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Abstract 

 

A stochastic signal optimization method based on a genetic algorithm (GA-SOM) that 

interfaces with the microscopic simulation program (CORSIM) is assessed. As an 

evaluation testbed we use a network in Chicago consisting of nine signalized 

intersections. Taking CORSIM as the best representation of reality, the performance of 

the GA-SOM plan sets a ceiling on how good any (fixed) signal plan can be. An 

important aspect of this approach is its accommodations of variability. We also discuss 

the robustness of an optimal plan under changes in demand. We use this benchmark to 

assess the best signal plan generated by TRANSYT-7F (T7F) version 8.1, from among 12 

reasonable strategies. The performance of the best T7F plan falls short of the benchmark 

on several counts, reflecting the need to account for variability in the highly stochastic 

system of traffic operations, which is not possible under the deterministic conditions 

intrinsic to T7F. As a sidelight we also compute the performance of the GA-SOM plan 

within T7F and find that it performs nearly as well as the optimum T7F plan.    

 

Introduction and Background 

 

Among the many tools available to the transportation engineer to deal with the thorny 

issue of urban traffic congestion, improved traffic signal timing has always stood out as a 

very cost-effective approach. Presently, signal timing plans in the U.S. are for the most 

part generated from a variety of deterministic, macroscopic optimization programs. 

Examples include TRANSYT-7F (1), PASSER-II (2), and SYNCHRO (3). The 

advantages of using macroscopic models are computational speed and simple input data 

requirements. However, these models cannot realistically represent the very complex 

characteristics of urban traffic networks including the variability in drivers’ behavior, the 

effect of mixed traffic modes, the impact of parking and bus flows, and of course the 

randomness in arrival patterns. As a result, signal-timing plans that are derived from 

macroscopic models might not respond well to real-world traffic conditions. The authors’ 

recent study on the reliability of TRANSYT-7F (T7F) optimization schemes indicates 

that discrepancies do exist between macroscopic and microscopic simulation results (4). 
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Further, the authors have demonstrated that a direct signal optimization using Latin 

Hypercube Design (LHD) search (5) produced superior timing plans to T7F when those 

signal plans were evaluated in CORSIM (6). The LHD based search was limited to offset 

optimization, but could be extended to include cycle length and splits. In (6) the cycle 

length and green splits were taken from T7F. Later, the authors developed a stochastic 

signal optimization method using a genetic algorithm (GA-SOM) interfaced with the 

CORSIM microscopic simulation that optimizes cycle length, green splits, and offsets 

simultaneously for a signalized network (7).  

 

The use of CORSIM as an assessment or evaluation platform is grounded in its general 

acceptance and, in a recent study (8) that shows its capability to reflect reality and 

inherent traffic stochasticity. Because CORSIM is stochastic, performance measures must 

be assessed through multiple runs and summarized in distributions and other reflections 

of variability. With fixed ‘expected’ demand volume on the network multiple CORSIM 

runs can simulate the effect of day-to-day variations in arrival patterns, turning 

percentages, driver characteristics, etc. But, it cannot cope with significant demand 

changes while maintaining the same expected or average demand volumes. To assess the 

effect of variability in the expected demand we vary the input parameters (demands) at 

random (to reflect uncertainty about what the right expected values might be).  In 

addition, we assess the effect of a uniform increase in demand conditions to evaluate the 

performance of an “aging” control plan subject to demand increase. 

 

Since GA-SOM is the optimum choice under a performance measure within CORSIM it 

cannot be improved. Its performance sets a ceiling and a benchmark to which other plans 

can be compared. A strategy that produces plans nearly as effective and much easier to 

obtain would be a desirable one. What we see below, for example, is that T7F plans are 

not inherently able to deal with variability and this is reflected in their falling well short 

of the benchmarks (see Table 1). Interestingly, the reverse situation, assessing GA-SOM 

within T7F (see Table 2), shows that the GA-SOM measures up to T7F standards. By 

itself, this is not particularly meaningful, since the environment of T7F cannot capture the 
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variability in the field that must ultimately serve as the arena for evaluation; but it does 

raise questions whether deterministic methods such as T7F are useful at all.  

 

The paper is organized as follows. The network and evaluation section presents the 

CORSIM network and the approaches we take are in the methodology section. In 

Comparison of signal timing plans we compare the performance of T7F and GA-SOM 

plan in CORSIM and, as a sidelight, we compare the plans within T7F as well. The 

following two sections deal with performance under changes in demand. A discussion 

section is followed by conclusions and recommendations.   

 

Test Network and Evaluation 

 

The test network in Chicago consists of nine signalized intersections, and is coded in 

CORSIM with 59 links, and 31 internal nodes as shown in Figure 1. Traffic volume data 

were collected on a representative weekday for both AM and PM periods. Vehicle 

arrivals (cars, trucks, and buses) were manually collected at each entry node for the entire 

period. Turning movements were also collected: some for a short period (15 minutes), 

some for one hour. The maximum queue lengths (MQL) at key intersection approaches 

were also collected for evaluation purposes. The queue lengths are recorded every cycle 

over the hour and the maximum value is taken as the MQL. The selection of MQL as an 

evaluation criterion rather than, say, delay, was on the basis of cost and ease of 

collection.  

 

The network was coded in both T7F (version 8.2) and CORSIM (release 4.2) formats. 

Every effort was made to develop compatible T7F and CORSIM networks. For example, 

queue discharge headways in CORSIM inputs were matched with saturation flow rates in 

T7F, so were the selections of free flow speeds and speed limits. 

 

To assess the ability of CORSIM to reflect reality we had previously (4) compared the 

MQLs from the field with a distribution of MQLs obtained from 100 CORSIM 

simulation runs. The field values were consistent with the CORSIM generated values.
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Figure 1.  Test Network (Chicago, IL) 
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many as representing the state of the practice in signal optimization. T7F can optimize 

delay, fuel consumption, stops, throughput, progression opportunities (PROS), and 

multiple combinations of these. In a previous study (4) the authors tested twelve possible 

signal optimization strategies in T7F and determined PROS2/DI as the best strategy in 

T7F itself. The authors also evaluated those in CORSIM and determined that the best 

strategy for queue time minimization on the test network in Figure 1 is PROS/DI.  

 

CORSIM 

 

CORSIM is a stochastic and periodic-scan based microscopic simulation program of 

urban traffic developed for FHWA (9). Two basic link statistics generated in CORSIM 

are delay and queue time. Individual vehicle delay is calculated as the time difference 

between the actual and free-flow link travel time for a driver-vehicle unit. The average 

link delay is obtained by dividing the total delay time (experienced by vehicles that have 

already traversed the link) by the number of vehicles that have discharged from the link. 

Queue time is the time accumulated in a queue that is caused by the link control. Previous 

work indicated that CORSIM may underestimate the actual delay reported under 

“congested” conditions because the delay in CORSIM excludes that accrued by vehicles 

that remain on the network at the end of a simulation run (10). We therefore opted to use 

network queue time as the performance measure.  

 

GA-based Stochastic Optimization Method (GA-SOM) 

 

Park et al. (7) developed a stochastic signal optimization method using a genetic 

algorithm that interfaces with the CORSIM microscopic simulation program. That 

approach is capable of optimizing signal timings in a stochastic traffic environment. The 

method works as follows.  

 

First, initial signal timing plans with in binary representation form are randomly 

produced. A REXX (11) code, (a script language-based computer program) converts the 

timing plans into integer values and inserts them directly into a CORSIM input file. 
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(REXX works as an interface between CORSIM and the GA optimizer).  A single 

CORSIM run for each tested signal plan is executed. This process continues until all 

signal timing plans proposed by the GA optimizer (see next paragraph) are run. 

 

A second REXX code extracts the performance measures for each signal plan from the 

corresponding CORSIM text output file. These performance measures are then fed to a 

GA. The GA in turn evaluates the performance measures, and then generates a new set of 

signal timing plans. This whole routine continues until a pre-specified number of 

iterations is reached.  

 

The objective function provided to the optimizer can be any combination of outputs 

produced by CORSIM. In our application, we minimized system queue time. 

Minimize  ( )∑
=

=
L

i
iQTSQT

1

 

where  

 SQT = system queue time, 

  QT(i) =  queue time on link i, i=1,…,L, and 

  L = number of one-way links on the network. 

 

The GA-SOM can simultaneously optimize cycle length, green splits and offsets. There 

are several parameters that govern the behavior of a GA procedure. These include 

maximum number of generations, population size, crossover and mutation probabilities, 

etc. We used a population size of 25 and maximum number of generation of 25. We did 

experiment with 50 generations and found no visible benefit. Further details on the 

method can be found in Park et al. (7). 

 

An important challenge in stochastic signal optimization is the ability to overcome 

random variability. The objective function value shown above includes random error 

since each observation is an output from a single CORSIM run. The convergence 

properties of GA-SOM are plotted in Figure 2. The minimum queue time, which is the 

“best” individual among 25 at each generation, stabilizes after about five generations  



Park et al. 7

(bottom line in Figure 2). The optimal solution is the best plan achieved at generation 25. 

Thus from the 5th to the 25th generations, the best solution is continuously refined. The 

best timing plan, which is automatically transferred to the next generation (due to the 

elitist method in GA) is reevaluated in CORSIM with different random number seeds. 

Therefore, a signal plan that tends to produce less variability as well as less queue time is 

more likely to survive to the next generation. After 18 generations, the average queue 

time (i.e., an average of all individuals) becomes stable (top line in Figure 2) indicating 

that GA-SOM is converging.  

 

Figure 2. Convergence properties of GA-SOM 
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Comparison of Signal Timing Plans 

 

In this section, GA-SOM and the best T7F timing plans are evaluated on the basis of both 

CORSIM and T7F.  

 

Results of the 100 CORSIM simulation runs for GA-SOM and T7F are summarized in 

Table 1. The comparisons are striking: as shown in Figure 3, the histograms for the GA-

SOM plans lie substantially to the left of those of the T7F and are far less variable. 
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Potentially alarming is the long tail in the distributions for T7F – high values (say above 

300 veh-hrs) are indicative of serious spill-back, even gridlock.  On the basis of these 

numbers it is clear that T7F is a less desirable plan.  

 

 

Table 1. Comparison of GA-SOM and T7F in CORSIM  
 

Delay 
(sec/veh) 

Queue Time 
(veh-hrs) 

Throughput 
(veh) Time 

Period 
Signal 
Plan 

Cycle 
(sec) Avg/Median/SD Avg/Median/SD Avg/Median/SD 

T7F 65 21.5/19.8/5.0 184.7/167.0/51.7 40876/41207/1107 AM 
Peak GA-SOM 70 15.6/15.1/2.2 119.3/114.1/21.7 42563/42593/271 

T7F 65 23.6/22.6/3.3 268.4/216.6/115.0 35900/40099/7214 PM 
Peak GA-SOM 70 14.4/13.9/1.8 108.3/103.6/16.7 42354/42420/369 

 
Note: T7F: Best TRANSYT-7F strategy (PROS/DI) 
          GA-SOM: Stochastic optimization method (queue time minimization strategy) 

Medians are reported to allow comparisons minimally affected by outlier 
observations 

 

Figure 3. Performance of T7F and GA-SOM: Histogram based on 100 CORSIM runs  
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(b) PM period 
 

 

To explore the effect of using the T7F platform, we fed the GA-SOM and the best T7F 

plans (as mentioned in the previous section) into the T7F simulator and compared their 

performances. The performance of a T7F plan in the T7F simulator differed from the 

output at the end of the optimization. This is due to the initialization required in T7F’s 

step-wise simulation. We decided to use the T7F performance from the simulation output, 

to be consistent with the performance of the GA-SOM plan in the T7F platform. The 

comparisons are in Table 2. Not surprisingly, T7F is better. But the difference are 

marginal and clearly outweighed by the disparities in Table 1, which represents more 

closely performance expected in the field.    
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Table 2. Comparison of GA-SOM and T7F in T7F  

Period Signal Plan Cycle 
(sec) 

Average Delay 
(sec/veh) 

Total Travel Time 
(veh-hr/hr) 

Stops 
(%) 

T7F 65 22.0 306 79 AM Peak GA-SOM 70 24.5 326 79 
T7F 65 33.4 414 85 PM Peak GA-SOM 70 39.2 460 84 

 
Note: T7F: Best TRANSYT-7F strategy  (PROS2/DI) chosen from T7F itself. 
          GA-SOM: Stochastic optimization method (queue time minimization strategy) 
 
 
 
Random Changes in Demand 

 

Even though the 100 CORSIM simulations can adequately simulate the day-to-day 

variations in traffic patterns and driver behavior, the mean number of arrivals at the 

external nodes remains constant. In reality, these mean arrival inputs will themselves 

change over time. Moreover, the estimates of these mean rates are based on traffic counts 

collected by manual observers, and are subject to considerable error. We therefore 

evaluated the response of the plans to changes in these mean rates.  

 

We chose a substantially wide range of changes to explore: (±15% from the base 

demands at each entry node). Since there are eight major external input demands, the 

number of possible demand patterns that can be tested is quite large (318) if only integer 

percentages are used.  An efficient sampling method using a Latin Hypercube Design was 

applied to the problem. This is a stratified sampling technique where the input variable 

distributions are divided into equal probability intervals (5). It can be considered as a 

deterministic version of Monte Carlo simulation, but one that can maximally cover the 

design surface with near zero correlations among input parameters. A LHD requires far 

fewer samples than simple Monte Carlo methods (12).  A detailed algorithm can be found 

in McKay et al. (5).  

 

A total of 204 demand combinations were created from the LHD algorithm. For the AM 

peak, 10 simulations were made for each demand combination, resulting in 2,040 
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CORSIM runs.  For the PM peak, only 4 simulation runs for each demand combination 

were made, resulting in 816 CORSIM runs. Since each peak period has two optimal 

timing plans, one from T7F and another from GA-SOM, a total of 2 × (2,040+816) = 

5,712 CORSIM simulation runs were conducted.  

 

Figure 4 (a) depicts the robustness of the AM signal timing plans to varying external 

demands. In approximately 95% or more cases, the GA-SOM plans produced less queue 

time than T7F. Furthermore, the range of queue times for the T7F plans is 90 to 500 

vehicle-hours, while that for GA-SOM is 90 to 270 vehicle-hours. Even more dramatic 

results were observed for the PM timing plans. As shown in Figure 4 (b), under all 

demand combinations the GA-SOM plans produced less queue time than that of T7F.  

 
 
Figure 4. Comparison of T7F and CORSIM under varying demand 
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(a) AM period (each point represents an average of 10 CORSIM simulation runs) 
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(b) PM period (each point represents an average of 4 CORSIM simulation runs) 

 

 
Systematic Change 

 

The determination and field implementation of optimal settings is not the end of the road 

for many traffic signal engineers. A nagging question is: when does the current signal 

plan need updating? Suppose that traffic demand on the network increases over time. One 

would like to update the current signal setting at the most appropriate time if possible. As 

an initial step we compared the degradation in system performance if the current signal 

settings were to be retained under a new demand pattern, or are updated to accommodate 

the new demand. In theory, this is the benefit derived from having an adaptive signal 

system such as RT-TRACS that can automatically respond to demand changes.   

 

In this study, the four scenarios shown below were evaluated in CORSIM for the AM 

peak period using: 

1. Base demand and corresponding base optimal GA-SOM signal plan. 

Base Demand 
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2. Base demand and updated GA-SOM signal plan (generated from an updated demand 

that is 10% above the base demand). 

3. Updated demand with base optimal GA-SOM signal plan.  

4. Updated demand and updated GA-SOM signal plan,  

 

Again, 100 CORSIM confirmation runs for these four sets were made and distributions of 

system queue time were obtained. The comparison results are shown in Figure 5. It is 

evident that a do-nothing approach could be very costly. For example, if demand actually 

increases, and no changes are made to the signal plan, then the distribution shifts from set 

1 to set 3, representing a drastic degradation is system performance. If changes are made 

to the signal plan in response to the demand increase, then the performance still degrades, 

(to set 4) as expected, but far better than set 3. The truly interesting set is 2, which 

represents the situation where demand actually does not increase, but signal plans are 

generated on the basis of a 10% demand increase. Again, as expected, set 2 is worse than 

set 1though less variable. So, the region between sets 2 and 4 inclusive represents the 

expected performance of the network for demand changes that can vary from zero to 10% 

with signals plans based on a 10% demand increase. Similarly, the region between sets 1 

and 3 inclusive represents the expected performance of the network for demand changes 

that can vary from zero to 10% with signals plans based on base demand. Given the 

choice of performance and the uncertainty in demand prediction, the results in Figure 5 

strongly suggest that a good strategy is to develop signal plans with an assumption of 

increased demand rates, whether or not that assumption can be fully justified at this time. 

That is, trade off some current performance to protect against the more severe 

degradation that would follow an increase in demand.  
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Figure 5. Performance sensitivity to 10% increased demand (AM period) 
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Moreover, if demand can be predicted within a reasonable range, then the timing of the 

introduction of new plans can be factored into overall traffic management and operations. 

  

CONCLUSIONS AND RECOMMENDATIONS 
 
This work began with the premise that signal plans that are derived using a high fidelity, 

properly validated traffic model will yield optimal traffic performance. The CORSIM 

model has the ability to represent the stochastic urban traffic environment in great detail. 

It has a history of acceptance by transportation professionals, and elements of it have 

been validated over time (as was done in this study). Thus, the GA-SOM signal plans 

derived from CORSIM were expected to provide solid performance in the simulator. 

Those expectations were met, at least for our test network. Additional testing is essential 

if we are to trust our initial observations. In fact, another network in Chicago, three times 

the size of our test network, was re-timed in September 2000 using GA-SOM and initial 

field results confirm the improvements predicted through CORSIM (13). 

 

By contrast, the signal plans derived from T7F were significantly less effective. 

Strikingly, GA-SOM produced much less variation in system performance compared to 

T7F settings, particularly under varying demand conditions.   

 

The computational demands for implementation of the GA-SOM approach are 

outweighed by the approach’s explicit accounting for the stochastic nature of traffic flow 

in the development of signal plans. And, since the needed computations are suitable for 

parallel computation, even this barrier can be largely overcome.  

 

Based on our findings, the following recommendations are made: First, the variability of 

system performance associated with a signal plan should always be considered in 

evaluating the traffic performance of that plan. Second, further confirmation should be 

sought on the value of a signal setting obtained assuming higher than base demand levels: 

is such a tactic good enough for base demand and more resistant, than a base optimal 

plan, to degradation in performance under increased demand? Third, and perhaps most 
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important of all, is that direct optimization and comparison should be done within a 

platform that adequately captures the realities in the field. 
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