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This paper concerns the exploration of statistical models for the analysis of obser-

vational freeway ow data, and the development of empirical models to capture and

predict short-term changes in traÆc ow characteristics on sequences of links in a

partially detectorised freeway network. A �rst set of analyses explores regression

models for minute-by-minute traÆc ows, taking into account time of day, day of

the week, and recent upstream detector-based ows. Day- and link-speci�c random

e�ects are used in a hierarchical statistical modelling framework. A second set of

analyses captures day-speci�c idiosyncrasies in traÆc patterns by including param-

eters that may vary throughout the day. Model �t and short-term predictions of

ows are thus improved signi�cantly. A third set of analyses includes recent down-

stream ows as additional predictors. These further improvements, though marginal

in most cases, can be quite radically useful in cases of very marked breakdown of

freeway ows on some links. These three modelling stages are described and devel-

oped in analyses of observational ow data from a set of links on Interstate Highway

5 (I-5) near Seattle.
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1. INTRODUCTION

This article describes and illustrates statistical models of freeway traÆc ows and their

uses in evaluating and predicting short-term changes in ows on sequences of freeway seg-

ments. This investigation arises from a study undertaken by the National Institute of Sta-

tistical Sciences (NISS) to explore the utility of traÆc detector data in presaging changes

in traÆc ow patterns. As part of this project, detector records of vehicle counts were col-

lected along a section of Interstate Highway 5 (I-5) near Seattle. Issues motivating the data

collection exercise include questions about detector placement design in connection with

the utility of detector-based data in short-term forecasting of changes, and particularly

breakdowns, in ow rates over identi�ed stretches of the highway. Short-term forecasting of

traÆc ows is an area of growing interest. Omnipresent road congestion from one side and

development in electronics from the other have made this a global issue and a fertile �eld

for prediction technology. Recently the International Journal of Forecasting recognized it

by devoting a section to contributions speci�c to it. (IJF, 1997; vol.13, n.1). But prior to

addressing such issues, the basic structure of traÆc ow patterns, as measured by detector

count data, needs illuminating; the study reported here represents aspects of our statistical

investigation of this basic structure.

Our primary objectives are to investigate models capable of tracking the development

of traÆc ows throughout the day on highway links, identi�ed as sections of highway be-

tween consecutive detectors. For each link, traÆc ows are modelled as functions of sets of

explanatory variables that may include

� detector-based measures of traÆc ows at preceding time points at upstream and

downstream locations;

� topography of the locations involved (distances between detectors, presence of on- and

o�-ramps between detectors);

� time of the day, and

� day of the week.
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Our study is based on a southbound section of I-5, just north of Seattle, �tted with

a series of single-loop detectors. Further details on the area and data collection exercises

appear in Graves et al (1997). From the data collected by these authors, we identi�ed and

extracted data from a 6-mile stretch of highway with 15 detector locations. Each location

has one single-loop detector per lane, with either three or four lanes per location. The data

explored represent a total of �fty days of recordings (from the end of May to the middle of

August 1996), with recorded ows for 4 hours (7-11am) on each weekday morning in this

period. The detector ows record vehicles traveling in all lanes, i.e., are aggregated across

lanes at each location. On and o� ramps are not detectorised, so contributing the major

components of uncertainty to the modelling problem.

All detectors are single loop, presence-type detectors, recording 20 second ows which

were aggregated to the 1 minute level for our analysis. Hence the raw response data are

reported numbers of vehicles per minute at each of the detector locations. In addition to

natural variability in ows based on traÆc patterns and local conditions, unexplained vari-

ability in predicted ows will be partially contributed by detector errors and inaccuracies.

At the 1 minute level, we are in a position to assess relationships between ows and predict

one or two minutes ahead, section by section of the highway.

This report discusses models �tted to 9 days of data, beginning on 6/17/96 and we

present summary inferences for a selection of 6 detector locations. Figure 1 is a schematic

of the section of I5 in question, with the detector locations labelled 1-6 and the lengths of

the highway links between detectors marked in miles.

We begin with basic regression models suggested by the physical highway layout and

detector placement, and supported by preliminary exploratory data analyses. These models

take into account time of day, day of week and recent upstream detector-based ows. Rela-

tionships between days are captured through the use of day- and link-speci�c random e�ects

in an hierarchical modelling framework. Re�nements of these models to include parame-

ters that may vary moderately throughout the course of the day are then investigated, and

found to improve model �t and short-term predictions of ows signi�cantly. Further model

extensions to include recent downstream ows as additional covariates provide further im-

provements, marginal in most cases but very radically useful on one or two speci�c highway
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links. Each of these modelling stages is described below, with illustrations of model �t and

short-term predictive performance across a selected set of links on I5. Appendices include

supporting technical material on models and analysis, and some summary comments and

discussion of potential further developments appear in the �nal section.

2. HIERARCHICAL REGRESSION MODELS

2.1. DETECTOR SPECIFIC REGRESSION MODELS

We begin with initial regression models for individual link ows. The highway section

has six links identi�ed by their terminal detector nodes labelled i = 1; : : : ; I = 6: Our data

represent an initial nine days, indexed by j = 1; 2; : : : ; J = 9 and, at the 1 minute resolution

level, we observe link ows at minutes t = 1; : : : ; T = 228 during the morning period of

each day. Write yijt for the vehicle ow observed on link i during day j and at minute t;

the yijt are in units of vehicles per minute based on the raw detector counts aggregated to

the 1 minute level.

The conceptual basis for the initial regression framework has the following components.

� Between each pair of detectors but numbers 2 and 3 there is at least one entry or

exit ramp. Much of the variability in link ows as measured at terminal detectors

will be driven by the on/o� traÆc on ramps. As the ramps are not detectorised, we

have no basis for modelling or forecasting the ramp activity and so simply describe

it through parameters to be estimated based on past data. Flows at link 1 will be

wholly represented this way.

� TraÆc ows at any detector at time t are driven partly by ows on upstream links at

times t � 1; t � 2; and so forth. The relationship is, of course, speed and congestion

dependent, and moderated by the possibly dominating in/out ows on intervening

ramps. At a �rst step, our regressions model ows directly in terms of proportions of

vehicles passing through in intervals of 1 minute, 2 minutes and so forth.

� Days are treated exchangeably, initially. That is, parameters de�ning the daily pattern

of ows and the regression responses to upstream traÆc are assumedly drawn from
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a population of \daily ow" parameters, one for each link in the highway network.

Thus, while allowing for close or common parameters, the model will allow for daily

e�ects due to prevailing weather patterns, road conditions, driver behaviour and so

forth. This is a standard random e�ects or hierarchical modelling concept; the days

di�er as their parameters are di�erent, but the di�erences are not predicted, being

treated as purely random and to be estimated. Predictions of future days with no

observed data is therefore immediately possible as day-speci�c parameters are drawn

from these underlying population models, and the characteristics of the population

distributions are estimated based on the observed days data. Also, di�erences between

days may be investigated through inferences on day-speci�c parameters.

� Beyond a natural daily pattern and the regression responses to upstream traÆc, resid-

ual variation in link ows is assumed to be purely random and independent across

links, in a standard normal linear regression model. Note that we do not transform

the data, maintaining the original vehicle ow scale so as to be able to interpret re-

gression parameters on upstream ows as proportionate contributions to predicted

ows. Model validation and residual analyses con�rm model adequacy.

As an example, consider link 5, terminated by detector 5. This link has one exit and

three entry ramps, so that traÆc recorded at detector 5 will likely be heavily inuenced by

incoming and exiting traÆc. Given the distance of almost two miles from detector 4 to 5,

the relationship between ows at detector 5 and those in the past at detector 4 will be of

limited predictive value unless the ramp activity is minor.

The mathematical form of the regression models is as follows. For link i on day j at

minute t we have ows

yijt = sij(t) + b0ijt�ij + �ijt (1)

where

� sij(t) represents the smooth trend over day j driven by on/o� ramp ows,

� bijt is a vector of known ows from preceding upstream links i� 1; i� 2; : : : at recent

times t�1; t�2; : : : ; whose size depends on the number of upstream links and maximum

time lag chosen,
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� �ij is the regression parameter de�ning the expected response to these predictor ows,

and

� �ijt represents residual, unexplained variation in ows.

The daily trend patterns are modelled via cubic splines. Following exploratory data

analyses we adopt splines with terminal knots at t = 0 and t = T = 228; and two interior

knots at minutes t = 60 and t = 150: Then sij(t) is a day- and link- speci�c constant plus

a cubic spline interpolating these knots. This requires a total of six parameters denoted by

the 6-vector �ij ; and can be represented as the linear model

sij(t) = a0it�ij

where ait is the 6-vector taken as the relevant row of the basis matrix for the spline function

over time t: We therefore have

yijt = x0ijt�ij + �ijt

where x0ijt = (a0it; b
0

ijt) and �0ij = (�0ij ; �
0

ij): Combining across the day t = 1; : : : ; T; write

Yij for the column T -vector of ows yijt; Xij for corresponding matrix whose rows are the

minute-speci�c, known row-vectors x0ijt and eij for the T -vector of elements �ijt: Then the

link i; day j model can be expressed as the linear model

Yij = Xij�ij + eij : (2)

Additionally, we assume independence and normality of the �ijt; namely N(�ijtj0; �
2
i ) for

each i; j; t where N(ejm; v) denotes a normal distribution, of mean m and variance v; for

the random quantity e: This implies an essentially standard normal linear model for the

ows.

Link by link, the regression components bijt are detailed as follows. The selection of

link-speci�c \upstream" predictors is based on our initial exploratory data analysis and

modelling (not described here) and physical considerations.

1. Detector 1 has no upstream links so the regression term is absent at i = 1: Thus X1j

is simply the T � 6 spline basis matrix and �1j = �1j are the 6-vectors of day-speci�c

trend parameters.
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2. Detector 2 ows are partly predicted by ows at detector 1 at times t� 1 and t� 2.

There is a distance of 1.28 miles between the two detectors, and so, supposing normal

conditions of traÆc, a proportion of cars recorded 1 and 2 minutes before at detector

1 can be expected to be recorded at detector 2. So �2j is a 2-vector, X2j is T � 8; and

�2j is an 8-vector.

3. Detector 3 ows use the same regressor information as detector 2, as the distance

between the two is too short to allow for any correlation between the traÆc at detector

2 one minute before and the traÆc at detector 3 at present. So �3j is a 2-vector, X3j

is T � 8; and �3j is an 8-vector.

4. Detector 4 ows are regressed on past ows from all three of the upstream detectors:

the ows at detectors 2 and 3 at time t� 1, and the ows at detector 1 at times t� 2

and t� 3. So �4j is a 4-vector, X4j is T � 10; and �4j is a 10-vector.

5. Detector 5 ows are predicted by ows at detector 4 just 2 and 3 minutes before, the

distance between the two detectors being almost 2 miles. So �5j is a 2-vector, X5j is

T � 8; and �5j is an 8-vector.

6. Detector 6 is predicted only by ows at detector 5 in the previous minute. So �6j is

a 1-vector, X6j is T � 7; and �6j is a 7-vector.

The hierarchical modelling components arise as descriptors of the variation in both

spline-trend and regression parameters across days. At link i; we assume that the �ij

are drawn from a multivariate normal distribution of parameters, representing day-by-day

variability at this link. Thus

�ij � N(�ijj�i;�i) (3)

independently across all days j and links i: Here �i represents the expected parameters

(spline and regression) at link i about which individual days are distributed. The extent

and nature of the day-speci�c variation is moderated by link-speci�c variance matrices �i:

The model speci�cation is completed by de�ning prior distributions for the population

parameters, or hyperparameters, �i;�i and �
2
i for each link i:We use standard, conditionally
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conjugate priors here, namely

�i � N(�ijmi;Mi);

independently,

��1
i �W (��1

i j(�iRi)
�1; �i)

and

��2i � G(��22 j�; ��2=2)

where W and G denote Wishart and Gamma distributions, respectively. The de�ning

quantities �; � and the mi;Mi; �i and Ri for each i; are �xed and speci�ed. The analysis

reported below assumed essentially uninformative hyperpriors, with very large elements on

the diagonals of the prior variance matrices Mi for the link-speci�c parameters �i: Useful

background to normal, linear hierarchical models and prior forms can be found in, for

example, Lindley and Smith (1972), Smith (1973), and more recently and speci�cally in

Gelfand et al (1990), and in several of the contributed chapters in Gilks et al (1996).

Analysis of the nine days of observed data involves computing posterior distributions

for all model parameters and the population hyperparameters. Analysis is via standard

methods of Bayesian simulation using Markov chain Monte Carlo techniques, and basically

follows developments in the �nal two references above. Basic mathematical details appear

in the appendix to this paper. With samples from posterior distributions available, we are in

a position to compute posterior estimates and associated probability intervals, predictions,

and so forth. Some such summaries are discussed in the next section.

2.2. SOME SUMMARY INFERENCES AND MODEL FIT ASSESSMENT

A selection of posterior summaries is reviewed here, all based on standard graphical

and numerical representations of the outputs of the simulation based analysis of the full

posterior distribution for all model parameters and hyperparameters.

Begin with Figure 2. This summarises marginal posteriors for the elements of �2; the link

2 hyperparameters. As noted above the �rst six elements represent the spline parameters

of the population of days for this link, and the �nal two are the population regression

coeÆcients on past ows on link 1. In each frame we display density estimators of posterior
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samples for these hyperparameters. Also, the \at" density curve in each frame represents

the di�use marginal prior for each variable; this is displayed to illustrate just how relatively

di�use the priors are in connection with the claim that the priors are uninformative. These

graphs are representative of marginal posteriors for hyperparameters across all links.

The sequence of Figures 3 to 8 display summary posterior inferences for link and day

speci�c parameters �ij: The spline function parameters are summarised in terms of posterior

means of the daily patterns sij(t) plotted, for each link i and day j; as functions over time

t during the day. Thus, for j = 1; : : : ; 9; Figure 3 plots the posterior mean E[s1j(t)jY ] =

a01tE[�1j jY ] over t = 0; : : : ; 228: In addition, the spline function of the underlying population

trends, link by link, are graphed; thus Figure 3 includes the graph over t of a01tE[m1jY ]:

Notice the similarities of the trends across days on this link 1. The variability in daily

patterns exhibited indicates meaningful random e�ects day by day, consistent with non-

negligible values of the scale factors in �1: Note one peculiar Wednesday that departs

substantially from the underlying population trend and has quite di�erent characteristics

than the other eight days, the basic ows being much lower than typical.

For the remaining links, 2-6 inclusive, similar graphs of day-speci�c and underlying

daily trend patterns appear in Figures 4 to 8. Link 1 is described entirely in terms of the

spline patterns, whereas links 2-6 have additional parameters related to the regressions on

past upstream ows. Hence these �gures include additional graphs summarising posterior

inferences for the day-speci�c regression parameters, and the underlying regression hyper-

parameters, for each of these links. For example, consider link 2 summarised in Figure 4.

This link has just two regression parameters for past upstream ows, and the upper frames

in the �gure provide boxplots of the samples from the corresponding posteriors. Those

labelled by names of days represent the day-speci�c regression parameters, and those la-

belled \mu" represent inferences on the underlying hyperparameters. Here again we note

similarities across days, though with some evident variability day-to-day consistent with the

random e�ects, hierarchical structure. Note also the signi�cance of the regression parame-

ters indicated by the general lack of coverage of zero values by the posterior intervals. The

remaining �gures provide similar displays for the other links. We note that the one peculiar

Wednesday stands out across all six links in terms of the departure of the daily spline trend
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pattern from the norm, a feature that is currently unexplained but which is naturally and

adequately assumed by the hierarchical model without overly distorting inferences for other

days.

Though the model assumes that the link speci�c patterns �ij are exchangeable across

days, i.e., that their prior distribution depends only on link index i; there is some suggestion

of weekday similarities from the �gures of daily trends. Thus re�ned models might incor-

porate partially exchangeable priors in which, for example, the parameters for any Tuesday

are a random sample from a population of Tuesdays, rather than the broader population of

all days. We do not do this here formally, but do use the idea in developing out-of-sample

predictive distributions for model assessment in the following subsection.

Initial examination of aspects of model �t and adequacy are explored through �tted

values and estimated residuals. The two Figures 9 and 10 provide some graphical displays

of data and �tted values for two days, the �rst Tuesday and the second Thursday of the

period under study. The reader can consider them representative of the general results. In

each case the ow data on all six links are plotted, and the �tted values ŷijt = x0ijtE[�ij jY ]

are overlaid. On link 1 the �tted values simply represent the trend, but across the remaining

links also include the estimated regression e�ects from past upstream ows. From these

graphs it is clear that the regression components are very e�ective in tracking the short-

term variability in link-to-link ows on shorter links. Link 5 is the least well modelled as it

is relatively long, so that recent downstream ows are less indicative of current activity at

the �fth detector, and more heavily inuenced by the in/out ows on the several intervening

ramps. The �tted ows on the remaining links are remarkably accurate, capable of tracking

both minor and more signi�cant uctuations. Note in particular the marked response to

the major slowdown on links 5 and 6, and the ability of the link 6 model to rapidly respond

and adjust.

The model explains a signi�cant degree of observed variability across all detectors and

days. Daily sample variances for each detector are quite variable across the full 52 days of

data. Average sample variances by detector are roughly 228, 211, 214, 228, 270 and 175,

but the values range quite widely, from minima of roughly 69, 94, 95, 117, 108 and 71, to

maxima of roughly 1475, 458, 456, 483, 787 and 709. The average sample variances for the
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speci�c nine days in our study are roughly 183, 217, 223, 240, 271 and 176. By comparison,

the posterior means of the model residual variances �2i for the six links are roughly 85, 100,

110, 111, 122 and 71, respectively, so indicating a very meaningful reduction in observed

variability, though there is substantial unexplained variation in the data. Further residual

analyses con�rm, across all detectors, no signi�cant evidence of departures from the assumed

normality, and no evidence of residual correlation structure.

2.3. PREDICTION OF NEW DAYS

More incisive and relevant assessments of model adequacy are based on out-of-sample

predictive performance, as opposed to the above in-sample assessments using �tted values.

To explore this we examined conditional ow forecasts across a representative selection of

additional days whose data are available. Figures 11 and 12 provide plots of the data for

two randomly chosen future days, and overlaid are point forecasts derived as forecast means

from approximate conditional predictive distributions. Speci�cally, these point forecasts are

simply the conditional means in (2) with each �ij replaced by posterior means from the data

analysis of the original nine days. For the Tuesday 2nd July forecasts, the parameters are

estimated by posterior means from the �rst Tuesday of the original nine days, and those

for Thursday 8th August by posterior means from the second Thursday of the original nine

days. This represents a minor departure from the model in that we are now implicitly

identifying and, in an ad-hoc manner, incorporating a possible day-of-week e�ect, as was

earlier alluded to. Further, this does not fully exploit the predictive ability of the models

as more formal exploration of predictive distributions might. Nevertheless, performance in

terms of the match of point forecasts to outcomes, is excellent, and really comparable to

the in-sample �tted values of the earlier �gures.

Real-time use of these models will involve sequential analysis, proceeding through the

day and successively updating posterior distributions across links as ow data is received.

This is the context in which models should be developed and assessed. Before exploring this,

we embark on relatively minor model generalisation that moves us naturally into a sequential

processing format while adding potential for improvements in short-term predictive ability.

3. DYNAMIC HIERACHICAL REGRESSION MODELS
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Improvements in day-speci�c, short-term forecasts can be expected to arise from re�ned

models that adapt to the observed within-day variability in ows using dynamic modelling

methods from time series (West and Harrison 1997). As it stands the basic regression model

of equations (2) and (3) provides day-speci�c e�ects that are constant over the course of

the day. This constancy is certainly most appropriate for the basic spline parameters rep-

resenting the in/out ows from ramps, but perhaps a little rigid in connection with the

regression parameters �ij that represent the transfer e�ects of historical upstream ows.

Changing road and weather conditions, mix of vehicle type, idiosyncratic driver behaviour,

and so forth all impact randomly on within-day ows in the very short-term. Such un-

predictable inuences on link ow rates are captured in the regression model wholly by

the residual terms �ijt; whereas their e�ects are, in part, made physically evident through

the transfer responses to downstream ows and hence in a modelling framework through

changes in regression parameters. This is a traditional concept that underlies the entire

�eld of dynamic modelling and Bayesian forecasting (West and Harrison 1997). A typical

immediate bene�t of recognising and modelling time-varying regression parameters is in-

creased short-term forecasting accuracy and reduced forecast uncertainty, as the examples

in West and Harrison (1997, chapters 2 and 3, particularly) vividly demonstrate. Also, the

use of Bayesian dynamic modelling for short term forecasting has been proven e�ective by

Whittaker and al. (1997), though under a di�erent perspective, which models the physical

process underlying a traÆc network from a theoretical point of view. Here we remain in a

strictly empirical domain, letting the incoming data modify the parameters' estimate.

We detail and explore the simplest dynamic model extension of the hierarchical regres-

sions above. The only change to the basic model form in equation (1) is that the regression

parameters �ij are now considered as possibly varying over the day at the minute-by-minute

level t = 1; : : : ; T: Thus, for link i on day j at minute t we now model detector ows as

yijt = sij(t) + b0ijt�ijt + �ijt (4)

where sij(t) represents the smooth trend over day j as earlier, bijt is a vector of known

ows from preceding upstream links as earlier, and �ijt � N(�ijtj0; �
2
i ) represents residual

variation in ows, also as in the original formulation. The only change from the original

model is that the regression parameter de�ning the expected response to the predictor ows
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bijt is now time-dependent, denoted by �ijt at minute t: The simplest exploratory model

for time-variation in these parameters is a dynamic regression model that simply allows for

small changes through the day, but which does not anticipate directions of change (West

and Harrison 1997, chapter 3). In this normal linear model, we adopt the random walk

�ijt = �ij;t�1 + !ijt (5)

where !ijt represents a sequence of zero-mean, normally distributed random terms, referred

to as evolution errors or innovations, N(!ijtj0;Wijt): Between minutes t � 1 and t the

regression parameter vector changes randomly via the addition of the innovation !ijt; and

such changes can therefore be estimated based on the sequentially received and processed

ow data. It is assumed that the innovations are independent through time t within days

j; and also across links i: The model requires that we specify or estimate the innovation

variances Wijt; and this is done using standard methods of discounting (West and Harrison

1997, chapter 6). Some technical details of this are given in the appendix here, together

with a summary of the model formul� and resulting computations. The essential detail

is that this approach de�nes innovations variances to depend on a single scalar discount

factor Æ 2 (0; 1]; i.e., Wijt = Wijt(Æ): The structure is such that Wijt(1) = 0; so that Æ = 1

reduces the dynamic model to the original constant regression �ijt = �ij constant through

the day. This provides opportunity to assess the original constant model and compare its

predictive performance and �t to alternative dynamic models with Æ < 1: Further, each

variance Wijt(Æ) is a decreasing function of Æ; so that smaller discount factors lead to larger

variances and hence greater potential variability in the regression parameters. As in other

areas of dynamic modelling, discount factors close to but less than unity are expected to

be appropriate; this allows for very small degrees of change in the regression relationship to

adapt to random variations throughout the course of the day. This is con�rmed by several

re-analyses of the original nine days of data, as we shall see below.

3.1. PERSPECTIVE AND MODEL FITTING

The sequential dynamic model analysis proceeds in parallel across links, so consider any

link i at the start of the \current" day j: Based on the past data and analysis, we have current
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initial information Dj0 which provides the basis for initial distributions (across all links)

for the initial values of the current days parameters �ij0 and �2i : The joint distribution has

the conjugate form, namely N(�ij0jmij0; �
2
iCij0) multiplied by G(�

�2
i jnij0=2; nij0Sij0=2); as

noted in appendix. Our analyses of new days of data reported below bases these initial

distributions on the results of the static analysis of the �rst nine days of data, exactly as

described in the out-of-sample prediction analysis under the static model. Thus the variance

estimate Sij0 and degree of freedom nij0 are taken as the posterior values from the nine

days analysis on link i; the estimate mij0 is the posterior value for the � vector on the last

weekday of the same name, and Cij0 is the posterior mean of �i from the static analysis.

This \initialisation" again recognises the minor departure from the standard exchangeable

model in adapting to the perceived day-of-week similarities through the parameter means

mij0; otherwise, we would simply set mij0 equal to the posterior mean of �i from the static

analysis of the initial nine days of data.

Proceeding sequentially through the day, t = 1; 2; : : : ; we sequentially receive and anal-

yse the observed ows across all links, and the analysis adaptively updates the posterior

distributions for model parameters. At time t during the day, write Djt for all data and

information available at the time, so that Djt = fDj;t�1; Yjtg where Yjt is the full set of

observed ows on all links in time interval (here minute) t: Based on this data, the posterior

distributions for link i parameters are

N(�ijtjmijt; �
2
iCijt)�G(��2i jnijt=2; nijtSijt=2)

where the de�ning quantities are updated sequentially. The values mijt and Sijt provide

\on-line" point estimates of the model parameters �ijt and �2i at this point t during day j:

Key to real-time implementation of these models are step ahead forecast distributions,

i.e., forecasts for near-term future ows based on past data. These are easily computable

using standard dynamic model theory. Of primary interest are the one-step ahead forecast

distributions, namely p(yij;t+1jDjt) on link i: At time point t; this provides the one-step

ahead forecast or prediction of ows in the next time interval. In addition to the interest

in real-time application, these distributions are the cornerstones of methods for assessing

model �t and adequacy; consistency of observed ows with these forecast distributions is a

more critical and meaningful benchmark of model quality than the \retrospective" or �tted
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values earlier explored (West and Harrison 1997, especially chapters 10 and 11), which we

nonetheless document in Figure 15 and 16. Under the current model structures, these are

Student T distributions with trivially computed moments (see appendix).

Figures 13 and 14 display graphs of observed ows for all links under a model as de-

scribed above and with a discount factor of Æ = 0:95 determining the variance matrices

Wijt(Æ) that describe the time-variation in the link-speci�c regression parameters �ijt: The

sequential adaptation to new data is clear and most apparent on link 1 where we see the

estimated spline-based trend modi�ed throughout the day. By comparison with the earlier

�gures of �tted values note that one-step forecasts inevitably appear less \on target" { they

are forecasts not retrospective �ts. In fact the dynamic models are indeed preferred in terms

of model �t, some aspects of which are summarised through comparisons of model likelihood

measures (West and Harrison 1997, especially sections 2.6, 3.4 and 11.4). In this setting the

model likelihood is simply the product of observed one-step ahead forecast densities, i.e.,

the product of all terms p(yij;t+1jDjt) over t = 0; : : : ; T �1: Running separate analyses that

di�er only through the value of the discount factor Æ allows comparison of the values and

so an assessment of data-based support for di�ering degrees of variability in the regression

parameters. We summarise the results here comparing two discount factors Æ = 1 (the static

model, no variations in parameters) and Æ = 0:95: Table 1 quotes the log-likelihoods for

each link separately and for two representative days, July 2nd and August 8th. Evidently,

this supports the dynamic model across all links.

We also show in Figure 15 and 16 the smoothed (i.e. retrospective) means of the

distribution of the ows. This type of representation is more directly comparable to the

�tted series in Figure 9 and 10. More so than the one-step-ahead forecast, necessarily less

\on-target" as mentioned above. Clearly these �ts appear to follow the observed counts

very satisfactorily.

Further illustration of the bene�ts of dynamic modelling in this context arises in cases

of marked changes in traÆc ows. Figure 17 plots ows and out-of-sample �tted values

on Wednesday, 31st July at detector 4. Evidently the standard model does very poorly

in predicting the major change in patterns of ows in the mid-morning. By comparison,

the dynamic model is capable of rapidly adapting to pick-up the changes and thereafter
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adequately track and predict near-term ows.

4. INCORPORATING DOWNSTREAM DATA

Additional model extensions to explore the incorporation of downstream ow data have

been developed and analysed in a similar fashion. Particularly in the cases of signi�cant

slowdowns of ows at a given link, it is evident that the near-term development of ows

on the immediate upstream link will likely be heavily impacted. Hence it is of interest to

extend the regression components of existing models to include observed downstream ows.

This has been done, link-by-link, including past downstream ows one or two minutes back

in time, using only ows at contiguous links. Over most of the links and on the basis of

analyses across the same nine days of ow data, the improvements in model �t and short-

term forecast performance are almost negligible. Figures 18 and 19 provide graphs of the

observed ows at detectors 1 and 3 over a selection of days. Superimposed are �tted values

from both the original model, based only on upstream ows, and the extended model that

incorporates recent downstream data. Evidently, the di�erences are very small.

The story is not quite so negative, however. Recall that the original model is relatively

poor in tracking ows on one of the Wednesdays of the initial set of days. It turns out

that adding in regression terms on downstream data does have a more apparent impact, in

terms of slightly improved �t, for data on one link, link 3, on Wednesdays. On one speci�c

Wednesday (7th August), this link experienced a radical slowdown in the early rush hour,

and this is very well predicted on the basis of the feedback from the downstream link, in

this case representing a very substantial improvement over the \upstream only" model; see

Figure 20. It is unclear just why this link:day combination stands out in this respect, but

the results here do indicate the potential for real-time presaging of major slowdowns in this

model extension.

5. SUMMARY COMMENTS

The link-speci�c regression and dynamic regression models identi�ed in our analyses ac-

count for a good deal of the observed variability in minute-by-minute traÆc ows as recorded

by existing detectors. At this time resolution, basic spline functions for the day-speci�c
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pro�les combined with selected upstream ows from very recent time intervals reasonably

adequately characterise changes in traÆc ow patterns for current time and one-step ahead

predictions. The daily patterns reproduce across common days of the week and so histori-

cal data may be used to re�ne the estimation of the day-of-week speci�c spline parameters.

Modi�ed models that permit day- and minute- speci�c changes in the regressions on re-

cent upstream ows quite signi�cantly improve the accuracy of short-term forecasts of ows

through adaptation to more local conditions. These dynamic regressions are recommended

for empirical modelling and short-term prediction and assessment of changes in ow pat-

terns. Our analyses have identi�ed a speci�c link-day combination that departs signi�cantly

from this otherwise adequate model across other links and days, and for which additional

explanations are needed. In general, the incorporation of recent ows on downstream links

does not markedly improve model �t and predictive ability, with the very notable exception

of a day on which ows break down quite substantially and the feedback of the slowdown

to upstream links is evidently strongly predicted by the use of recent downstream data.

Hence the extended models incorporating downstream data should generally be entertained

in anticipation of their relevance in cases of extreme slowdowns.

Open questions and areas for further development include considerations of ow predic-

tions several minutes ahead. In the current I5 study, the models do not have this capacity,

and additional detectors for on-ramp traÆc would be needed to re�ne the models usefully

in this direction. They do, however, o�er potential for learning through \What if?" anal-

yses that explore predictions under assumed patterns of on-ramp ows. A second area for

further study concerns more formal modelling of the day-of-week e�ect. This may involve

developing and estimating hierarchical models that describe correlations between the spline

parameters across days of the week, and that permit marked departures for idiosyncratic

days to respond, for example, to signi�cant changes in weather patterns. Further areas

of research that should prove fruitful include extended models that correlate changes in

the dynamic regression parameters across links, and incorporation of additional predictors

such as occupancy measures (if available from detector data) to proxy local average speed

of traÆc. Finally, the potential of such models as management tools will be enhanced by

the overlaying of feed-forward intervention methods (West and Harrison, 1997) to mod-
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ify model estimates and forecasts in the light of external information, such as changes in

weather conditions, breakdowns, lane or ramp closures, and so forth.

6. APPENDIX

6.1. FITTING HIERARCHICAL REGRESSION MODELS

The structure of conditional posterior distributions in the basic hierarchical regression

model, and the resulting implementation of Markov chain Monte Carlo methods of analysis,

is summarised here. We implement a direct Gibbs sampling analysis in which each of several

sets of parameters are simulated at each stage of an overall iterative framework. The

parameters are simulated from conditional distributions that are determined by currently

�xed values of other parameters, and which changes as these other parameters are resampled

from their conditional distributions.

The speci�c set of conditional distributions used here are as follows. Recall that we

have I = 6 links, J = 9 days and T = 228 minutes per day. The distributions are given

for each detector i = 1; : : : ; I; with the understanding that the corresponding link-speci�c

parameters are conditionally independent with the stated distributions.

� For each of the �ij; we have the multivariate normal distribution N(�ij jtij; Tij) where

tij = Tij(�
�1
i �i +X 0

ijYij�
�2
i )

and

Tij = (��1
i +X 0

ijXij�
�2
i )�1:

� For each of the �i; we have the multivariate normal distribution N(�ijm
�

i ;M
�

i ) where

m�

i =M�

i (M
�1
i mi + J��1

i
��i)

and

M�

i = (M�1
i + J��1

i )�1:

Here ��i =
PJ

j=1 �ij=J:
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� For each of the �i; we have the inverse Wishart distribution

W (��1
i j((�+ J)Ri)

�1; (�+ J))

where

Ri = (�R+
dX

i=1

wijw
0

ij)=(� + J)

with wij = �ij � �i:

� For each �2i ; we have the conditional inverse gamma distribution

G(��2i j(� + JT )=2; (� + JT )�2i =2)

where

�2i = (��2 +
JX

j=1

eije
0

ij)=(� + JT )

with eij = Yij �X 0

ij�ij:

The Gibbs sampler cycles repeatedly through these four items in turn, at each step

simulating a new value of the corresponding parameters to be used in future stages.

The result of the iterative sampling, after eliminating a number of initial iterations

devoted to the initial burn-in process, are values for the variables drawn approximately

from their full joint distribution.

The results of this paper are based on the output of 10; 000 iterations, the �rst 1; 000

discarded for burn-in. The code for the Gibbs sampler was written in FORTRAN 77,

and when compiled with a standard optimization option, runs in 25 to 45 seconds on

a Sun Ultra 60 2360 otherwise idle. Convergence and independence from the starting

values were checked by standard tools (i.e. CODA, Best et al., 1995). The starting

values were randomly generated from the prior distributions adopted.

As for sensitivity to the prior assumptions, we point out that we adopt non-informative

priors, as can be assessed for example in Figure 2. This way we are truly letting the

data guide the posterior analysis. More generally, this kind of hierarchical analysis

for linear models is well consolidated and has been thoroughly analysed with respect

to this issue, and we refer again to Lindley and Smith (1972), Smith (1973), Gelfand

et al (1990), and chapters in Gilks et al (1996) for details.
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6.2. FITTING DYNAMIC HIERARCHICAL REGRESSION MODELS

The details of dynamic model analysis are standard, following general theory inWest and

Harrison (1997, chapter 4). Assume the models of equations (4) and (5), and note that the

�rst equation can be expressed as yijt = x0ijt�ijt+�ijt: Assume initial priors p(�ij0; �
2
i jDj0) of

the conjugate form N(�ij0jmij0; �
2
iCij0) multiplied by G(��2i jnij0=2; nij0Sij0=2): For every

link i this structure holds independently of other links j; for j 6= i, so analysis proceeds in

parallel across links, though the ow data is \transferred" across links via the regression

terms. Beginning at time t = 1; the data is sequentially analysed and at any time t the

following component distributions are easily calculated (for full details of the updating

equations and other components of analysis, see West and Harrison 1997, chapter 4).

� p(�ijt; �
2
i jDjt) has the conjugate form

N(�ijtjmijt; �
2
iCijt)�G(��2i jnijt=2; nijtSijt=2)

where

mijt = mij;t�1 +Rijtxijteijt=qijt;

Cijt = Rijt �Rijtxijtx
0

ijtR
0

ijt=qijt;

Rijt = Cij;t�1 +Wijt;

qijt = x0ijtRijtxijt + 1;

eijt = yijt � x0ijtmij;t�1;

nijt = nij;t�1 + 1; and

Sijt = Sij;t�1(1 + e2ijt=(qijtnijt)):

� p(�ijtjDjt) is the density of a multivariate Student T distribution with nijt degrees of

freedom, namely

Tnijt
(�ijtjmijt; SijtCijt):

� Forecasting one-step ahead at time t; the one-step ahead forecast or predictive distri-

bution for (yij;t+1jDjt) is a univariate Student T distribution, namely

Tnijt
(yij;t+1jx

0

ij;t+1mijt; Sijtqij;t+1):
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� p(�ijt�kjDjt), the k-step smoothed distribution, is a univariate Student T distribution,

namely

Tnijt
(�ijt�kjaijt(�k);

Sijt

Sijt�k

Rijt(�k))

where

aijt(�k) = mij;t�k +Bijt�k(aijt(�k + 1)� aijt�k+1);

aijt(0) = mijt;

aijt�k(1) = aijt�k+1;

aijt = mijt�1;

Rijt(�k) = Cijt�k +Bijt�k(Rijt(�k + 1)�Rijt�k+1)B
0

ijt�k;

Rijt(0) = Cijt;

Rijt�k(1) = Rijt�k+1; and

Bijt = CijtR
�1
ijt+1:

The lines in Figure 15 and 16 connect the values fijt(�k) = xijt�kaijt(�k) where t is

the maximum time recorded (the 228th minute) and k runs from t � pi � 1 to 1, (pi

being the number of predictors used in the regression model for link i).
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Figure 1 : The section of I-5 under study and detector layout. The numbers at the bottom

represent the distances, in miles, between subsequent detectors.

Figure 2 : Detector 2: prior and posterior marginal distributions for components of the regres-

sion hyperparameter vector.

Figure 3 : Detector 1: posterior means of the spline functions. The solid line corresponds to

the mean value of the hyperparameter vector; the dashed lines to the mean value of

the parameters for the single days. The line showing a \dip" in the interval (50; 100)

corresponds to the peculiar Wednesday mentioned in the analysis.

Figure 4 : Detector 2: posterior summaries for regression parameters, in the top frame and the

posterior means of the spline functions, in the bottom frame. For the latter, the solid

line corresponds to the mean value of the hyperparameter vector; the dashed lines to

the the mean value of the parameters for the single days, with the two Wednesdays

corresponding to the two lines at the top of the panel.

Figure 5 : Detector 3: posterior summaries for regression parameters, in the top frame and the

posterior means of the spline functions, in the bottom frame. For the latter, the solid

line corresponds to the mean value of the hyperparameter vector; the dashed lines to

the mean value of the parameters for the single days, with the peculiar Wednesday

corresponding to the line at the very top.

Figure 6 : Detector 4: posterior summaries for regression parameters, in the top frame and the

posterior means of the spline functions, in the bottom frame. For the latter, the solid

line corresponds to the mean value of the hyperparameter vector; the dashed lines to

the mean value of the parameters for the single days, with the peculiar Wednesday

corresponding to the line at the very top.

Figure 7 : Detector 5: posterior summaries for regression parameters, in the top frame and the

posterior means of the spline functions, in the bottom frame. For the latter, the solid

line corresponds to the mean value of the hyperparameter vector; the dashed lines to

the mean value of the parameters for the single days, with the peculiar Wednesday

corresponding to the line at the very top.
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Figure 8 : Detector 6: posterior summaries for regression parameters, in the top frame and the

posterior means of the spline functions, in the bottom frame. For the latter, the solid

line corresponds to the mean value of the hyperparameter vector; the dashed lines to

the mean value of the parameters for the single days, with the peculiar Wednesday

corresponding to the line at the very bottom.

Figure 9 : Tuesday 18th June: Data (dotted lines) and �tted values (solid lines) for the entire

sequence of detectors. From top to bottom, detector 1 through detector 6.

Figure 10 : Thursday 27th June: Data (dotted lines) and �tted values (solid lines) for the entire

sequence of detectors. From top to bottom, detector 1 through detector 6.

Figure 11 : Tuesday 2nd July: Data (dotted lines) and out-of-sample �tted values (solid lines)

for the entire sequence of detectors. From top to bottom, detector 1 through detector

6.

Figure 12 : Thursday 8th August: Data (dotted lines) and out-of-sample �tted values (solid

lines) for the entire sequence of detectors. From top to bottom, detector 1 through

detector 6.

Figure 13 : Tuesday 2nd July: Data (dotted lines) and one-step-ahead forecasts (solid lines) for

the 6 detectors. From top to bottom, detector 1 through detector 6.

Figure 14 : Thursday 8th August: Data (dotted lines), and one-step-ahead forecasts (solid lines)

for the 6 detectors. From top to bottom, detector 1 through detector 6.

Figure 15 : Tuesday 2nd July: Data (dotted lines) and smoothed estimates of the counts poste-

rior means (solid lines) for the 5 detectors that utilise upstream data as explanatory

variables. From top to bottom, detector 2 through detector 6.

Figure 16 : Thursday 8th August: Data (dotted lines) and smoothed estimates of the counts

posterior means (solid lines) for the 5 detectors that utilise upstream data as explana-

tory variables. From top to bottom, detector 2 through detector 6.

Figure 17 : Comparison of performances between standard model and dynamic model. Out-of-

sample data from Wednesday, 31st July.The real data are the dotted line.
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Figure 18 : Flows at detector 1 for the in-sample (top 2 frames) and out-of-sample (bottom

2) days. Fitted/predicted values by the original model (smooth curves) and by the

model that includes recent downstream ows. Dotted lines are the real data.

Figure 19 : Flows at detector 3 for the in-sample (top 2 frames) and out-of-sample (bottom 2)

days. Fitted/predicted values by the original model and by the model that includes

recent downstream ows. The real data are the dotted lines, the two solid lines are

indistinguishable.

Figure 20 : Improving the predictions by downstream data inclusion (bottom frame) in a case

of major slowdown.

Table 1 : Comparison of static (Æ = 1) and dynamic (Æ = 0:95) models.
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Detector log-likelihood log-likelihood

07.02 Æ = 1 Æ = 0:95

1 -327.6 . . .

2 -331.5 -326.9

3 -329.0 -324.6

4 -327.4 -318.8

5 -326.5 -325.0

6 -338.4 -336.8

Detector log-likelihood log-likelihood

08.08 Æ = 1 Æ = 0:95

1 -327.1 . . .

2 -328.9 -327.6

3 -326.9 -325.9

4 -330.9 -329.3

5 -330.1 -327.6

6 -335.8 -335.5


