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Abstract. At the early stage of drug discovery, many thousands of chemical compounds can
be synthesized and tested (assayed) for potency (activity) with High Throughput Screening
(HTS). With ever increasing numbers of compounds to be tested (now often in the neighbor-
hood of 500,000) it remains a challenge to find strategies via sequential design that reduce
costs while locating classes of active compounds.
Initial screening of a modest number of selected compounds (first-stage) is used to construct
a structure-activity relationship (SAR). Based on this model, a second stage sample is se-
lected, the SAR updated and, if no more sampling is done, the activities of not yet tested
compounds are predicted. Instead of stopping, the SAR could be used to determine another
stage of sampling after which the SAR is updated and the process repeated.
We use existing data on the potency and chemical structure of 70223 compounds to investi-
gate various sequential testing schemes. Evidence on two assays supports the conclusion that
a rather small number of samples selected according to the proposed scheme can more than
triple the rate at which active compounds are identified, and also produce SARs effective
for identifying chemical structure. A different set of 52883 compounds is used to confirm
our findings.
One surprising conclusion of the study is that the selection of the initial sample stage may
be unimportant: Random selection or systematic methods based on chemical structures are
equally effective.

Key words and phases: Combinatorial chemistry, data mining, high throughput screening,
recursive partitioning, sequential design, structure-activity relationship.

1. INTRODUCTION

The search for a new drug to combat a disease begins with the development of an

understanding about how the disease manifests itself on a molecular level. Once the

molecular target, typically in form of a protein, has been identified, biological assays

are developed that allow the testing (screening) of compounds with respect to their

ability to interact with the protein. For this purpose automated screening systems are
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available that, depending on the assay, allow the screening of hundreds to thousands

of compounds a day. The search is for “lead” compounds which eventually can be

modified to produce new and effective drugs.

Corporate chemical databases of compounds that are available for testing can

contain hundreds of thousands of molecules. In addition, compounds are available

from commercial sources or can be obtained through combinatorial synthesis from

elementary building blocks (Cortese, 1996). Even larger can be the number of com-

pounds in virtual libraries, a collection of theoretically possible but not yet synthesized

molecules. The introduction of High Throughput Screening (HTS) allows the testing

of large numbers of compounds in comparatively short time. Exhaustive screening of

compound collections, despite miniaturization efforts (Burbaum, 1998), is impracti-

cal in view of the ever increasing size of the collections. A systematic approach via

a sequential search that tests a comparatively small number of molecules in an in-

ventory and identifies structural features that might then guide the selection process

towards selecting more effective compounds is therefore of great practical value. In

order to explore such strategies, we used historic data from the complete screening of

two different compound libraries in two different assays. See Figure 1.

Such sequential search schemes in the context of drug discovery face a number

of daunting obstacles. First, the size of the space of compounds to be searched is

in the tens of thousands at a minimum and can be in the millions to billions for

virtual libraries. Second, the spaces themselves are highly complex. A molecule

may be described at many levels of “accuracy”, ranging from comparatively simple

topological descriptions of dimension in the thousands to difficult to compute but

fewer descriptions arising from quantum chemistry calculations. Third, the number

of compounds in the space that have adequately high potency is very small, typically

less than 0.5%. Fourth, the target of the search is not completely precise: The

search is not only for high potencies but also for a variety of chemical structures

associated with high potency that medicinal chemists can use to take follow-up steps in

synthesizing new molecules. The chemists need multiple chemical classes as tractable

starting points for synthetic modification because compounds, besides being potent,
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Fig. 1. Sequential screening process. An initial compound set is screened and
statistically analyzed giving a model that describes compound features associ-
ated with activity. These structure-activity rules are used to select additional
molecules for screening from the available compound collection. The combined
data set is again statistically analyzed. The cycle is repeated until compounds
are selected for atom-by-atom optimization.

need to meet requirements about toxicity, side effects, duration of effect and specificity.

Roughly, what has to be faced is a problem of searching a potency surface over a large

discrete space of very high dimension for a variety of high peaks.

Further constraints arise because of practical considerations. High setup costs at

each stage preclude a purely sequential scheme so we are limited to a few number of

stages. Being first to market a new drug can lead to gains in the millions of dollars

per day; this value of time imposes limitations on computational and data analytic

strategies.

Several fundamental statistical issues are to be faced when implementing a se-

quential scheme. In order to start the search, compounds must be selected for testing

in a first stage. At subsequent stages, the selection of additional compounds is based

on the potencies found in testing the compounds selected at previous stages. Implicit

is the use of the data to develop a relationship between the geometry of the space (the

structure of the molecules) and the biological activity (the potency measured by the
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assay). The chemistry and the geometry are intertwined and affect the development

of useful structure-activity relationships (SAR). Further questions arise about the

number of stages that are needed as well as the number of compounds to be selected

at each stage.

We describe a sequential scheme that takes up these basic issues via a specific

case study involving a space of 70223 compounds with known activities. The goal

is to propose a strategy that is both effective and can be implemented in practice.

The issues mentioned above are discussed and answers proposed and confirmed in

additional examples and studies.

Our conclusions, stated succinctly, are:

• Use a sequential approach;

• Design of a first stage sample is unimportant — random selection is hard to

beat;

• Careful design of next stages is advantageous;

• Two stages are enough.

We have not attempted to explore the challenging question of whether a sequential

design problem can be precisely formulated and analyzed in our setting. The barriers

to doing so are formidable, not the least being the large dimension of the space of

descriptors and the interactions among them.

Section 2 describes the initial data set and chemical features for the case study.

All the potencies are available for this data set. But we proceed in ignorance of

this fact until the final step of our study where we use the unselected compounds to

validate the procedures and compute their performance characteristics. In Section 3

we review recursive partitioning and the particular statistical classification method

used to establish the structure-activity relationship. Of prime importance is that

the methods run very rapidly on large numbers of compounds, each described by

a large dimensional vector of descriptors. The factors expected to be influential

on the performance of our sequential scheme are discussed in Section 4. The main
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questions to be explored are how and how many compounds to select at the various

stages of the sequential search scheme. Section 5 provides the layout of our initial

experiment to identify a good screening strategy and Section 6 gives the analysis of

the results. Some additional analyses exploring specific questions are discussed in

Section 7. Confirmation experiments are described in Section 8. Section 9 discusses

some future directions of investigation and also provides references to alternative

approaches for modelling structure-activity relationships. Concluding remarks follow

in Section 10.

As a result of our investigations, sequential screening is now routinely used by

GlaxoWellcome scientists and has helped shorten the time needed to provide the

medicinal chemists with interesting chemical structures for further optimization. Cen-

tral to the approach is classification via recursive partitioning. The design (selection

of compounds) at each of the individual stages appears to be of relatively minor im-

portance. Results from applying the described approach to screening over 160,000

compounds were recently reported in Jones-Hertzog, Mukhopadhyay, Keefer, and

Young (2000).

2. THE TESTBED DATA

The data set used as a testbed for the methods contains the potencies together

with a description of the chemical structure for each of 70223 compounds from an

assay carried out by GlaxoWellcome scientists.

The assay measures the potency of each of the 70223 compounds by recording their

ability to bind to a protein and displace a specific (to the assay) standard compound

that naturally binds in a cleft of the protein. The analogy of a “lock and key” is

suggestive of the binding process. When a compound binds to a protein, a recordable

color change can be observed. The intensity of this color change is a measure of the

compound’s ability to bind to the protein; this intensity defines potency.

Generally, the uncertainty associated with measuring the potency of a compound

will affect the performance of any discovery procedure. We will not attempt to take

this into account below. Precision is to some extent sacrificed for speed and easy

logistics.
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It is common to apply a logarithmic transformation to the data in order to re-

duce the skewness of the distribution and to remove a possible dependence between

the mean and the variability in the response. Some characteristics of the 70223 log

potencies - we shall hereafter use log potency as the measure of potency - are listed

in Table 1.

Table 1

Summary statistics of log potencies. The 25% and 75% quantiles are denoted
by q25 and q75, respectively.

min q25 median q75 max mean stdv
−1.190 0.837 0.918 1.012 3.102 0.927 0.166

The chemical structure of molecules can be described in several ways. A very basic

description consists of the list of atoms that constitute the compound. Alternatively,

we can use counts of fragments or functional groups referring to entities of atoms. For

our study we used a topological descriptor based on atom pairs, see Carhart, Smith,

and Venkataraghavan (1985): For any two non-hydrogen atoms Atom 1 and Atom 2

there typically are many paths of successive bonds and atoms in the compound that

link Atom 1 and Atom 2. A path with the fewest number of atoms between Atom 1

and Atom 2 is called a minimal path and the number of atoms in such a minimal path

is the topological distance between Atom 1 and Atom 2. Each atom pair is then of the

form < Atom 1 description > - < topological distance > - < Atom 2 description >.

The description of an atom consists of the elemental name, the number of bonds

attached to it as well as the number of π-electrons in these bonds. For example, the

description of a carbon atom which is attached to two non-hydrogen atoms and shares

one π-electron with its neighbors is denoted by C(2,1). Thus, even atoms of the same

type, two carbons, for example, are distinguished if they differ in the number of bonds

attached to them and the number of π-electrons.

Although possible, multiple occurrences of the same atom pair in a molecule are

not accounted for in our descriptors. Among the 70223 molecules, 8189 different

atom pairs were found. The resulting molecular descriptions are then bitstrings of
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length 8189, where one and zero indicate the presence or absence of the correspond-

ing atom pair. These vectors were produced using software developed by A. Rusinko

based upon algorithms given in Carhart et al. (1985). Being able to rapidly produce

descriptors that capture the important features of the chemical structure of a molecule

is important. We cannot afford to take physical measurements to characterize com-

pounds.

The number of atom pairs that occur in a compound varies greatly, see Figure 2.

There are a few compounds with many atom pairs and a few with a small number

of atom pairs. Atom pairs that occur in all compounds are not included; such pairs

provide no information. The “biggest” compound contains 603 of the total 8189 atom

pairs. For most compounds, the number of atom pairs is in the range from 80 to 150.

There are atom pairs that occur in very few compounds; there are other atom pairs

that appear in over 50000 in the set of 70223.
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Fig. 2. Number of compounds containing a given number of atom pairs.

Another readily computed descriptor for a molecule is its Burden number, intro-
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duced by Burden (1989). The Burden number is a property of the connectivity matrix

of a compound. The definition of this matrix starts by (arbitrarily) numbering the n

non-hydrogen atoms occurring in the structure 1, . . . , n. Then, an n × n-matrix is

formed containing on its diagonal the atomic number of each atom, i.e., the number

of protons in the atomic nucleus. The off diagonal elements are chosen as positive real

numbers that depend on whether two atoms are neighbors and, if so, on the type of

bond between them. Finally, the Burden number is defined as the smallest eigenvalue

of this connectivity matrix. While other eigenvalues may also be useful, we will only

consider the smallest one.

Though a relatively “coarse” description of a molecule, the Burden numbers are

attractive because of their one-dimensional nature and the comparative ease of their

computation. Moreover, two molecules with close Burden numbers often appear sim-

ilar when comparing their chemical structures for example, by comparing numbers of

fragments or functional groups two molecules have and have not in common.

While it is relatively cheap and easy to compute the descriptors of chemical struc-

tures of compounds, it is extremely expensive and time consuming to measure the

potencies of an entire collection of chemical compounds. The above testbed data set

is one of a few rare occasions where all compounds were tested. A very practical

question is whether it is possible to find most of the potent chemicals by testing

only a proportion of the compounds in a collection. The testbed data set is used to

demonstrate one of such strategies in this paper. Thus, in our proposed sequential

procedures (see Section 4), we proceed in ignorance of the potency value of a com-

pound unless it is selected. Potency values of unselected compounds will be used only

in the final step when we validate the procedures.

3. RECURSIVE PARTITIONING

The analysis of data sets with over 70000 observations and about 8000 inde-

pendent variables is a formidable computational task. The underlying relationship

between the response (potency) and the independent variables (atom pairs) could

involve nonlinearities, thresholds, and interactions among the explanatory variables.

Other complications result from the possibility that compounds may bind in different
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ways: some compounds in the data set may act through one mechanism while others

act through a different mechanism. Classical methods such as regression analysis,

stepwise regression, or principal components regression are likely to be compromised

in these circumstances depending on how the predictor variables are chosen.

A less parametric method, capable of identifying important structural variables

and their interactions, is recursive partitioning, a tree structured approach to regres-

sion and classification. The observations are partitioned by a sequence of splits (using

the independent variables) resulting in a set of terminal nodes. The path leading to

each terminal node reveals structural information about the compounds living in that

node. This structural information can then be associated with the specific molecular

features that divide the compounds into activity classes.

FIRM (Formal Inference-based Recursive Modeling) was proposed by Hawkins

and Kass (1982) and is a recursive partitioning algorithm based on hypothesis testing

(see also Hawkins, 1994). The algorithm is fast and can be modified to analyze large

numbers of descriptors. In our case the explanatory variables are binary and the data

matrix consisting of 70223 rows (corresponding to compounds) and 8189 columns

(corresponding to atom pairs) is sparse. According to Figure 2, most compounds

have fewer than 250 atom pairs and thus most rows will contain fewer than 250

ones. The sparsity of the matrix enabled Rusinko, Farmen, Lambert, Brown, and

Young (1999) to develop specialized software, Statistical Classification of Activities

of Molecules (SCAM), for rapid computation of a recursive partitioning.

Other versions of recursive partitioning have been implemented in the literature.

Most notable of these is CART (Classification And Regression Trees) by Breiman,

Friedman, Olshen, and Stone (1984), which can be applied to both continuous and

categorical response data sets. CART relies on sophisticated cross-validation and

pruning techniques to determine the size of the final tree and its terminal nodes.

The very general nature of CART makes it a very flexible tool that can be used in a

wide variety of applications, but might not be the most efficient choice for the types

of data we are working with. In addition, SCAM has a built-in utility that allows

the medicinal chemist to interactively view the chemcical structures of molecules.
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Detailed comparisons of CART and SCAM with respect to computing time are still

outstanding.

SCAM uses a simple t-test splitting criterion to select a binary split at every

intermediate node. The t-test is done with a Bonferroni adjusted p-value (see Westfall

and Young, 1993, for example) to protect against excessive splitting resulting from

the multitude of possible splits. The resulting SCAM tree looks like a CART tree

with binary splits. The criterion for the best split of a node is similar, but the pruning

mechanisms and stopping rules are different.

As an example, consider 10000 compounds selected randomly from all 70223

molecules. The result of recursive partitioning applied to this example is displayed as

a tree in Figure 3. The first step of the algorithm splits the data set into two groups

according to the absence (left branch) or presence (right branch) of atom pair AP1.

Based on a two sample t-test, the Bonferroni adjusted p-value associated with this

split is 2.25E-6. Splits are called significant when the adjusted p-value is below 0.01.

Splits on the same atom pair are possible in different parts of the tree.

The raw p-value, also reported in each node, is 3.32E-10. Bonferroni adjustment

multiplies this by the number of splits that are possible at each node. Note that

the number of possible splits is less than 8189 because, among the 10000 selected

compounds, some of the explanatory variables might either be constant or perfectly

correlated. The adjustment used counts and removes perfectly correlated variables as

well as variables that are constant zero or one.

The SCAM program allows to control the Minimum Split Size (MSS), which is

defined as the minimum number of compounds required to be in each daughter node

after the split. A low value of MSS can create splits that put too few compounds

in one of the two daughter nodes and might thus focus on outliers rather than more

general structural features. On the other hand, if the value is too high the search for

a significant split might fail. We followed a general process of setting MSS relatively

large at the beginning of the tree building process and progressively decreased MSS

as the tree progressed. Splitting of a tree stops when MSS equal to two does not allow

further splits of any of the current terminal nodes.
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Fig. 3. SCAM tree based on 10000 randomly selected compounds. Not shown are two further
splits of node N0000 obtained by setting MSS equal to two. This leads to a final junk pool of
size 8573.

In the display of the tree, the number of compounds is reported for each node.

Also given are the mean of the potencies in the node, the standard deviation, and

the standard error of the mean. We are particularly interested in splits where the

compounds in the node on the right (atom pair present) show a higher average than

those in the left node (atom pair missing). These are called positive rules, because

they identify atom pairs associated with (high) potency. As an example, the splits

of nodes N0 and N11 in Figure 3 give positive rules. Similarly, the presence of an

atom pair leading to a significantly lower average than its absence will be called a

negative rule, see for example the splits of nodes N00 and N10 in Figure 3. The

leftmost terminal node N0...0 is not defined by the presence of any atom pairs (no

positive rules); we refer to it as the “junk” node.
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Using the tree2, any untested compound is predicted to belong to the terminal

node determined by its atom pair description, and its potency is predicted to be the

average potency in that terminal node. Presented with an untested compound, the

tree will predict the potency. Additionally, the rules defining terminal nodes with

high average potency suggest molecular features important for binding.

The t-test with Bonferroni adjustment replaces the cross-validation and pruning

techniques used in CART and makes computation tractable. The often spectacularly

small p-values encountered in this approach should not be taken too seriously. Our

analysis is exploratory; we want to find good regions of the chemical space and do

not want to be led astray too often. Exceedingly small p-values arise because of the

large sample sizes and also arise when binding is governed by a relatively few sharp

features.

The collection of 70223 compounds under consideration, like many such collec-

tions, does not cover a large part of “chemical space”. Chemists often synthesize

many compounds that are similar to a useful compound so there are likely to be sub-

stantial numbers of closely related compounds in the collection - a collection is more

like a star cluster or galaxy than a uniform random set. Nonetheless, the methodol-

ogy we use, in essence an exploratory device, has useful implications as we shall see

below.

4. DESIGNING A SEQUENTIAL SCREENING SCHEME

The first stage of a sequential approach as depicted in Figure 1 requires spec-

ification of an initial sample size and a strategy to select the sample. Once done,

and the potencies obtained, designing a second stage of sampling should exploit the

information gathered in the first stage. This process can be continued over several

cycles of selection.
2A tree as shown in Figure 3 can also be regarded as a (linear) regression tree by taking

log(potency) = γ0 + γ1(1 − X1)(1 − X3)(1 − X7)X8 + γ2(1 − X1)(1 − X3)X7 + γ3(1 − X1)X3

+ γ4X1(1 − X2)(1 − X4)(1 − X6) + γ5X1(1 − X2)(1 − X4)X6

+ γ6X1(1 − X2)X4 + γ7X1X2(1 − X5) + γ8X1X2X5 + error.

Here Xk is the binary explanatory variable indicating whether the kth atom pair occurs in a compound
or not, k = 1, . . . , 8. The least squares estimates of γ0, γ1, . . . , γ8 are related to the average potencies
in the terminal nodes from left to right.
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A general and more encompassing sequential decision approach would specify

appropriate loss functions, perhaps a prior distribution on the function describing the

connection between structure and activity, and compute solutions. It is unclear to us

whether a procedure is available that is computationally feasible for the problems of

the scale presented here.

For the testbed problem described in Section 2 we will consider five factors that

could play an essential role in defining a sequential strategy. To carry out an initial

screening study to determine the most relevant of those factors, we will consider each

of them at only two levels.
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N1 Number of first stage samples

In determining an initial sample size on heuristic grounds we took into account two

conditions. First, since the analysis based on the initial sample relies on constructing

a tree, this tree should have several terminal nodes with positive rules in order to be

useful. Second, practicing chemists believed that far more than 10000 (of the more

than 70000) compounds would have to be tested. After careful consideration, we

chose the two levels of N1 to be 5000 and 10000.

D1 Design of first stage

The design for the first stage sample can depend only upon the information about the

chemical structures available. Given a distance on the space of compounds we could,

in principle, select an optimum set following criteria and methods described in John-

son, Moore, and Ylvisaker (1990) or Haaland, McMillan, Nychka, and Welch (1994).

Similarity indices such as the ones described in Finn (1996) could provide such mea-

sures of distance between compounds. But the computational effort required to obtain

designs that optimize some criterion is beyond current capabilities for problems of the

scale facing us. We therefore introduce two alternative strategies.

The first strategy rank orders the compounds by their Burden numbers. Then,

starting with the compound with the largest Burden number, we successively choose

every 7th compound until a sample of size 10000 is obtained. The design of size 5000

is obtained by selecting every other compound from the set of size 10000. We refer

to this method as systematic sampling by Burden numbers, SSBN.

The second strategy uses clustering, ideally to form clusters of compounds similar

within the cluster but dissimilar between clusters. Monothetic clustering as described

in Kaufman and Rousseeuw (1990) seemed an appropiate tool for the binary atom pair

descriptors at hand. However, different from their approach, we define the similarity

between two compounds as the ratio of the number of atom pairs they have in common

and the total number of atom pairs occurring in either of the two compounds. This

index dates back to Jaccard (1908) but nowadays gains increasing popularity as the

Tanimoto coefficient, see for example Van Drie and Lajiness (1998). It is used because

of the asymmetry in the descriptors: For two molecules, having an atom pair in
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common is more informative than both of them having the same atom pair missing.

We refer to this clustering on atom pairs by CLAP.

Approximately the same number of compounds was selected from each cluster to

obtain a starting set of 10000. The selection within each cluster was made based on

the rank ordering by Burden numbers as described above. A first stage design of

size 5000 was obtained by choosing every other compound within each cluster.

ST Number of stages

In the normal course of business it is impractical to employ a fully sequential procedure

or even one that requires more than two or three stages (counting the initial stage)

of selection and assay. Therefore, the two levels of ST are 2 and 3.

N2 Sample size at additional stages

An arbitrary decision was made to restrict attention to procedures that either take

a total of 2500 or 5000 new samples after the first stage with equal numbers at both

stages 2 and 3 if ST=3. Thus, a three stage procedure with 2500 new samples means

that 1250 samples are taken at each of the two additional stages.

D2 Design of additional stages

Which compounds to select at the subsequent stages needs attention. We start by

defining a good node as one where the average potency (the observed average from

the tested compounds of earlier stages ending up in this node) is greater than 1.05.

This value is chosen rather arbitrarily and approximately corresponds to the upper

empirical 15% point of the data. There are two types of nodes remaining: the poor

nodes and the junk node. All untested compounds are classified (predicted) to lie in

one of the terminal nodes.

It appears reasonable to select the second stage sample from those compounds

predicted to lie in the good nodes. However, there may be insufficient numbers of

such compounds. Moreover, there may be many good compounds in the other nodes,

particularly in the junk pool. Accordingly, we decided to compare two different strate-

gies. In one strategy we select (if possible) 90 percent of the additional compounds

from good nodes of the previously constructed tree and the other 10 percent from the

remaining nodes (90/10). The second strategy aims to select equal numbers from the
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Table 2

Five factors characterizing a sequential screening scheme. Each factor is stud-
ied at two levels.

Factor Symbol Levels
Number of first stage samples N1 5000, 10000

Design of first stage D1 SSBN, CLAP
Number of stages ST 2, 3

Sample size at additional stages N2 2500, 5000
Design of additional stages D2 90/10, 50/50

good nodes as from the remaining nodes (50/50). More explicitly:

(I) Good node selection: Start with the good node with highest average potency.

Compounds predicted to be in this node are chosen until 90 (or 50) percent of

the N2/(ST − 1) additional samples are found. If there are too few compounds

predicted to be in this node, proceed to the good node with the next largest

average. If there are too few compounds found in the good nodes to date,

continue sampling from the terminal node (but not the junk node) with the

next largest average potency.

(II) Similarity selection: The remaining 10 (or 50) percent of the N2/(ST− 1) addi-

tional samples are selected from terminal nodes not sampled in (I). To do so, all

(tested) compounds from previous stages that fall in these nodes are rank or-

dered by potency. Then, starting with the most potent of these compounds, we

take the five nearest neighbors based on Burden numbers and continue until the

desired number of N2/(ST− 1) additional samples is reached. The anticipation

is that chemical structures are added that have atom pair features potentially

leading to positive rules in the next round of recursive partitioning; it is similar

to the practice of testing new compounds with substructures that are similar to

active compounds.

A summary of all five factors is provided in Table 2.

Variations on the rules described in (I) and (II) can be explored. For example,

instead of solely using the average potency in a node, the variability might be taken
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into account as well. We will not pursue this point.

5. EXPERIMENTAL LAYOUT AND EVALUATION CRITERIA

In order to investigate the effect of the five factors in Table 2, we could consider all

25 = 32 possible combinations and evaluate the performance of each of the resulting

screening strategies. This would allow the estimation of the main effect of each factor

as well as all higher order interactions. To reduce the computational effort and, on

the premise that interaction effects of order higher than two may be negligible, we use

a half fraction of the complete 25 design (Box and Draper, 1987, page 148), leading

to 16 different screening strategies. These are shown in the left part of Table 3. This

design allows the identification of all main effects and all two factor interactions.

Each of the 16 rows in Table 3 fully describes a screening strategy. Recursive

partitioning is applied to the total of N compounds assayed. The resulting tree is

then used to predict the activity of the remaining 70223 − N compounds. Of those,

the molecules predicted to be in good nodes will be screened.

As mentioned earlier, lead compounds identified in screening campaigns gener-

ally need further structural modifications to improve their biological and chemical

properties. To do so, a medicinal chemist typically starts modifying a compound by

exchanging different functional groups of the molecule. This approach is quite time

consuming and thus only a few different and the most promising leads resulting from

a screening campaign can be considered. Due to these considerations, our strategy

focused on identifying the best 100 compounds in a given collection. We refer to these

as the top100 compounds and the goal is to identify as many of these as possible. The

potencies of the top100 compounds for the present data set range from 1.682 to 3.102

on the logged scale.

From Table 3, note that the total number NT of compounds tested for each of

the 16 runs varies, as it is given by the sum of N and the additional compounds

among the 70223 − N that are predicted to be in good nodes of the final tree. We

therefore compare the actual number of top100 compounds found by each of the 16

strategies to the expected number of top100 compounds we would find by randomly
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Table 3

A 25−1
5 design for five factors leading to 16 different screening strategies and

the total number N of compounds that need testing under each strategy. The
last column gives the results for the evaluation criterion.

Strategy N1 D1 ST N2 D2 N I100
1 10000 CLAP 3 2500 90/10 12500 1.11
2 5000 CLAP 3 2500 50/50 7500 2.06
3 5000 CLAP 3 5000 90/10 10000 1.81
4 10000 CLAP 3 5000 50/50 15000 1.69
5 5000 SSBN 3 2500 90/10 7500 0.66
6 10000 SSBN 3 2500 50/50 12500 1.07
7 10000 SSBN 3 5000 90/10 15000 1.02
8 5000 SSBN 3 5000 50/50 10000 1.31
9 5000 CLAP 2 2500 90/10 7500 1.26
10 10000 CLAP 2 2500 50/50 12500 1.85
11 10000 CLAP 2 5000 90/10 15000 1.31
12 5000 CLAP 2 5000 50/50 10000 1.71
13 10000 SSBN 2 2500 90/10 12500 0.83
14 5000 SSBN 2 2500 50/50 7500 1.29
15 5000 SSBN 2 5000 90/10 10000 1.33
16 10000 SSBN 2 5000 50/50 15000 1.71

selecting NT molecules among the 70223. More formally, we define

I100 =
number of top100 compounds found by systematic screening

expected number of top100 compounds found by random screening

as being the improvement of a systematic screening strategy over random sampling.

This is the quantity reported in the last column of Table 3. Section 6 presents the

analysis of these results.

6. EXPERIMENTAL ANALYSIS

To gain an initial impression of the most important effects, we did an analysis

of variance on I100. All main effects and all two factor interactions were included.

Figure 4 shows a half normal probability plot of the resulting effects. Two factors,

the design of the first stage (D1) and the design of the additional stages (D2) appear

to be most important.
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Fig. 4. Half normal probability plot of the main effects and two-factor inter-
action effects for I100.

In Figure 5, boxplots for the two levels of each factor display the main effects.

Each boxplot is based on eight values. Figure 5 supports the effects found for D1

and D2. Clustering on atom pairs (CLAP) appears superior to systematic sampling by

Burden numbers (SSBN). This seems plausible, as atom pairs provide more detailed

information on the chemcial structure of a compound than the univariate Burden

number. The result could be compound selections that are more representative of the

entire collection, which in turn leads to a better SCAM model.

The 90/10 split at the second stage design seems less effective than the 50/50 split.

A three stage procedure does not appear more effective than a two stage procedure.

For later studies we therefore elect to not go beyond two stages and we also adopt

the 50/50 split for D2.

Conclusions about N1 and N2 are unclear. Whether N1 is 5000 or 10000 does

not seem to matter much. The effect of N2 is ambiguous but leans to the choice of

N2=5000. As expected from Figure 4, interaction plots (not shown here) did not

show evidence of strong interactions among the five factors.

Some shortcomings of our analysis have led to additional experiments aiming at

confirming the above findings. These are the subject of Section 7 below.
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Fig. 5. Main effects of each factor for I100.

7. ADDITIONAL EXPERIMENTATION

Our feeling for the need of additional experimentation primarily arose from the

fact that all results reported in Table 3 are essentially based on two initial compound

selections of size 10000, chosen according to SSBN and CLAP. This leads to depen-

dence among the reported values for I100 and does also not reflect the variability that

might result from the choice of different initial designs. The results based on anal-

ysis of variance might thus be questionable. Additional exploratory analyses were

therefore carried out and are the subject of this section. The main findings can be

summarized as follows.

1. The method chosen for the selection of the initial design appears unimportant

(see Subsection 7.1). Systematic approaches show no benefits over a random

selection. The effect of D1 shown in Figures 3 and 4 is thus spurious.
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2. No general recommendation is possible on the size of the initial design (see

Subsection 7.2). Very small samples can suffice at the first stage if they contain

structure-activity information.

3. Sequential sampling is beneficial compared to applying recursive partitioning to

a one-step selection (see Subsection 7.3).

7.1 Initial sample design

Figure 5 above suggests evidence for a strong effect due to the choice of the initial

design scheme. This effect might be spurious, as the results in Table 3 are based on

fixed initial designs of sizes 5000 and 10000 for each of CLAP and SSBN. Possible

variability in the response could thus arise if the starting points used for selecting those

designs are varied. In particular, for D1=SSBN, we could pick every 7th compound

beginning with the molecule having the 2nd largest rather than the largest Burden

number.

To fully replicate the 16 runs several times with varied SSBNs and CLAPs was

computationally prohibitive because of the logistical complexity of the experiment.

Instead we experimented by fixing N1=10000, ST=2, N2=5000, and D2=50/50. We

then generated four different SSBN designs, four different CLAP designs and four

independent random designs (RAND). The four SSBN designs (see Section 4) were

generated by picking every 7th compound beginning with the molecule having the

kth largest Burden number, k = 1, 2, 3, 4. Similarly, to select the four CLAP designs,

we simply changed the starting compound for the systematic Burden number sam-

pling within each cluster without changing the underlying clustering of the 70223

compounds. Each of the twelve samples is used as a starting design (D1) for our

sequential screening method; the results obtained for I100 are summarized in Table 4.

All three methods produce similar means and substantial variability. The smaller

variability associated with CLAP does not overcome its computational disadvantages.

The most surprising result is that random selection does about as well as the proce-

dures using the chemical structures of the compounds. One reason may be that the

designs all try to cover a very high (over 8000) dimensional space and none can do

so very effectively, see Young, Farmen, and Rusinko (1996). The near equivalence of
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Table 4

Response I100 for three different methods of selecting the initial sample, each
replicated four times.

Sample SSBN CLAP RAND
1 1.17 1.17 0.97
2 1.51 1.33 1.34
3 1.71 1.48 1.79
4 1.87 1.69 2.00

mean 1.57 1.42 1.52
stdv 0.30 0.22 0.46

these three first-stage design schemes has been borne out when using different assays

and other sets of compounds as well, see Section 8.

7.2 Initial sample size

Figure 5 indicates little effect on I100 from changing the size of the initial sample

from 5000 to 10000. To explore this further we fix the total sample size N at 15000,

and let the initial sample size vary (N1=5000, 7500, 10000). The levels for the other

factors were set at D1=SSBN, ST=2, and D2=50/50. Again, four repeated samples

were taken as in Table 4; the results are summarized in Table 5.

As the results in Table 5 show, increasing the number of initial compounds se-

lected does not necessarily improve the overall hit ratios. The reason is that even a

large sample might provide little information about the relationship between chemical

structure and activity and thus lead to a poor selection of compounds for the later

stages. For N1=10000, closer inspection of the trees showed that among the four ini-

tial SCAM trees three were “good” in the sense of having at least three good terminal

nodes (see the discussion of D2 for the definition of a “good” terminal node). Only

two good initial SCAM trees turned up when N1=5000 and only one when N1=7500.

This is what is reflected in the results of Table 5.

A conclusion that can be drawn from this experiment is that the initial sample

size should be large enough to produce a tree with an adequate number, three or

more apparently, of good terminal nodes. A possible approach would be to select an
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Table 5

Response I100 for three different initial sample sizes while keeping the total
sample size fixed.

Sample N1=10000 N1=7500 N1=5000
1 1.17 0.97 1.18
2 1.51 1.06 1.23
3 1.71 1.08 1.42
4 1.87 1.32 1.46

mean 1.57 1.11 1.32
stdv 0.30 0.15 0.14

initial sample of size 2500 say, build a tree and examine its adequacy. Take another

sample of 2500 if the tree is inadequate. This runs against the obstacle of setup costs

for each stage but is essential because going ahead with an inadequate tree will be of

little utility.

Table 5 exhibits a decrease in variability as the initial sample size decreases.

Since the total sample size N is fixed, the second stage sample size increases as the

initial sample size decreases. Because the second stage sample is expected to be more

homogeneous than the initial sample, a decrease in variability should be expected.

7.3 Benefits from sequential sampling

Is there a benefit from the sequential strategy? Starting with the compounds

having the 1st, 2nd, and 3rd largest Burden number, we systematically sampled 15000

compounds. The average values and standard deviations obtained for I100 (1.05±0.19)

and I350(1.00±0.14) are significantly worse than the average of the two corresponding

columns headed SSBN in Table 4. There appear to be real benefits from using a

sequential scheme

8. CONFIRMATION EXPERIMENTS

Two experiments are used to validate the findings of the proposed precedures. In

the first experiment, using the same set of 70223 compounds and the methods devel-

oped and analyzed above, a second assay was explored to confirm the effectiveness of

the approach as well as the earlier conclusion that neither the initial sample design
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nor the initial sample size play an important role. The factor ST was fixed at two

and N2 was set at 5000. For D2 we used (I) and (II) (see Section 4) together with

a 50/50 split. In the second experiment, a different set of 52883 compounds, each of

which was tested in two different assays, are studied.

In the first confirmation experiment, the combinations of the levels of N1 and D1

produce four runs. We also included a run with the initial design being a random

sample of size 5000. Each of the five strategies was then replicated three times. The

results are shown in Table 6. For the first four runs, the replicates were produced

similar to those in Table 4. Note that strategies 2 and 3 in Table 6 correspond to

strategies 12 and 16 in Table 3.

Table 6

A confirmation experiment exploring N1 and D1 based on the same 70223 com-
pounds tested in a different assay.

Strategy N1 D1 I100 mean stdev
1 10000 CLAP 1.85 1.95 2.27 2.02 0.22
2 5000 CLAP 1.90 2.16 2.18 2.08 0.16
3 10000 SSBN 1.93 1.94 2.17 2.01 0.14
4 5000 SSBN 1.63 2.08 2.28 2.00 0.33
5 5000 RAND 1.66 1.71 2.57 1.98 0.51

Considering the three replicates for each run in Table 6 as independent, an anal-

ysis of variance of the first four rows of the data reveals no significant effects. Again,

the surprising fact that RAND, while more variable, appears to be as good as CLAP

or SSBN for D1. For this assay, the choice of N1=5000 is as productive as choos-

ing N1=10000, reflecting the fact that N1=5000 already produced an adequate tree

with three good terminal nodes.

For further verification, we studied a set of 52883 compounds with two different

assays. We chose ST=2. Implementing the approach suggested in Section 7.2, we

used N1=2500 and found that no further augmentation was necessary. We chose

N2=N1, dropped CLAP and compared SSBN and RAND. For D2 we used (Ia) and (II)
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together with a 50/50 split, where (Ia) is a modification of (I) 3.

(Ia) Select compounds among those that are predicted to be in the node with the

highest average potency until 50 (or 90) percent of the N2/(ST − 1) additional

samples are found. If the number of compounds in this node is not sufficient,

go to the node with the next highest potency provided its average potency is at

least as large as the average potency of the sample used to construct the tree.

Continue as long as possible; otherwise go to step (II).

Each of the two strategies was repeated four times. The resulting ratios I100 are shown

in Table 7.

Table 7

Response I100 for a second set of 52883 compounds screened in two different
assays.

Sample Assay 1 Assay 2
SSBN RAND SSBN RAND

1 4.16 4.00 2.07 1.91
2 4.92 5.21 3.43 1.83
3 4.42 2.77 2.82 2.33
4 4.10 3.80 1.63 2.59

mean 4.40 3.95 2.49 2.17
stdev 0.37 1.00 0.80 0.36

Although different for the two assays, the results again demonstrate the benefits

from the sequential sampling scheme. Compounds are often screened in multiple

assays to explore different biological properties. A given set of descriptors might not

be equally effective in capturing the relevant chemical structures leading to favorable

responses in all assays. More importantly, the relative assay variability can vary

among assays affecting the SAR and the rate at which desirable compounds will be

detected. As Table 7 again shows, a systematically selected initial sample does not

lead to substantive improvements over a random selection.

The hit ratios considered so far evaluate the performance of the entire screening
3The modification is to accommodate the case when there may be very few compounds predicted

to be in good terminal nodes of the first stage tree.
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strategy. For the 52883 compounds data sets, we also considered a different criterion

for comparing performance. The goal is to evaluate the gain achieved after the initial

sample, thus focusing on the ability of SCAM to direct the search towards potent

areas of the chemical space. In the first stage sample of size 2500 selected by SSBN

we found 5 of the top100 compounds. With N2=2500 a final tree is built and of the

remaining 47883 molecules 728 are predicted to be in good nodes. These are subjected

to screening and among the total of 3228 compounds assayed after the first stage, 40

were found to be among the top100. Therefore, using SCAM to preselect compounds

for assaying, top100 compounds turn up at an average rate of 40/3228=0.0124 or, in

other words, one out of about 80 compounds assayed is among the top100. Without

the initial SCAM tree to virtually prescreen the 52883-2500=50383 compounds, we

might assay all of them to find all the remaining 100-5=95 top100 compounds. On

average, top100 compounds would be discovered at a rate of 95/50383=0.0019, which

corresponds to one molecule out of about 526. The SCAM gain rate relative to

random sampling is now defined as (40/3228)/(95/50383)=6.57. Table 8 summarizes

the SCAM gain rates G100 for both assays. This indicates that SCAM can rapidly and

efficiently guide the process of compound selection to active regions of the chemical

space. This will be especially useful, we believe, in dealing with virtual libraries.

Table 8

SCAM gain rate G100. The values are arranged in correspondence to those in
Table 7.

Sample Assay 1 Assay 2
SSBN RAND SSBN RAND

1 6.57 5.73 3.23 2.51
2 7.61 8.16 5.51 2.18
3 6.94 4.21 4.04 3.35
4 6.27 5.96 2.42 4.27

mean 6.85 6.01 3.80 3.08
stdev 0.58 1.63 1.32 0.94
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9. OTHER DIRECTIONS

Several issues need fuller exploration. One is the use of multiple trees in place

of the “greedy” single tree used above. Recently Tatsuoka, Gu, Sacks, and Young

(2000) introduced predictors based on multiple trees, tailored for accurate prediction

of extreme values. Variabilites of hit ratios from different initial samples might come

from the lack of stability of a SCAM tree and the difference in the number of additional

compounds predicted to be in good nodes. Tatsuoka et al. (2000) note that predictors

based on multiple trees are more accurate and less variable than the single SCAM

tree. To reduce the variabilities, a sequential strategy could be used in conjunction

with multiple tree predictors; such a study is now underway.

A second major question is connected with the implications of measurement errors

in the assay. These errors ought to be incorporated into the formulation of objective

functions for comparing strategies. Practice thus far indicates that, even without

taking the errors into account, the sequential strategies are effective and are currently

in use at GlaxoWellcome (Jones-Hertzog et al., 2000).

A third issue to be addressed is the effect of scaling up: treating hundreds of

thousands of compounds, not “merely” 70000. Combinatorial chemistry (Service,

1996) is one arena where such scales (and greater ones) will be present. Combinatorial

schemes allow the electronic generation of databases of compounds by considering all

combinations of a given group of molecular building blocks. Because synthesis of

molecules is not cheap (it is even more expensive than typical assays), new questions

will arise here if we take the cost of synthesis into account.

In practice, biological activity is not the only quantity of interest. The same com-

pounds are commonly tested in several assays to determine other biological properties

such as toxicity. Sequential screening schemes that allow the handling of multivariate

measures are currently under investigation.

A modified version of recursive partitioning allowing for the extraction of multi-

ple chemical features at each node has recently been published by Cho, Shen, and

Hermsmeier (2000). Gobbi, Poppinger, and Rohde (1997) used a genetic algorithm

to identify lead compounds. Although their approach certainly also has the ability to
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identify good starting points for future optimization by medicinal chemists, a disad-

vantage is that it does not clearly pinpoint the relevant structural features. Friedman

and Fisher (1999) discussed a new algorithm for identifying regions where some re-

sponse is maximized over a high dimensional space. Their approach can be seen as a

generalization of recursive partitioning, as it divides the search space in more general

types of “boxes”. The method appears effective but has, to the best of our knowledge,

not yet been applied to problems in the area of drug discovery.

Different statistical techniques for modeling structure-activity relationships are

used at the later “compound optimization” stage of the drug development process,

where the medicinal chemists systematically modify hits resulting from initial screen-

ing campaigns in order to improve their biological properties. The number of com-

pounds to be dealt with might be in the hundreds only and the molecules are gener-

ally also more homogeneous in terms of their chemical structure. The most frequently

used statistical modeling tools at this point are Regression Analysis (Patankar and

Jurs, 2000), Partial Least Squares (PLS; Helland, 1990), Neural Networks (Kauffman

and Jurs, 2000), or combinations thereof (Viswanadhan, Mueller, Basak, and Wein-

stein, 1996). Many variants of these have been developed and tuned to the needs of

the chemists. The recent conference proceedings of the 12-th European Symposium

on Quantitative Structure-Activity Relationships (Gundertofte and Jørgensen, 2000)

cover applications of all of these.

10. SUMMARY AND CONCLUDING REMARKS

Exhaustive screening of libraries and other large sets of chemical compounds is

not uncommon for finding good lead compounds in a drug discovery process. Despite

the automation of the processes of synthesizing and assaying compounds, inefficiencies

and costs can become prohibitive. Sequential screening strategies are potentially valu-

able for finding potent lead compounds while controlling costs. A class of procedures

studied here combines simple chemical descriptors of molecules, recursive partition-

ing and careful computational algorithms to produce ad hoc sequential designs that

are effective. The potential merits of such tactics are now receiving some attention

(Walters, Stahl, and Murko, 1998). What we have presented here are studies of how
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such methods can be implemented and questions that should be addressed. This is

an arena where statistical insight can be influential and one that generates a variety

of unexplored, interesting problems.

Due to proprietary rights, the data sets used in this work can unfortunately not

be made available for public use. However, a data set containing activity data and

structural information of over 30000 compounds is available from the homepage of

the National Cancer Institute at http://dtp.nci.nih.gov.
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