) is still signi�cant but not as dramatic. In addition,
in many cases it is useful to store at least one set of minimum cost route trees even
if it is not necessary for the solution method. In such a case, the additional 22 MB
needed to store a fully detailed origin-based solution rather than storing only one set
of trees is probably worth while.

110

Network Sioux Falls Chicago sketch Chicago regional
Zones (origins) 24 387 1,790
Nodes 24 933 12,982
Links 76 2,950 39,018
O-D pairs 528 93,513 2,297,945
Trip Table 4.6 KB 1.20 MB 25.6 MB
Other input 3.0 KB 0.10 MB 1.6 MB
Link-based solution 0.6 KB 0.02 MB 0.3 MB
Set of trees 2.3 KB 1.40 MB 93.0 MB
Origin-based solution:

naive implementation 14.6 KB 9.13 MB 558.7 MB
our implementation 5.9 KB 1.90 MB 111.5 MB
lower bound 2.3 KB 1.40 MB 93.0 MB
upper bound 48.0 KB 30.00 MB 1,861.6 MB

Route ows 5.7 KB 1.80 MB 218.0 MB
Route description:

by link lists 10.0 KB 13.00 MB 6,086.9 MB
by trees >8.0 KB >27.70 MB >89,661.4 MB

TABLE VII: MEMORY REQUIREMENTS

There are several di�erent ways to store route-based solutions. In all cases the ow on
every route is stored. This part by itself consumes a descent amount of memory, about
as much as the entire origin-based solution in the case of the Sioux-Falls network and
the Chicago sketch network, and almost twice as much as the entire origin-based
solution in the case of the Chicago regional network. In addition it is also necessary
to store a description of the routes. A common and simple way to do that is by
storing a list of the links consisting each route. The amount of memory required for
that purpose is extremely large, 6 GB, more than 50 times larger than the origin-
based solution. Other data structures may be more e�cient; for example it has
been proposed to store several di�erent routes from the same origin by one tree.
We do not know what is the most e�cient arrangement of routes in trees, and how
much e�ort is involved in obtaining and maintaining the required data structure
throughout the iterative process; in any case, the number of trees from a speci�c
origin in such an arrangement must be at least as large as the maximum number of
routes to a single destination from that origin. We observed that for some networks,
especially less congested networks, such data structure may improve upon the link-
list structure. As shown in Table VII, for the equilibrium solutions to the networks
presented here, arranging the routes in trees is probably not useful, and may in fact
lead to substantially larger memory requirement (89 GB).

111

For large machines currently available with 256MB{1GB of RAM, solving the Chicago
regional network using a route-based method is probably not practical. In the future
machines with more memory will become available. Even then, spending that much
more memory on a route-based data structure, when origin-based solution provides
equivalent detail (see section 3.3) seems quite hard to justify.

It should be noted that memory requirements for origin-based and route-based solu-
tions depend not only on network size, but also on the characteristics of the speci�c
equilibrium solution, and hence on the level of congestion. The lower bound on the
memory requirement in the current implementation of the origin-based method, when
there is only one equilibrium route for each O-D pair, is equivalent to storing one set
of trees (93 MB). A route-based method that organizes route descriptions in trees
may have a similar lower bound. The memory required by the more common link-list
structure depends on the speci�c routes used. If we assume that the average number
of links in a route is the same as in the equilibrium solution presented here (55.8),
storing the description of one route for each O-D pair as a list of links for the Chicago
regional network requires 128 MB.

The upper bound for the current implementation of the origin-based method is about
1.8 GB. Indeed the naive implementation for storing an origin-based solution requires
only 558 MB regardless of the speci�c solution; however, our data structure provides
other merits that are used in the implementation. For example it also stores the
topological order for each of the restricting subnetworks. We �nd that the actual
amount of memory used by our origin-based data structure does not vary too much
with the level of congestion, and is typically fairly close to the lower bound.

As for route-based solutions, there does not seem to be any practical upper bound on
their memory requirement, as the total number of simple routes increases in an expo-
nential fashion with network size. Furthermore, it seems that the number of routes
and hence the memory required by a route-based solution is much more sensitive to
the congestion on the network. For example the equilibrium solution for the Chicago
sketch network with half the demand yields a substantially less congested network
with 335 (11%) links where ow exceeds capacity instead of 1,165 (40%). The result-
ing origin-based solution requires 1.6 MB of memory instead of 1.9 MB of memory.
The number of equilibrium routes is only 116,670 which is about half the original value
of 219,437 routes; as a result the memory requirement for the route-based solution is
about one half of the values mentioned above.

112

4.4 Solution method progress

This section shows some details regarding the progress of the solution methods. First
the magnitude of the step size in both the Frank-Wolfe and the origin-based methods
is examined. Second the development of the restricting subnetworks structure in the
origin-based case is studied.

Figures 33, 35 and 37, show the Frank-Wolfe step sizes for the three networks through
all iterations. Figures 34, 36 and 38, show the Frank-Wolfe step sizes in the �rst 100
iterations. It is evident from these �gures that except for the �rst 20-30 iterations, step
sizes in the Frank-Wolfe method are rather small, less than 0.1, and they get smaller
and smaller, as the method proceeds. This is quite expected, since as the solution
approaches equilibrium the necessary shifts get smaller and smaller; however, the
search direction in the Frank-Wolfe method represents shifting all the ow for each
O-D pair to the route that currently has the lowest cost. It should be pointed out that
the same step size is applied to all the shifts, those where the cost di�erence is large
and a larger shift may be appropriate, those where the cost di�erence is small and a
smaller shift may be better, and even those where the cost is equal or practically equal
and there should not be any shift at all. This is probably one of the main reasons for
the computational ine�ciency of the Frank-Wolfe method as demonstrated in section
4.1.

In the origin-based method, at every iteration, a separate step size is chosen and
applied to each of the origins. To describe the distribution of step sizes in every
iteration, we divide the origins into seven categories. The �rst category includes the
origins that appears to be at equilibrium, that is the method suggests that the ows
from these origins should remain as they are, without any shifts at all. This is the
case if all used routes from the speci�c origin to each of the destinations have the same
cost as the route of minimum cost to the same destination in the current restricting
subnetwork, at least up to the machine precision. In particular if the restricting
subnetwork is a tree, where there is only one route to each destination, the origin will
be considered as an equilibrium origin. It is more likely that the restricted subnetwork
does contain some additional routes, from which ow has been eliminated in previous
iterations, and the cost of these unused routes is still higher than the cost of the used
route.

The second category includes those origins for which a step size of 1.0 was chosen,
the third, fourth, and �fth categories include those origins for which a step size of
0.5, 0.25, 0.125 was chosen respectively. The sixth category include all other origins
where some shift was applied, that is where the chosen step size is between 0.1 and
1E-10. When a step size of 1E-10 is reached, the search is stopped, the step size is

113

Chicago regional network

Figure 33. Frank-Wolfe method step size for the Chicago regional network

Figure 34. Detail of FW method step size for the Chicago regional network

114

Chicago sketch network

Figure 35. Frank-Wolfe method step size for the Chicago sketch network

Figure 36. Detail of FW method step size for the Chicago sketch network

115

Sioux-Falls network

Figure 37. Frank-Wolfe method step size for the Sioux-Falls network

Figure 38. Detail of FW method step size for the Sioux-Falls network

116

Figure 39. Origin-based method step size for the Chicago regional network

truncated to zero, and the shift is ignored. Origins where the step size was truncated
consist the seventh category.

Figures 39, 40 and 41, show the number of origins in each category in every iter-
ation for the three networks. These are \stacked" diagrams, where the lowest line
represents the �rst category - equilibrium origins, the di�erence between the �rst and
second lines represent the number of origins in the second category - step size 1.0,
the di�erence between the second and third lines represent the number of origins in
the third category - step size 0.5, and so on. The highest line represents the total
number of origins in all categories which is of course constant for each network.

From these �gures we see that throughout most of the iterative process for the vast
majority of the origins, a step size of 1.0 or 0.5 is used. A step size smaller than 0.1 is
almost never used, except for the last iterations of the larger networks. The relatively
large step sizes imply that the proposed shifts are not too large. For many origins a
step size of 0.5 is chosen, meaning that a step size of 1.0 is found to be too large. This
implies that the proposed shifts are not too small. In short, the shift proposed by this
method using link costs and their derivatives seems to be well estimated. These well
estimated shifts provide an important contribution to the computational e�ciency of
the method.

The convergence of the origin-based method to a global optimum depends highly on
the ability of the method to choose the correct restricting subnetworks. It is practi-

117

Figure 40. Origin-based method step size for the Chicago sketch network

Figure 41. Origin-based method step size for the Sioux-Falls network

118

Figure 42. Origin-based structure progress for the Chicago regional network

cally impossible to monitor the development of each restricting subnetwork through-
out the iterations, especially for a large-scale problem. Figures 42, 43 and 44 describe
the development of the restricting subnetworks using three key parameters. The �rst
is the total number of additional (non-basic) links in the subnetworks resulting from
the restriction update procedure. The second is the number of empty links removed
from the restricting subnetworks, and the third is the number of new basic links added
to the restricting subnetworks.

Comment: Links added by the restriction update procedure described in section 2.8
carry ow only if they are basic, in which case the new link is stored. Links that
satisfy the condition ui < uj, but are not basic, do not carry ow at the end of the
full iteration, and therefore in order to save memory they are not stored in the new
restricting subnetwork.

We can see that the number of additional links increases gradually in the �rst few
iterations, and then stabilizes. The number of links added and removed decreases con-
tinuously, although some changes continue to occur until the last iteration, especially
in the Chicago regional network. These changes suggest that although the solutions
obtained are extremely accurate, as discussed in section 4.1, there is still some uncer-
tainty regarding the exact structure of the equilibrium routes. The number of links
added and removed in the last iterations is quite small, especially in comparison with
the size of the problem; therefore, we may conclude that the resulting uncertainty is
not of substantial signi�cance.

119

Figure 43. Origin-based structure progress for the Chicago sketch network

Figure 44. Origin-based structure progress for the Sioux-Falls network

120

5. CONCLUSIONS

The main contribution of this research is the introduction of a computationally ef-
�cient, memory conserving, origin-based solution method for the user equilibrium
tra�c assignment problem that provides highly accurate solutions. The second main
contribution of this work is the introduction of the behavioral concept of bypass
proportionality, and the study of its relationship to entropy maximization.

There are two main reasons to prefer origin-based algorithms over the state-of-practice
Frank-Wolfe method for practical applications: detailed solution, and substantially
lower computation time when higher accuracy is required. The origin-based method
allows one to obtain extremely accurate solutions, up to the machine accuracy, which
is e�ectively impossible using the Frank-Wolfe method. The amount of computa-
tion time required to obtain such highly accurate solutions may be considered fairly
reasonable for practical purposes, at least for small and medium size networks. As
for large-scale networks, achieving the machine accuracy limit is probably not cost-
e�ective, at least not using currently available computers.

Accuracy requirements in practice depend on computer technology. The number
of Frank-Wolfe iterations that can be computed in a practical sense for large-scale
networks has increased from 5-10 in 1980 to 20-40 presently. As computer speed
and memory increase further, additional iterations will likely be performed, as more
highly converged solutions are desired. At that time we suggest that origin-based
algorithms will become the preferred method.

There are several reasons for the computational e�ciency of the origin-based method.
The choice of di�erent ow shifts for each pair of alternative approaches, taking costs
and cost derivatives into account, yields a well-estimated search direction that needs
only a small adjustment using a scaling step size. The boundary search procedure
provides an e�cient tool to eliminate residual ows, thus allowing the addition of
new routes while refraining from the introduction of cycles. The restriction to a-
cyclic origin-based subnetworks allows the de�nition of topological order. Using the
topological order, the computation time of the minimum,maximum, and average cost
from the origin to all destinations is linear in the number of links in the subnetwork.
The computation time of the search direction per origin in a quick iteration is also
on the order of the number of links in the subnetwork of that origin. The topological
order of an a-cyclic network can also be found in a time which is a linear function of
the total number of links. Another possible contribution to the method's e�ciency

121

122

is the relatively moderate optimization complexity, as measured by the number of
independent variables, especially in comparison with the route-based approach.

Origin-based solutions have an immediate route ow interpretation. This interpre-
tation can be justi�ed either by bypass proportionality, or by entropy maximization.
In that sense the detail provided by an origin-based solution is practically equivalent
to the detail of a route-based solution. Such detail is not provided by a link-based
solution. As noted in section 1.5, such detail is needed for several important prac-
tical applications like impact fee assessment, emission estimation, \window" models,
and more. Detailed solutions also allow one to adjust a feasible solution when de-
mand or network topology are modi�ed. This feature makes origin-based algorithms
highly suitable in cases where the tra�c assignment problem is one component of a
larger transportation modeling problem. Route-based methods also provide detailed
solutions; however, origin-based methods are more suitable for practical large-scale
applications because of their reasonable memory requirements.

CITED LITERATURE

Akamatsu, T. (1996). Cyclic ows, Markov process and stochastic tra�c assignment.
Transportation Research, 30B, 369{386.

Akamatsu, T. (1997). Decomposition of path choice entropy in general transport
networks. Transportation Science, 31, 349{362.

Bar-Gera, H., and D. Boyce (1999). Route ow entropy maximization in origin-
based tra�c assignment. In Transportation and Tra�c Theory, Proceedings
of the 14th International Symposium on Transportation and Tra�c Theory,
Jerusalem, Israel, 1999, A. Ceder, ed., Elsevier Science, Oxford, UK, 397{415.

Beckmann, M., C. B. McGuire, and C. B. Winston (1956). Studies in the Economics
of Transportation, Yale University Press, New Haven, CT.

Bertsekas, D. P. (1979). Algorithms for nonlinear multicommodity network ow
problems. In Proceedings of the International Symposium on Systems Opti-
mization and Analysis, A. Bensoussan and J. L. Lions, eds., Springer-Verlag,
Berlin, 210{224.

Bertsekas, D. P., E. M. Gafni, and K. S. Vastola (1979). Validation of algorithms for
optimal routing of ow in networks. In Proceedings of the 1979 IEEE Conference
on Decision and Control, San Diego, CA, January 10-12, 1979, 220{227.

Bertsekas, D. P., E. M. Gafni, and R. G. Gallager (1984). Second derivative algo-
rithms for minimum delay distributed routing in networks. IEEE Transactions
on Communications, COM-32, 911{919.

Bertsekas, D. P. (1998) Network Optimization - continuous and discrete models,
Athena Scienti�c, Belmont, MA.

Bothner, P., and W. Lutter (1982). Ein direktes verfahren zur verkehrsumlegung
nach dem 1. prinzip von wardrop, Forschungsbereich: Verkehrssysteme Ar-
beitsbericht 1, Universit�at Bremen, Bremen, Germany.

Bruynooghe, M., A. Gibert, and M. Sakarovitch (1969). Une m�ethode d'a�ectation
du tra�c. in Proceedings of the 4th International Symposium on the Theory
of Road Tra�c Flow, Karlsruhe, 1968, W. Leutzbach and P. Baron, eds.,
198{204. Beitr�age zur Theorie des Verkehrsusses, Strassenbau und Strass-
enverkehrstechnik, Heft 86, Herausgegeben von Bundesminister f�ur Verkehr,
Abteilung Strassenbau, Bonn, Germany.

123

124

Dafermos, S. C. (1968). Tra�c Assignment and Resource Allocation in Transporta-
tion Networks, Ph.D. thesis, Johns Hopkins University, Baltimore, MD.

Dafermos, S. C., and F. T. Sparrow (1969). The tra�c assignment problem for a
general network. Journal of Research of the National Bureau of Standards,
73B, 91{118.

Evans, S. P. (1976). Derivation and analysis of some models for combining trip
distribution and asignment. Transportation Research, 10, 37{57.

Florian, M., and D. Hearn (1995). Network equilibrium models and algorithms.
In Network Routing, Handbooks in OR & MS, Vol. 8, M. O. Ball et al., eds.,
Elsevier Science, Oxford, UK, 485{549.

Florian, M., and H. Spiess (1983). Transport networks in practice. In Proceedings
of the Conference of the Operations Research Society of Italy, Napoli, 29{52.

Frank, M., and P. Wolfe (1956). An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3, 95-110.

Fukushima, M. (1984). A modi�ed Frank-Wolfe algorithm for solving the tra�c
assignment problem. Transportation Research, 18B, 169{177.

Gallager, R. G. (1977). A minimum delay routing algorithm using distributed com-
putation. IEEE Transactions on Communications, COM-25, 73{85.

Gibert, A. (1968). A method for the tra�c assignment problem. Report LBS-TNT-
95, Transportation Network Theory Unit, London Business School, London,
UK.

Hagstrom J. N. (1997). Computing tolls and checking equilibrium for tra�c ows.
University of Illinois at Chicago, Department of Information and Decision Sci-
ences, working paper.

Hagstrom J. N., and P. Tseng (1998). Tra�c equilibrium: link ows, path ows and
weakly/strongly acyclic solutions. University of Illinois at Chicago, Department
of Information and Decision Sciences, working paper.

Hearn, D. W. (1984). Practical and theoretical aspects of aggregation problems
in transportation planning models. In Transportation Planning Models, M.
Florian, ed., North-Holland, Amsterdam, 257-287.

Hearn, D. W., S. Lawphongpanich, and J. A. Venture (1987). Restricted simpli-
cial decomposition: computation and extensions. Mathematical Programming
Study, 31, 99{118.

125

Jayakrishnan, R., W. K. Tsai, J. N. Prashker, and S. Rajadhyaksha (1994). A faster
path-based algorithm for tra�c assignment. Transportation Research Record,
1443, 75{83.

Larsson, T., and M. Patriksson (1992). Simplicial decomposition with disaggregated
representation for the tra�c assignment problem. Transportation Science, 26,
4{17.

Larsson, T., M. Patriksson, and C. Rydergren (1998). Application of simplicial
decomposition with nonlinear column generation to nonlinear network ows.
In Licentiate Thesis, Clas Rydergren, Thesis No. 702, Link�oping Institute of
Technology, Link�oping, Sweden.

Larsson, T., J. Lundgren, M. Patriksson, and C. Rydergren (1999). Most likely tra�c
equilibrium route ows - analysis and computation. Report LiTH-MAT-R-1999-
05, Department of Mathematics, Link�oping Institute of Technology, Link�oping,
Sweden.

LeBlanc, L. J., R. V. Helgason, and D. E. Boyce (1985). Improved e�ciency of the
Frank-Wolfe algorithm for convex network programs. Transportation Science,
19, 445{462.

LeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla (1975). An e�cient approach to
solving the road network equilibrium tra�c assignment problem. Transporta-
tion Research, 9, 309{318.

Lupi, M. (1986). Convergence of the Frank-Wolfe algorithm for solving the tra�c
assignment problem. Civil Engineering Systems, 3, 7{15.

Pallottino, S., and M. G. Scutella (1998). Shortest path algorithms in transporta-
tion models: classical and innovative aspects. In Equilibrium and Advanced
Transportation Modelling, P. Marcotte and S. Nguyen, eds., Kluwer Academic
Publishers, Boston, 245{281.

Pape, U. (1974). Implementation and e�ciency of Moore-algorithms for the shortest
route problem. Mathematical Programming, 7, 212{222.

Patriksson, M. (1994). The Tra�c Assignment Problem { Models and Methods.
VSP, Utrecht, Netherlands.

Rossi, T. F., S. McNeil and C. Hendrickson (1989). Entropy model for consistent
impact fee assessment. Journal of Urban Planning and Development/ASCE,
115, 51-63.

Wardrop J.G. (1952). Some theoretical aspects of road tra�c research. In Proceed-
ings of the Institution of Civil Engineers, Part II, 1, 325-378.

