
Bounds for Cell Entries in
 Contingency Tables Given

 Marginal Totals and
Decomposable Graphs

Adrian Dobra and Stephen E. Fienberg

Technical Report Number 108
October, 2000

National Institute of Statistical Sciences
19 T. W. Alexander Drive

PO Box 14006
Research Triangle Park, NC  27709-4006

www.niss.org

NISS



Bounds for cell entries in contingency tables given
marginal totals and decomposable graphs
Adrian Dobra and Stephen E. Fienberg*

Department of Statistics and Center for Automated Learning and Discovery, Carnegie Mellon University, Pittsburgh, PA 15213-3890

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 27, 1999.

Contributed by Stephen E. Fienberg, August 2, 2000

Upper and lower bounds on cell counts in cross-classifications of
nonnegative counts play important roles in a number of practical
problems, including statistical disclosure limitation, computer
tomography, mass transportation, cell suppression, and data
swapping. Some features of the Fréchet bounds are well known,
intuitive, and regularly used by those working on disclosure
limitation methods, especially those for two-dimensional tables.
We previously have described a series of results relating these
bounds to theory on loglinear models for cross-classified counts.
This paper provides the actual theory and proofs for the special
case of decomposable loglinear models and their related inde-
pendence graphs. It also includes an extension linked to the
structure of reducible graphs and a discussion of the relevance
of other results linked to nongraphical loglinear models.

Fréchet bounds u loglinear models u reducible graphs u disclosure limitation

1. Introduction

Upper and lower bounds on cell counts in cross-
classifications of positive counts given certain marginal

totals play important roles in a number of the disclosure
limitation procedures, e.g., see the various papers in the 1998
special issue of The Journal of Official Statistics (1). In that
context, if a cell count is small and the upper bound is ‘‘close’’
to the lower bound, the intruder knows with certainty that
there is only a small number of individuals possessing the
characteristics corresponding to the cell and this may pose an
undo risk of disclosure of the identity of these individuals.
Similarly, such bounds also arise in a variety of other contexts
including mass transportation problems (2), computer tomog-
raphy (3), ecological inference in the social sciences (4), causal
inference in imperfect experiments (5), and are the focus of the
probabilistic literature on copulas (6). Much of the work on
this problem has been focused on bounds in the case when the
marginal totals are nonoverlapping.

The class of bounds we describe is a generalization of bounds
usually attributed to Fréchet (7), whose original presentation was
in terms of cumulative distribution functions (c.d.f.) for a
random vector (D1, D2, . . . , Dm) in Rm:

F1,2, . . . ,m~x1, x2, . . . , xm!

5 Pr~D1 # x1, D2 # x2, . . . , Dm # xm! , [1]

which are essentially equivalent to contingency tables when the
underlying variables are categorical. For example, suppose we
have a two-dimensional table of counts, {nij} adding up to the
total n11 5 n. If we normalize each entry by dividing by n and
then create a table of partial sums, by cumulating the proportions
from the first row and first column to the present ones, we have
a set of values of the form [1]. Thus, Fréchet bound results for
distribution functions correspond to bounds for the cell counts
where the values {xi} in [1] represent ‘‘cut-points’’ between
categories for the ith categorical variable. Bonferroni (8) and

Hoeffding (9) independently developed related results on
bounds.

We are interested in the following generalization of
the Bonferroni–Fréchet–Hoeffding bounds. Consider a k-
dimensional contingency table nK arranged as a linear list of
m counts. The random variable assigned to the ith cell will
be denoted Yi. Let 6 be a system of nonempty subsets of
{1, 2, . . . , m}, such that øS[6 S 5 {1, 2, . . . , m}. The Fréchet
class ^(6) (6) is the class of m-variate distributions with fixed
marginals {FS : S [ 6}, where FS is the joint c.d.f. of random
variables {Yi : i [ 6}. Because the indices of the margins being
fixed might be overlapping, we have to impose a consistency
constraint, namely

pS1 ù S2
FS1

5 pS1 ù S2
FS2

, whenever S1,S2 [ 6,S1 ù S2 Þ À,

where pS means integrating out the variables that do not
appear in S. Following Rüschendorf (10), for a measurable
function f: Rm3 R, we define M(f) 5 sup {* fdF : F [ ^ (6)}
and m(f) 5 inf {* fdF : F [ ^ (6)}. Our goal is to determine
M(f) and m(f) in the particular case when f is the identity
function on the set R 3 . . . 3 (2 `,yi] 3 . . . 3 R. This is
equivalent to determining sharp upper and lower bounds for
the ith cell in the cross-classification nK, given the marginals
{nS : S [ 6}.

Fienberg (11) noted that there is an intimate link between
bounds for non-negative cell entries in a cross-classification
subject to marginal constraints, and maximum likelihood
estimates for the same cell entries under the loglinear model
whose minimal sufficient statistics are the margins. This link
seems especially clear in the special case of cross-classifications
of non-negative counts and loglinear models for their expec-
tations that are decomposable, i.e., for tables where estimated
expected values can be explicitly written as a function of the
marginal totals (e.g., see refs. 12–14). Such models are a special
subclass of the graphical loglinear models (e.g., see refs. 14 and
15), and these models are representable in terms of graphs that
display conditional independence relationships. We present
the results here in terms of graphs and explain how they apply
to the more general situation. In the next section, we introduce
some basic notation for the corresponding theory of decom-
posable graphs. Then, in Section 3, we give results on Fréchet
bounds when the margins correspond to those that character-
ize decomposable loglinear models. Sections 4 and 5 extend
the approach to reducible graphs and provide some explicit
examples. In the final section, we present some conjectures on
how these bound results can be extended to cases correspond-
ing to bounds for cross-classifications that are not quite
representable in graphical form but that utilize our results for
reducible graphs.

Abbreviations: c.d.f., cumulative distribution function; PEO, perfect elimination ordering;
MCS, maximum cardinality search; MLE, maximum likelihood estimate; mp-, maximal
prime.
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2. Basic Graph Theory Results
In this section, we begin with some basic definitions and nota-
tions for graphs and then define decomposable graphs and
present some results that characterize them.

2.1. Graph Terminology. A graph is a pair & 5 (V, E), where V is
a finite set of vertices and E # V 3 V is a set of edges linking
the vertices. Our interest is in undirected graphs, for which (u, v)
[ E implies (v, u) [ E. For any vertex set A # V, we define the
edge set associated with it as

E~A! :5$~u,v! [ Euu,v [ A% .

Let &(A) 5 (A, E(A)) denote the subgraph of & induced by A.
The section graph &\A :5 &(V\A) is the subgraph of & obtained
by removing a set of vertices A , V from the graph. Two vertices
u, v [ V are adjacent (neighbors) if (u, v) [ E. A set of vertices
of & is independent if no two of its elements are adjacent. The
boundary bd(A) of a subset of vertices A , V is the set of vertices
in V\A adjacent to at least one vertex in A:

bd~A! :5$v [ Vuv¸A and ~u,v! [ E for some vertex u [ A% .

The closure of A , V is cl(A) 5 A ø bd(A). An induced
subgraph &(A) is complete if the vertices in A are pairwise
adjacent in &. We also say that A is complete in &. A complete
vertex set A in & that is maximal is a clique.

Let u, v [ V. A path (or chain) from u to v is a sequence u 5
v0, . . . , vn 5 v of distinct vertices such that (vi21, vi) [ E for all
i 5 1, 2, . . . , n. The path is a cycle if the end points are allowed
to be the same, u 5 v. If there is a path from u to v we say that
u and v are connected. The sets A, B , V are disconnected if u
and v are not connected for all u [ A, v [ B. The connected
component of a vertex u [ V is the set of all vertices connected
with u. A graph is connected if all the pairs of vertices are
connected.

The set C , V is an uv-separator if all paths from u to v
intersect C. The set C , V separates A from B if it is an
uv-separator for every u [ A, v [ B. C is a separator (cut-set)
of & if two vertices in the same connected component of & are
in two distinct connected components of &\C or, equivalently, if
&\C is disconnected. In addition, C is a minimal separator of &
if C is a separator and no proper subset of C separates the graph.
Unless otherwise stated, the separators we work with will be
complete.

Consider a connected graph & 5 (V, E) having a clique
separator C, and let V1, . . . , Vs be the vertex sets of the
connected components of &\C. The subgraphs &(V1 ø C), . . . ,
&(Vs ø C) are the leaves of & produced by C. A graph is bipartite
if its set of vertices can be partitioned into two disjoint subsets
V1 and V2 such that every edge of the graph connects between
a vertex of V1 and a vertex of V2, i.e. V1 and V2 are independent
sets. A tree is a connected graph with no cycles. It has n vertices
and n 2 1 edges. In a tree, there is a unique path between any
two vertices.

2.2. Decomposable Graphs. Decomposable graphs possess the
special property that allows us to ‘‘decompose’’ them into
components or subgraphs and work directly with these com-
ponents. They also allow us to make use of divide-and-conquer
techniques to solve any type of problem associated with such
a graphical structure. The idea is to decompose the graph & in
two possibly overlapping subgraphs &9 and &0 so that no
structural information of the graph is lost when transforming
& into &9 and &0. Furthermore, by ‘‘correctly’’ decomposing &9
and &0, and so on, one ends up with a set of subgraphs of & that
allow for no further decompositions. A set of subgraphs of &
generated in this way is called a derived system of &, while its

elements are called atoms (16). If one does not lose any
information along the way in the decomposition, then one can
solve problems for each atom and then put together the
component solutions to solve a combined problem for the
initial graph &. But first we need to define what we mean by
‘‘correct’’ decomposition.

Definition 1: The partition (A1, A2, A3) of V is said to form a
decomposition of & if A2 is a minimal separator of A1 and A3.

In this case (A1, A2, A3) decomposes & into the components
&(A1 ø A2) and &(A2 ø A3). The decomposition is proper if A1
and A3 are not empty. If A2 is empty, A1 and A3 form two
nonoverlapping connected components.

Throughout the remainder of this section, we will assume
that the graphs we work with are connected. No loss of
generality is incurred because all the results can be applied to
a disconnected graph by applying them successively to each
connected component. We follow closely Blair and Barry (17)
and Lauritzen (18).

Definition 2: The graph & is decomposable if it is complete or
if there exists a proper decomposition (A1, A2, A3) into decom-
posable graphs &(A1 ø A2) and &(A2 ø A3).

Because we require a proper decomposition of the graph at
every step, the components &(A1 ø A2) and &(A2 ø A3) have
fewer vertices than the original graph &, hence the procedure will
stop after a finite number of steps. The smallest nondecompos-
able graph is a cycle with four vertices.

Definition 3: A vertex v [ V is simplicial in & 5 (V, E) if bd(v)
is a clique.

If v [ V is simplicial in & and & is not complete, ({v}, bd(v),
V \cl(v)) is a proper decomposition of &. Simplicial vertices have
very nice and useful properties:

LEMMA 1. (i) A vertex is simplicial if and only if it belongs to
precisely one clique. (ii) Any decomposable graph has at least one
simplicial vertex.

The importance of simplicial vertices in describing the struc-
ture of decomposable graphs will soon become apparent. As-
sume that the graph & has n vertices. An ordering of & is a
bijection from the vertex set V to a set of labels {1, 2, . . . , n}.
Let v1, v2, . . . , vn be an ordering of the vertex set V. The
monotone adjacency set of vi is given by:

madj~vi! 5 bd~vi! ù $vi 1 1, vi 1 2, . . . , vn% . [2]

There is a special class of orderings of & that plays a central role
in the characterization of decomposable graphs.

Definition 4: The ordering v1, v2, . . . , vn is a perfect elimina-
tion ordering (PEO) if vi is simplicial in the graph & ({vi, vi11, . . . ,
vn}) for every i 5 1, 2, . . . , n.

Any decomposable graph is characterized by the possession of
a PEO, as the next result shows.

THEOREM 1. A graph & is decomposable if and only if & has a
perfect elimination ordering.

The maximum cardinality search algorithm (MCS) is a linear-
time procedure for generating a perfect elimination ordering. It
starts with an arbitrary vertex v [ V for which it sets v 5 vn. The
next vertex will be labeled n 2 1 and will be one of the unlabeled
vertices with the maximum number of labeled neighbors. The
ordering v1, v2, . . . , vn generated by continuing in this way will
always be a PEO if the input graph is decomposable.

Let #(&) 5 {C1, C2, . . . , Cp} be the set of cliques of a
decomposable graph & and v1, v2, . . . , vn be a PEO obtained by
applying the MCS algorithm. We will refer to viq

as the repre-
sentative vertex of Cq whenever Cq 5 {viq

} ø madj(viq
). The

following result shows how MCS can efficiently generate the
cliques in #(&) by identifying their representative vertices.

THEOREM 2. [Blair and Barry (17).] Let v1, v2, . . . , vn be a
PEO obtained by applying the MCS algorithm to a connected
decomposable graph &. Then #(&) contains precisely the following
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sets: {v1} ø madj(v1) and {vi11} ø madj(vi11), 1 # i # n 2 1,
for which u madj(vi)u # u madj(vi11)u.

Because MCS labels the vertices of & in decreasing order, the
cliques also will be generated in a decreasing order with respect
to the labels of their representative vertices. More explicitly,
assume that vi1

, vi2
, . . . , vip

are the representative vertices of the
cliques C1, C2, . . . , Cp, respectively, where i1 . i2 . . . . . ip.
The MCS algorithm finds the cliques in #(&) in the order C1,
C2, . . . , Cp. We need to introduce one additional class of sets.

Definition 5: Let V1, . . . , Vk be a sequence of subsets of the
vertex set of a graph & 5 (V, E). Let Hj 5 V1 ø . . . ø Vj, Sj 5
Hj21 ù Vj, and Rj 5 Vj\Hj21. The sequence is said to be perfect
if (i) for all j . 1, there is an i , j such that Sj # Vi, and (ii) the
sets Sj are complete for all j.

The first condition in Definition 5 is known as the running
intersection property. The sets Sj are called the separators of the
sequence.

THEOREM 3. [Lauritzen (14).] Let V1, . . . , Vk be a perfect
sequence of sets that contains all cliques of a graph &. Then for every
j, Sj separates Hj21\Sj from Rj in &(Hj) and hence (Hj21\Sj, Sj, Rj)
decomposes &(Hj).

A total ordering C1, C2, . . . , Cp of the cliques in #(&)
generated by the MCS algorithm will always have the running
intersection property (17). Because C1, C2, . . . , Cp are complete
in &, the vertex sets Sj 5 (C1 ø . . . øCj21) ù Cj will also be
complete, and consequently C1, C2, . . . , Cp is a perfect sequence
of sets. By recursively applying Theorem 3, we obtain that #(&)
is a derived system of &, whereas Sj (j 5 2, . . . , p) is the
corresponding sequence of separators [c.f. the recursive result
described by Rüschendorf (10)]. We note that, although a clique
can appear only once in #(&), a separator can appear more than
once in #(&). Therefore, 6(&) is not really a set, but a ‘‘multiset’’
of separators (17).

3. Generalized Fréchet Bounds for Decomposable Loglinear
Models
Let X 5 (X1, X2, . . . , Xk) be a vector of discrete random
variables. Denote K 5 {1, 2, . . . , k} the index set associated
with X1, X2, . . . , Xk. The random variable Xj can take the values
xj [ {1, 2, . . . , Ij}, for j 5 1, 2, . . . , k. Let JK 5 I1 3 I2 3 . . . 3
Ik and x 5 (x1, x2, . . . , xk) [ JK.

Consider the k-way contingency table nK :5 {nK(x)}x[JK
. We

let a 5 {i1, i2, . . . , ip} denote an arbitrary subset of K, and we
define Xa as the ordered tuple Xa 5 (Xi; i [ a). Similarly, we
denote Ja 5 Ji1

3 Ji2
3 . . . 3 Jip

. The marginal table of counts
na :5 {na(xa)}xa[Ja

corresponding to Xa is given by

na~xa! 5 O
xK\a [ JK\a

nK~xa, xK\a!

We write nab instead of naøb, where a, b # K. The grand total
of the complete table is nÀ.

Assume we are given m possibly overlapping marginal tables
nC1

, nC2
, . . . , nCp

such that C1 ø C2 ø . . . ø Cp 5 K. Moreover,
C1, C2, . . . , Cp are the cliques of a decomposable graph & 5 (K,
E). Let S2, . . . , Sp be the separators associated with (Cj)j. Every
Sj is included in some clique Ci, hence the marginals nS2

, . . . , nSp

will also be fixed.
The class of Fréchet bounds we present is linked with the

theory of decomposable loglinear models. We think of every
vertex i [ K of & as being associated with a variable Xi. The
structural information embedded in & might be interpreted in
the following way: If S separates A1 and A2 in &, then XA1

is
conditionally independent of XA2

given XS. The loglinear model
with minimal sufficient statistics C1, C2, . . . , Cp will be decom-
posable because its independence graph & is decomposable, and
consequently the maximum likelihood estimates (MLEs) will

exist and can be expressed in a closed form (14, 15). We develop
explicit formulas for the tightest upper and lower bounds for the
cell counts in the cross-classification nK provided that the
marginals nC1

, nC2
, . . . , nCp

are known by employing a similar
machinery to the one used for developing formulas for MLEs for
a decomposable loglinear model. This machinery provides us
with the tools we need for extending the usual Fréchet bounds
to more complicated graphical structures.

We begin with a slightly more general statement of the original
Fréchet bound result (2, 11).

THEOREM 4. (FRÉCHET). (i) Let a1, a2 # K such that (a1\a2,
a1 ù a2, a2\a1) is a proper decomposition of the graph & (a1 ø a2).
Then the following inequality holds:

min$na1
,na2

% $ na1a2
$ max$na1

1 na2
2 na1 ù a2

,0% . [3]

(ii) The above inequality provides sharp bounds for the cells in the
contingency table na1øa2

given the marginals na1
and na2

.
If two vertex sets are in two distinct connected components,

they are separated by the empty set. It is not hard to see that
Theorem 4 implies the following result.

COROLLARY 1. (i) If a1 and a2 are two disjoint subsets of K, we
have

min$na1
, na2

% $ na1a2
$ max$na1

1 na2
2 nÀ, 0% .

(ii) The above inequality provides sharp bounds for the cells in the
contingency table na1øa2

given the marginals na1
and na2

.
This immediately generalizes to a graph with any number of

connected components.
THEOREM 5. (i) Let {a1, a2, . . . , am} denote the set of

connected components of the graph &~ ø i 5 1
m ai!. Then the follow-

ing is true:

min$na1
, na2

, . . . , nam
% $ na1a2

. . . am

$ max H O
i 5 1

m

nai
2 ~m 2 1!znÀ, 0J . [4]

(ii) The above inequality provides sharp bounds for the cells in
the contingency table nø i 5 1

m ai
given the marginals na1

, na2
, . . . , nam

.
We are now ready to explore the situation when the minimal

sufficient statistics of a decomposable loglinear model define a
connected graph.

THEOREM 6. Suppose & 5 (K, E) is connected and decompos-
able. Let #(&) 5 {C1, C2, . . . , Cp} the set of cliques of & ordered
in a perfect sequence and 6(&) 5 {S2, . . . , Sp} the corresponding
set of separators. Then

min$nC1
, nC2

, . . . , nCp
% $ nK $ max H O

i 5 1

p

nCi
2 O

i 5 2

p

nSi
, 0J ,

[5]

and these are sharp bounds for the cells in the contingency table nK

given the marginals nC1
, . . . , nCp

.
Proof: By induction. If & decomposes in p 5 2 cliques, then Eq.

5 is a direct consequence of Theorem 4. Suppose we know that
Eq. 5 holds for any connected decomposable graph with p 2 1
cliques. We want to prove Eq. 5 for a graph with p cliques.

Theorem 3 tells us that (Hp21\Sp, Sp, Rp) is a decomposition
of the graph &(Hp) 5 &. By using Theorem 4, we obtain

min$nHp 2 1
, nCp

% $ nK $ max$nHp 2 1
1 nCp

2 nSp
, 0% . [6]
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The cliques of &(Hp21) are C1, C2, . . . , Cp21, and this is a
perfect sequence in &(Hp21). From the induction assumption
that we made, we have

min$nC1
, nC2

, . . . , nCp 2 1
% $ nHp 2 1

$ max H O
i 5 1

p 2 1

nCi
2 O

i 5 2

p 2 1

nSi
, 0J .

[7]

By combining Eqs. 6 and 7, we obtain the desired Eq. 5. Again,
because the bounds in Eq. 6 are the tightest possible for the
counts in table nK, and the same is true for the bounds in Eq. 7
for the cell counts in table nHp21

, we conclude that the bounds in
Eq. 5 are also the tightest bounds for the counts in table nK.

Buzzigoli and Giusti (18) proposed an algorithm, which they
call the shuttle algorithm, that alternates iteratively between
upper and lower bounds, and that when applied to decomposable
structures appears to indirectly exploit the structure implicit in
Theorem 6. But it does not achieve the sharp bounds in as
computationally efficient fashion as we can by using the formula
directly.

At this point we succeeded in developing formulas for the
sharpest bounds when the sets of indices defining the known
marginals define a connected decomposable graph. However,
the connectivity assumption is not by any means essential. We
can extend the definition of decomposable graphs to include
disconnected graphs with all their connected components de-
composable. By employing the maximum cardinality search
algorithm sequentially for every connected component, we can
determine the set of cliques of such a disconnected decompos-
able graph as the union of the sets of cliques associated with the
connected components. The corresponding set of separators can
be obtained in the same way.

The next result provides an explicit formula for the general-
ized Fréchet bounds associated with an arbitrary decomposable
graphical structure. We emphasize that the generalized Fréchet
bounds are sharp bounds given the information that we assumed
we have.

THEOREM 7. (i) Let & 5 (K, E) be a decomposable graph. Then
the following inequality is true:

min$nCuC [ #~&!% $ nK

$ max H O
C [ #~&!

nC 2 ~m 2 1!znÀ 2 O
S [ 6~&!

nS, 0J , [8]

where #(&) is the set of cliques of &, 6(&) is the set of separators
associated with #(&), and m is the number of connected com-
ponents of the graph &. (ii) The above inequality provides sharp
bounds for the cells in the contingency table nK given the marginals
{nCuC [ #(&)}.

Proof: We apply Lemma 6 for each connected component of
&, then Theorem 5 to combine the resulting inequalities. All the
bounds for the marginal tables involved are tight, hence the
bounds in Eq. 8 will also be tight.

4. Reducible Graphs
By exploiting decomposability in an appropriate manner, we
have been able to find sharp bounds for cell counts when some
special sets of marginals characterizing decomposable loglinear
models are given. It is natural to ask ourselves whether we could
develop similar results for reducible graphs, as described in refs.
16 and 19.

Definition 6: A graph & is reducible if & admits a proper
decomposition, otherwise & is a prime graph.

Any complete graph is prime, whereas any disconnected graph
is reducible. By definition, the atoms contained in a derived
system of a graph are all prime. Given that every reducible graph
& might have several derived systems (16), we would like to be
able to isolate one of them that could fully characterize the input
graph &.

Definition 7: A subgraph &(A) is a maximal prime (mp-)
subgraph of &, if &(A) is prime and &(B) is reducible for all B
with A , B # V.

The set of mp-subgraphs of & is contained in every derived
system of &. Moreover, the set of mp-subgraphs of & is always
a derived system of & (19), and consequently it is the unique
minimal derived system. If & is decomposable, the mp-subgraphs
of & are complete, hence the unique minimal derived system of
a decomposable graph contains only its cliques (19).

Section 2 describes a procedure for finding the mp-subgraphs
of a decomposable graph. The order in which the MCS algorithm
identifies the mp-subgraphs along with the set of separators are
needed to reconstruct the original graph from its minimal
derived system. We would like to devise a similar decomposition
algorithm for the more general case when the input graph is
reducible, not necessarily decomposable.

It is easy to see that any decomposable graph is reducible, but
the converse is not true, as we will prove next. Gavril (20)
introduced the family of clique separable graphs in the following
recursive manner.

Definition 8: & 5 (V, E) is a clique-separable graph if (i) & is
a Type 1 or Type 2 graph, or (ii) & has a separator C, and the
leaves of & produced by C are clique-separable graphs.

A graph & is a Type 1 graph if its vertex set can be partitioned
in two subsets V1, V2, such that uV1u $ 3, &(V1) is a connected
bipartite graph, V2 is complete, and every vertex of V1 is adjacent
to every vertex of V2. In addition, & 5 (V, E) is a Type 2 graph
if there exists a partition V1, . . . , Vk of V, such that V1, . . . , Vk
are independent sets in &, and every vertex of Vi is adjacent to
every vertex of Vj, for i Þ j.

By definition, any decomposable graph is also clique-
separable, and any clique-separable graph is reducible. However,
Type 2 graphs are clique-separable but obviously they are not
necessarily decomposable, hence the class of reducible graphs is
much richer than the class of decomposable graphs.

Tarjan (16) has proposed an O(nm)-time method for decom-
posing a reducible graph with n vertices and m edges. The
downside of Tarjan’s algorithm is that it generates an arbitrary
derived system of prime graphs. Leimer (19) has adapted this
algorithm so that the input graph is decomposed exactly into its
mp-subgraphs. A reducible graph & might have several separa-
tors that would induce a proper decomposition of &. If we could
select the ‘‘right’’ separator at every step of the decomposition
procedure, then we would manage to avoid including nonmaxi-
mal prime subgraphs in the final derived system.

Definition 9: [Leimer (19).] Let (A1, A2, A3) be a decompo-
sition of & into the subgraphs &9 5 &(A1 ø A2) and &0 5 &(A2
ø A3). If the mp-subgraphs of &9 and &0 are pairwise different
and if they are all mp-subgraphs of &, then (A1, A2, A3) is called
a P-decomposition and A2 is called a P-separator.

Moreover, a decomposition (A1, A2, A3) is a P-decomposition
if and only if &(A2) is not an mp-subgraph of any of the graphs
&(A1 ø A2) and &(A2 ø A3) (19). If a graph has a decompo-
sition, then it also has a P-decomposition. Therefore it is possible
to decompose a reducible graph by means of P-separators, and
in this case we are guaranteed to obtain the minimal derived
system of maximal prime subgraphs.

Assume that we somehow managed to order the vertex sets of
the mp-subgraphs &(V1), . . . , &(Vk) of a graph & in a perfect
sequence. By using the same notations as before, we have the
following result.
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THEOREM 8. [Leimer (19).] (Hk21\Sk, Sk, Rk) is a P-
decomposition of & into &9 5 &(Hk21) and the prime graph
&0 5 &(Vk). &(V1), . . . , &(Vk21) are the mp-subgraphs of &9
and V1, . . . , Vk21 is a perfect sequence of sets in &9.

Theorem 8 can be applied recursively to generate a derived
system of &. Because the decompositions performed along the
way are P-decompositions, the minimal derived system of & will
be generated.

We are interested in the existence of a perfect sequence of the
mp-subgraphs of a graph only for proving the correctness of our
results. The ordering of the mp-subgraphs is not relevant when
computing the generalized Fréchet bounds, and consequently, in
an actual implementation of our algorithms, we would only have
to obtain the set 9(&) of mp-subgraphs along with the corre-
sponding sequence 6(&) of separators.

Leimer (19) has suggested an alternative approach that would
allow us accomplish this task by taking advantage of the MCS
algorithm we previously presented. The first step would be to
transform a connected reducible graph & 5 (V, E) in a closely
related decomposable graph by adding extra edges in E. We
would like to keep the number of edges added to a minimum, so
that a minimal decomposable graph is derived.

Definition 10: [Tarjan (16).] Let p be an ordering of the vertex
set of a graph & 5 (V, E). The fill-in Fp caused by the ordering
p is the set of edges:

Fp 5 $~u, v!u u Þ v, ~u, v! [y E, and there is a path

u 5 v0, v1, . . . , vk 5 v in & such that

p~vi! , min$p~u!,p~v!% for i 5 1, . . . , k 2 1%. [9]

The graph &p 5 (V, E ø Fp) is called the minimal fill-in graph
if there does not exist a numbering p9 of & with Fp9 , Fp. It can
be shown that the fill-in graph &p is decomposable for any
numbering p of &. Algorithms for generating a minimal fill-in
graph can be found in Ohtsuki and Cheung (21).

The second step consists of applying the maximum cardinality
search algorithm to the minimal fill-in graph &p associated with
the input graph &. However, we will not employ the ‘‘original’’
maximum cardinality search algorithm. We will make use instead
of an expanded version (17) that can find the set #(&p) 5 {C1,
C2, . . . , Cr} of cliques of &p along with the associated system
6(&p) 5 {S2, . . . , Sr} of separators by constructing a tree 7p 5
(#(&p), %tp

). We assume that the sequence C1, C2, . . . , Cr is
perfect. For every clique Cj, j . 1, we choose a ‘‘parent’’ clique
Ci, i , j such that Sj , Ci, and include the edge (Cj, Ci) in %tp

.
Because the parent of a clique might not be unique, more than
one tree could be constructed on #(&p). Moreover, C1 cannot
have a parent and will be called the root of the tree. This is
certainly not a restriction because every clique can be C1 in some
perfect sequence. The tree 7p generated by the MCS algorithm
has the additional property that S , V is a minimal vertex
separator of &p if and only if S 5 Cj ù Ci for some edge (Cj, Ci)
[ %tp

. Consequently, the set of separators associated with #(&p)
will be given by 6(&p) 5 {Ci ù Cj : (Ci, Cj) [ %tp

}. Then S [
6(&p) will also be a minimal separator in & if S is complete in &.

The last step of the algorithm is presented below in pseudo-
code. With every clique C [ #(&p), we associate a vertex set
D(C). Initially we set D(C) 4 C for all C [ #(&p). A clique C
is terminal in 7p if C is not the parent of any other clique, i.e.,
if there is no such C9 with (C9, C) [ %tp

.

Y 9(&) 4 À; 6(&) 4 À;
Y while %tp

Þ À do

1. Identify a terminal clique Cj;
2. #(&p) 4 #(&p)\{Cj};
3. %tp

4 %tp
\{(Cj, Ci)};

4. if Cj ù Ci is complete in & then
9(&) 4 9(&) ø {D(Cj)};
6(&) 4 6(&) ø {Cj ù Ci};

else
D(Ci) 4 D(Ci) ø D(Cj);

end while

Y 9(&) 4 9(&) ø {D(C1)}.

This algorithm provides a computational approach for identify-
ing the maximal prime subgraphs 9(&) of an arbitrary connected
reducible graph &, along with its associated system 6(&) of
separators. We utilize it in the following section.

5. Generalized Fréchet Bounds for Reducible Loglinear Models
In Section 3, we showed that we can explicitly determine the
tightest bounds for the cells in a table of counts nK given a set
of marginals when that set of marginals define a decomposable
graph & 5 (K, E). When the graph associated with some set of
marginals is not decomposable, we have no choice but to employ
iterative methods such as the simplex algorithm. Generally
speaking, linear programming methods are computationally
expensive and might yield results that are very difficult to
interpret, so they should be used with care. The natural question
to ask is whether we could reduce the computational effort
needed to determine the tightest bounds by employing the same
strategy used for decomposable graphs, i.e., decompositions of
graphs by means of complete separators.

To be more specific, assume we want to determine the bounds
for a contingency table nK given the marginals nC1

, nC2
, . . . , nCp

.
In addition, C1, C2, . . . , Cp are the cliques of the graph & 5 (K,
E). & is assumed to be reducible, not necessarily decomposable.
Let V1, V2, . . . , Vq be the maximal prime subgraphs of & ordered
in a perfect sequence, and let S2, S3, . . . , Sq be the sequence of
separators associated with V1, V2, . . . , Vq. Suppose we could
compute tight bounds for the marginals nV1

, nV2
, . . . , nVq

given
nC1

, nC2
, . . . , nCp

, i.e., we know nV1

U , nV2

U , . . . , nVq

U and nV1

L ,
nV2

L , . . . , nVq

L such that

nVj

U $ nVj
$ nVj

L , for all j 5 1,2, . . . ,q. [10]

Because Sj is complete in &, there will exist an i [ {1, 2, . . . , p} such
that Sj # Ci. Hence nSj

is a marginal table of nCi
. Therefore, once

we fixed nC1
, nC2

, . . . , nCp
, the marginals nS2

, . . . , nSq
will also be

fixed. With the notations introduced above, we develop explicit
formulas for sharp bounds for the cells counts in table nK.

THEOREM 9. Suppose & 5 (K, E) is connected and reducible.
The tightest bounds for the cell counts in the contingency table nK
given the marginals nC1

, nC2
, . . . , nCp

are given by

min$nV1

U , nV2

U , . . . , nVq

U % $ nK $ max H O
i 5 1

q

nVi

L 2 O
i 5 2

q

nSi
, 0J .

[11]

Proof: Because V1, V2, . . . , Vq is a derived system of &, we
could think about the subgraphs &(V1), . . . , &(Vq) as being the
cliques of a connected decomposable graph &9. Moreover,
S2, . . . , Sq will be the system of separators associated with V1,
V2, . . . , Vq in &9. By employing Theorem 6, we obtain

min$nV1
, nV2

, . . . , nVq
% $ nK $ max H O

i 5 1

q

nVi
2 O

i 5 2

q

nSi
, 0J .

[12]

Then Eq. 11 follows immediately from Eqs. 12 and 10. The
bounds for the marginal tables involved are all sharp, hence the
bounds in Eq. 11 will also be tight.
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Once again, we will point out the link with maximum likeli-
hood estimation in loglinear models. We define a reducible
loglinear model as one for which the corresponding minimal
sufficient statistics are margins that characterize the maximal
prime subgraphs of a reducible graph. Assuming that one has
calculated maximum likelihood estimates for the loglinear
models determined by the independence graphs
&(V1),&(V2), . . . ,&(Vq), then one can easily derive explicit
formulae for the maximum likelihood estimates in the reducible
loglinear model with independence graph &. By employing
results of Lauritzen (14), we find that

m̂~i! 5

P
j 5 1

q

m~iVj
!

P
j 5 2

q

n~iSj
!

, [13]

(c.f. the special cases given in ref. 12).
We continue the analogy with the decomposable case we

previously discussed by considering a reducible disconnected
graph. We know how to find the maximal prime subgraphs
(along with the corresponding sequence of separators) succes-
sively for every connected component. The set of mp-subgraphs
for the complete graph is defined as the union of the sets of
mp-subgraphs of every connected component. The set of sepa-
rators can be determined in a similar way. We are now ready for
the main result of the paper. However, we are going to postpone
presenting it for the moment.

5.1. Example. To clarify the concepts and the results presented so
far, we use an example similar to the one proposed by Tarjan
(16). The graph & in Fig. 1 has 11 vertices and 17 edges
represented by continuous lines. We want to determine the
mp-subgraphs of &. The edge {3, 9} is a separator for {1, 3, 4,
5, 6, 7, 8, 9, 11} and {2, 3, 9, 10}. The latter is a four-cycle, hence
cannot be further decomposed, and because it is not a complete,
& cannot be decomposable. Similarly, {4, 7} separates {1, 3, 4,
7, 8, 9, 11} and {4, 5, 6, 7}. Again, the latter is a four-cycle, hence
it is a prime subgraph. Now the clique {1, 3, 4, 11} is separated
from {3, 4, 7, 8, 9, 11} by the triangle {3, 4, 11}. The subgraph
&({3, 4, 7, 8, 9, 11}) does not have a separator, therefore we have
finished decomposing &. The set of mp-subgraphs is 9(&) 5
{{2, 3, 9, 10}, {4, 5, 6, 7}, {1, 3, 4, 11}, {3, 4, 7, 8, 9, 11}},
whereas the sequence of separators is 6(&) 5 {{3, 9}, {4, 7},
{3, 4, 11}}.

Next we illustrate how to obtain 9(&) and 6(&) by using the
decomposition algorithm from Section 4. The minimal fill-in
graph &p is obtained by adding six new edges to &. These edges

are represented with dotted lines in Fig. 1. The cliques of &p are
C1 5 {1, 3, 4, 11}, C2 5 {3, 4, 7, 11}, C3 5 {3, 7, 8, 11}, C4 5
{4, 6, 7}, C5 5 {4, 5, 6}, C6 5 {3, 8, 9}, C7 5 {3, 9, 10}, and
C8 5 {2, 3, 10}. The tree 7p constructed by the MCS algorithm
on #(&p) 5 {C1, C2, . . . , C8} has edges

%p 5 $~C2,C1!, ~C3,C2!, ~C4,C2!,

~C5,C2!, ~C6,C3!, ~C7,C6!, ~C8,C7!% .

We proceed to the last step of the algorithm. The clique C5 is
terminal, but C5 ù C4 5 {4, 6} is not complete in &, hence we
set D(C4) 5 {4, 5, 6, 7}. After eliminating C5 from the clique
tree, C4 becomes terminal. Because S1 5 C4 ù C2 5 {4, 7} is
complete in &, we identified the first mp-subgraph V1 5 D(C4)
and its associated separator S1. We eliminate C4 from 7p, and
the algorithm proceeds in a similar manner.

The set #(&) of cliques is essentially the set of edges of & from
which we take out {1, 3}, {1, 4}, {1, 11}, {4, 11}, {3, 4}, {3, 11},
and then add {1, 3, 4, 11}. Assume we want to determine upper
and lower bounds for a cross-classification nK with 11 dimen-
sions. Given the marginal tables {nC : C [ #(&)}, it is possible
to compute sharp bounds for the marginal tables corresponding
to the mp-subgraph of &. Because the separators in 6(&) are
subsets of some cliques, they will define marginals of some tables
in {nC : C [ #(&)}, hence it is possible to make use of Theorem
9 to calculate sharp bounds for the cell counts in table nK.

5.2. Bounds for Reducible Loglinear Models. The foregoing example
indicates that Theorem 9 is applicable in a more general setting
than the one we previously suggested. Determining bounds for
cell counts in a cross-classification given the marginals defined
by the set of cliques is equivalent to the problem of calculating
the MLEs of a graphical loglinear model. The minimal sufficient
statistics of a graphical log-linear model define a graph, and the
cliques of this graph are exactly the minimal sufficient statistics.
If the minimal sufficient statistics are not cliques in the associ-
ated graph, the model is not graphical.

For example, suppose we have a table nK corresponding to the
graph in Fig. 1. Now assume we don’t have access to the marginal
n[1,3,4,11], but instead we do know n[1,3], n[1,4], n[1,11] and also
n[3,4,11]. These marginals no longer correspond to the cliques of
a graph. Yet it is still possible to compute sharp bounds for the
marginals determined by the mp-subgraphs of &, and then to
combine these bounds using Theorem 9 to obtain tight bounds
for the complete table nK.

To be more explicit, suppose we are provided with a set of
marginals nD1

, nD2
, . . . , nDr

that define a graph & 5 (K, E). We
have K 5 ø i 5 1

r Di and E 5 {(u, v) : {u, v} , Dj, for some j 5
1, . . . , r}. The mp-subgraphs of & are 9(&) 5 {V1, V2, . . . , Vq},
whereas the corresponding sequence of separators is 6(&) 5
{S2, . . . , Sq}. We emphasize that (Dj)j do not have to be the set
of cliques of & and that & is not necessarily connected. However,
we need to impose one additional constraint, namely for every
Si, there is a j [ {1, 2, . . . , r} such that Si , Dj. This implies
that the marginals nS2

, . . . , nSq
will be fixed once nD1

, nD2
, . . . ,

nDr
are fixed. With these notations, we announce a more general

version of Theorem 9.
THEOREM 10. Let & 5 (K, E) be a reducible graph. Then the

following inequality is true:

min$nV
UuV [ 9~&!% $ nK

$ max H O
V [ 9~&!

nV
L 2 ~m 2 1!znÀ 2 O

S [ 6~&!

nS, 0J , [14]

where 9(&) is the set of maximal prime subgraphs of &, 6(&)
is the set of separators associated with 9(&), and m is the

Fig. 1. A graph and its minimal fill-in set of edges.
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number of connected components of the graph &. In addition,
{nV

UuV [ 9(&)} and {nV
LuV [ 9(&)} are the tightest upper and

lower bounds for the marginal tables {nVuV [ 9(&)}, respec-
tively.

Proof: Because 9(&) is a derived system of the graph &, we can
think about the subgraphs {&(V)uV [ 9(&)} as being the
derived system of cliques of a graph &9. In this case 6(&) will be
the set of separators associated with 9(&) in &9, hence Eq. 14
follows immediately from Eq. 8.

6. Conclusions
The results described in this paper are part of a programmatic effort
to understand and operationalize the computation of upper and
lower bounds for non-negative entries in cross-classifications sub-
ject to a set of marginal constraints. From research on mass
transportation and other versions of this problem, we know that the
computational problem is typically characterized as being NP-
complete, and thus we cannot expect to find a simple approach that
will deal effectively with the bound calculation problem, especially
in high dimensions. Thus, instead of attempting to utilize a general
computational approach such as linear programming or the simplex
algorithm (22) or network methods (23, 24), we have opted to
exploit the structure of the underlying probability structures based
on statistical and mathematical theory.

In particular, we have worked with the graphical representa-
tion of probability distributions subject to conditional indepen-
dence relationships and utilized existing results on decompos-
able graphs to derive explicit bounds for cell entries when the
given marginals correspond to the maximal cliques of a decom-
posable graph. Our approach was motivated by the more spe-
cialized results for decomposable loglinear models for tables of
counts where the minimal sufficient statistics are marginals and
the expected cell values are explicit functions of them.

We also have extended the bound results from the decomposable
to the reducible case, and this allows us to exploit other results and
computational approaches for bounds applied to subtables corre-
sponding to the reducible components that are not cliques. The
results of Section 5 focus on the cases where tables still have a
graphical representation representing conditional independence
relationships. But there are many other probability structures where
we would like to be able to calculate bounds but are not graphical
in this sense. For example, a k-dimensional probability distribution
given all (k 2 1)-dimensional marginals is not graphical, but we are
still able to exploit statistical theory to compute upper and lower
bounds in this case. Fienberg (11) outlines an approach for doing
this in the k 5 3 case, and Dobra and Fienberg (25) provide detailed
algorithms for k . 3. Suppose that one wants to compute bounds
for a cross-classification that has a structure similar to that in the
reducible case, except that we replace a d-dimensional nonclique by
a d-dimensional probability distribution given all (d 2 1)-
dimensional marginals. Then we can combine the bounds com-
puted for this nongraphical distribution using the reducible repre-
sentation of Section 5.

Cox (26) raised a very interesting question, namely, whether
one can actually construct a feasible table with a prescribed set
of possibly overlapping margins. The solution to the feasibility
problem is straightforward if the marginal tables constitute the
maximal cliques of a decomposable graph. In this case, the
explicit formulas for calculating the MLEs of the associated
loglinear model provide us with a feasible table. In addition, if
the set of margins are the minimal sufficient statistics of a
reducible loglinear model, Eq. 13 tells us how to construct a

feasible table given a consistent set of marginals associated with
the maximal prime subgraphs of the induced independence
graph. Therefore, the results substantially reduce the computa-
tional effort needed to solve the feasibility problem by reducing
it to a number of smaller and hopefully easier-to-solve problems.

These results represent only a small part of those needed to
allow the computation of upper and lower bounds for high-
dimensional cross-classifications of the sort that arise in disclo-
sure limitation and other practical problems.

Preparation of this paper was supported in part by the U.S. Bureau of
the Census and the National Science Foundation under Grant EIA-
9876619 to the National Institute of Statistical Sciences.

Appendix A
We give below a proof of Theorem 4.

Proof: Let a1 5 {1, . . . , p} and a2 5 {q, . . . , m} where 1 #
q # p # m. Let ni1

0 . . . im
0 be an arbitrary cell in the table na1øa2

.
To avoid confusion, the marginals na1

, na2
, na1ùa2

will be denoted
by A1, A2, A12, respectively. The following equalities should hold:

O
ip 1 1, . . . ,im

ni1
0 z z z ip

0ip 1 1 . . . im 5 Ai1
0 . . . ip

0
1 ,

O
i1, . . . ,iq 2 1

ni1 . . . iq 2 1iq
0 . . . im

0
5 Aiq

0 . . . im
0

2 ,

O
i1, . . . ,iq 2 1,ip 1 1, . . . ,im

ni1 . . . iq 2 1iq
0 . . . ip

0ip 1 1 . . . im 5 Aiq
0 . . . ip

0
12 .

Consider the sums:

O
$ip 1 1, . . . ,im% Þ $ip 1 1

0 , . . . ,im
0 %

ni1
0 . . . ip

0ip 1 1 . . . im 5 D1 ,

O
$i1, . . . ,iq 2 1% Þ $i1

0, . . . ,iq 2 1
0 %

ni1 . . . iq 2 1iq
0 . . . im

0
5 D2 ,

O
$i1, . . . ,iq 2 1,ip 1 1, . . . ,im%

Þ $i1
0, . . . ,iq 2 1

0 ,ip 1 1
0 , . . . ,im

0 %

ni1 . . . iq 2 1iq
0 . . . ip

0ip 1 1 . . . im 5 D12 .

With these notations, we have

ni1
0 . . . im

0 5 Ai1
0 . . . ip

0
1

2 D1 5 Aiq
0 . . . im

0
2

2 D2 5 Aiq
0 . . . ip

0
12

2 D12 .
[15]

We can write D12 5 D1 1 D2 1 D3, where

O
$ip 1 1, . . . ,im% Þ $ip 1 1

0 , . . . ,im
0 %

$i1, . . . ,iq 2 1% Þ $i1
0, . . . ,iq 2 1

0 %

ni1 . . . iq 2 1iq
0 . . . ip

0ip 1 1 . . . im
5 D3 .

It follows that

ni1
0 . . . im

0 5 Ai1
0 . . . ip

0
1

1 Aiq
0 . . . im

0
2

2 Aiq
0 . . . ip

0
12

1 D3 . [16]

Clearly D1, D2, D3 $ 0. From Eqs. 15 and 16, we deduce

Ai1
0 . . . ip

0
1

1 Aiq
0 . . . im

0
2

2 Aiq
0 . . . ip

0
12

# ni1
0 . . . im

0

# min$Ai1
0 . . . ip

0
1 , Aiq

0 . . . im
0

2 % ,

which concludes the proof.
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