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Abstract

We use detailed probe, video and detector data to characterize variability of travel times
on (one link of) a major arterial street in the Northwest suburbs of Chicago. Major influences
on variability are shown to be signal status and traffic volume, vehicles’ entry times of the
link relative to the start of a red phase at the downstream intersection and the numbers of cars
queued when they arrive at that signal. Because these primary determinants of travel time are
not accessible in many situations, we show how to predict them from others that are more
readily available.

1 Introduction

Understanding variability of vehicle travel times is central to understanding traffic flow on arterial
streets. This paper uses detailed data from probes, video and detectors to explain the variability
of travel times on a signalized arterial in Northwest suburban Chicago. Specifically, using models
described in §3, a vehicle’s travel time is shown to be determined with high accuracy by the timing
of its entry onto a link relative to the downstream traffic signal and number of other vehicles queued
in front of it when it reaches that signal. Our approach is similar in spirit to Petty, et al. (1998),
which treats accurate estimation of freeway travel times.

Prediction of travel times is plausibly the most likely application of the models in §3. Charac-
terization of variability is an essential component in prediction, for example, to provide dynamic
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route guidance in an advanced traveler information system (ATIS). While the methods in this pa-
per in no sense constitute an ATIS, we do discuss in §4 how they can be adapted for predictive
purposes. The principal issue is that the determinants of variability identified in §3 are not readily
available (that is, are not measured) in most settings, so in §4 we show how to predict them from
other variables that are more likely to be available.

2 Data

Three forms of data are used in this paper: travel times collected by probe vehicles (§2.1); signal
status and vehicle exit times obtained from video cameras (§2.2); and volumes recorded by loop
detectors (§2.3).

Data were collected, as described in Sen, et al. (1997), from a small subnetwork of the AD-
VANCE project (Boyce, et al., 1994) network, consisting of Dundee Road (in North suburban
Chicago) between Wheeling Road and Elmhurst Road, and adjacent links.

Analysis focused on one study link: the 427-meter link of Westbound Dundee Road from
Wheeling Road to Elmhurst Road. It consists of two lanes and can be entered and exited by a
through movement or either a left turn from a dedicated lane or right turn. The speed limit is 35
MPH; travel times vary from less than 30 seconds to more than 100.

The link is signalized at both intersections. At the downstream intersection, an arrow at the
start of each green phase allows protected left turns; left turns are also allowed during the primary
green phase itself. The signal cycle is approximately 130 seconds, split evenly between green and
red.1 Phase lengths may be prolonged on the basis of detector data.

2.1 Probe Data

Probe vehicles from the ADVANCE project provided time-stamped travel times along each link
traversed. The time stamp is, for practical purposes, the time at which the vehicle exits the link.

The probes were driven by non-professional drivers. To avoid confounding drivers with other
effects, routes were Markov chains constructed by randomizing over turns at each intersection,
using weights that give preference to the study link. Data were collected from 27 probes traveling
between 1:00 PM and 8:00 PM on 25 days during the period July 5 – August 19, 1995. A total of
3986 travel times were recorded for the study link.

2.2 Video Data

Video data were collected between 3:00 PM and 6:00 PM in late July and early August, 1995, for a
total of 10 days, concurrent with ADVANCE evaluation tests (Argonne, 1997). Two video cameras
were placed at the downstream intersection. One, at the Northwest corner, filmed all cars exiting
the link. The second, at the Southeast corner, recorded the traffic signal at the end of the link. The
time stamps on the cameras were synchronized to the ADVANCE system clock.

1For simplicity, we absorb the amber phase into the green.
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Extracted from the video tapes, using simple, NISS–developed software, were: (1) The time-
dependent status of the downstream signal of the study link; (2) Exit times from the study link, by
turning movement, of all vehicles; and (3) Exit times, by turning movement and vehicle ID, for
probes.2 From these data were derived the number of vehicles that exited the link during the same
green phase as a probe, the probe’s rank among these vehicles and the status of the signal at and
after the probe’s entry of the link.

2.3 Detector Data

Single-loop detectors are located in each lane of Dundee Road some three hundred feet upstream
(East) of the Dundee–Elmhurst intersection. The data, aggregated to five-minute intervals, com-
prise both counts and occupancies; those relevant to a probe’s travel time are the measurements
for the five-minute interval containing the entry time. As observed elsewhere, quality is a serious
problem for detector data.3

3 Models that Explain Variability

In this section, we use simple models to show that selected characteristics of the traffic signals and
volume account for much of the variability in probe travel times on the study link. The models are
quite similar to delay functions used in a variety of applications (e.g., network flow models).

3.1 Through Exits

We first discuss cars that exit the study link using a through movement.
One critical variable in explaining variability of travel times is relative entry time — the time

RET that the probe enters the link relative to the status of the downstream signal. A vehicle has
RET = t if, were it to drive to the end of the link at the free flow speed, it would arrive there t
seconds after the exit signal changed to red. Figure 1 shows a scatter plot of travel time TT and
relative entry time RET for probe vehicles exiting via a through movement.

Figure 2 presents a model for these data in terms of RET and traffic volume.4 Suppose that the
traffic volume is v (vehicles per second) and that each vehicle requires c seconds to clear the queue
(see (3) below), and assume that cv < 1 and that cvR < G.5 Thus, when RET < R/(1 − cv), a
vehicle must wait in a queue at the end of the link, adding a queueing delay to its travel time. The
resulting model is

TT(RET) =
{

FFTT + R − (1 − cv)RET RET ≤ R/(1 − cv)

FFTT R/(1 − cv) < RET ≤ R + G,
(1)

2Probes carried markers that allowed them to be identified in the video data.
3In Graves, et al. (1998a), more than 40% of detector measurements were palpably flawed; the true error rate is

even higher.
4Assumptions implicit in this model are that signal behavior is nonrandom and that acceleration between rest and

the free flow speed is instantaneous.
5Otherwise the system is unstable.
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Figure 1: Data for Through Exits: Probe Travel Times vs. Relative Entry Times.

where FFTT is the free flow travel time.6

Neither (1) nor (2) below represents explicitly the cruise time of vehicles: delays along the link
are presumed compensated by a shorter wait at the link’s end.

Because video data are available, we re-parameterize (1) to model TT as a function of RET and
POS — one plus the number of vehicles exiting the intersection in the same green cycle but prior
to the vehicle under consideration:

TT(RET, POS) = FFTT + [TC(POS) − (RET − R)]+ , (2)

where TC(n) is the time required for a queue of n vehicles to clear.
The model (2) was fitted as follows. First, FFTT = 27 seconds, obtained by dividing the

link length by the speed limit. Second, using vehicle exit times from video data and the rreg()
procedure in S-Plus with Huber weights (Venables & Ripley, 1994), the function TC is estimated
to be

TC(n) = 3.5 + 1.2n. (3)
6An idealized form arises when v = 0: TT(RET) = FFTT + (R − RET)+, where x+ is equal to x if x ≥ 0 and

x+ = 0 otherwise.
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Figure 2: Model (1) for Travel Time (TT) as a Function of Relative Entry Time (RET). FFTT is
the free flow travel time. The signal is red during the shaded times.

(This model differs from the queue-clearing model embedded in (1) by the presence of the constant
term 3.5; 1.2 corresponds directly to c in (1).) The fitted version of (2) is then

TT(RET, POS) = 27 + [3.5 + 1.2 × POS − (RET − R)]+ ; (4)

R is approximately 60 seconds.
Figure 3 plots probe travel times against fitted values from (4). The fit is very good: the median

absolute residual is two seconds, and only thirty out of 426 probes have residuals greater than eight
seconds in absolute value.7 Most cases where the fit is poor constitute cycle failures: vehicles that,
based on RET, should have arrived at the signal while it was still green, but did not. Several probes
met this fate, as seen in Figure 1.

Therefore, RET, POS and R explain essentially completely the variability in TT.

3.2 Right Exits

Travel times of probes that exit the study link by turning right behave substantially the same as for
through exits.

Figure 4 (left) shows the data: probe travel times plotted against relative entry times. Corre-
sponding to (4) is the model

TT(RET, POS) = 27 + [
2.4 + 1.1 × POS∗ − (RET − R)

]
+ , (5)

7The line added, for clarity, to this graph is the forty-five degree line, as will be the case with analogous graphs
below.
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Figure 3: Results for Through Exits: travel times vs. fitted values from (4).

where POS∗ is equal to one plus the number of cars that exit before the probe by a right or through
movement. Figure 4 (right) plots probe travel times against fitted values from (5).

Decrease in the coefficients relative to the through movement data may result from our ignoring
the right-turning traffic in the analysis of the probes that take through exits, or from lane differ-
ences, since all right-turning probes exit in the right lane. The plot differs from Figure 3 in that
several probes had low travel times that the model predicts to be high; these were probably able to
turn on red.

3.3 Left Exits

The situation for probes that exit the study link by turning left is more complicated. Three travel
time patterns arise, as visible in the upper left panel of Figure 5:

1. A vehicle can exit during the protected left signal during the same cycle that it arrived at
the end of the link. Because the protected left signal is at the start of the green phase, such
vehicles will have shorter travel times than had they gone straight instead.

2. A vehicle can exit during the same cycle via an unprotected left. Doing so requires waiting
for the opposing traffic to clear, leading to moderate travel times.
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Figure 4: Right Exits. Data (left): Probe travel times vs. relative entry times. Results (right):
Probe travel times vs. fitted values from (5).

3. A vehicle can experience a cycle failure if opposing traffic never thins sufficiently to allow
turning across its lanes. In our data, all such vehicles were able to turn during the protected
left of the next cycle; obviously they have long travel times.

The analysis for the protected group is as for through and right exits, resulting in the model

TT(RET, POS) = 27 + [
3.1 + 2.0 × POS − (RET − R∗)

]
+ , (6)

where R∗ ≈ 51 seconds is the time the light is red before turning to a left arrow. Figure 5 (upper
right) plots probe data against fitted values from (6). The regression coefficients differ from those
for through and right exits because only one lane turns left.

To treat the unprotected left group, which has the greatest variability, we introduce additional
variables. Let LAS and LAE be the start and end times for the left arrow signal in the cycle that
the probe exits. Let OQS be the time at which the opposing queue begins to move (typically,
OQS = LAE), and let OQC be the time necessary for the opposing traffic (traveling East on
Dundee Road) to clear, at which point unprotected left turns can begin. For simplicity, we assume
that no opposing traffic arrives after OQC, so that no further waiting is necessary.8

8To the extent that this is not true, discrepancies will be reflected in regression coefficients.
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Figure 5: Left Exits. Upper Left: Data — probe travel times vs. relative entry times. Upper Right
Results for protected left subset — travel times vs. fitted values from (6). Lower Left Results
for unprotected left subset — travel time vs. fitted values from (7). Lower Right Results for cycle
failure subset — travel time vs. fitted values from (8).
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Using the queue-clearing model (3) with the parameters from (6) leads to the model

TT(RET, POS) = OQS − RET + OQC + 6.2 + 2.0 × POS − (LAE − LAS). (7)

Probe travel times are plotted against fitted values from (7) in the lower left panel of Figure 5.
There we have taken OQC = 48 seconds, which produced the best fit. None of our data were
useful to estimating the value of OQC. Detector data from the opposing link might be valuable,
although both quality and the too-coarse five minute aggregation militate against their use.

By analogy with (6), a model for vehicles undergoing cycle failure is

TT(RET, POS) = 27 + [
3.1 + 2.0POS∗ − (RET − R∗)

]
+ , (8)

where POS∗ is the vehicle’s position in the queue after left turns on its entry cycle are completed.
This can be estimated from its original position, the length (LAE − LAS) of the green arrow and
a value (estimated from the data to be 3.25) for the number of cars that take unprotected left turns
during the cycle before the probe’s exit cycle. Data are plotted against fitted values from (8) in the
bottom right panel of Figure 5.

4 Predicting Travel Times

The models §3 explain variability by representing travel times as functions of RET, POS, R, and,
for vehicles turning left, the group to which they belong. In many settings, as noted in §1, these
may either not be available or not be known in advance.9 In this section, we show how to predict
RET and POS from other, more readily accessible observations. Except in §4.4, we consider only
vehicles exiting the study link via through movements.

The approach is straightforward: replace key variables in (4) (and corresponding equations for
other exit movements) by predicted values, continuing to use the estimated values of the parame-
ters. For (4), this leads to the prediction equation

T̂T = 27 + [
3.5 + 1.2 × P̂OS − (R̂ET − R̂)

]
+ , (9)

where the carets denote predicted variables. Some properties of this equation are discussed in §4.4.
The issue, at this point, becomes calculation of the predicted values on the right-hand side of (9).

4.1 Predicting RET

The distribution of relative entry time as a function of the entry movement has significant predictive
power, illustrated by the histograms in Figure 6, where rows correspond to entry movements left,
right and through. The two columns in Figure 6 are before and after 4:00 PM, a time at which
signal settings are changed.

9The latter case arises in predicting future link travel times for an ATIS.
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Figure 6: Histograms of Relative Entry Times by Entry Movement and Time of Day. Top: Entry
via left turn. Middle: Entry via right turn. Bottom: Through entry. Left: prior to 4:00 PM. Right:
After 4:00 PM.

There are clear differences among the distributions, which are especially pronounced after
4:00 PM. These are due to signal synchronization, which favors through traffic on Dundee Road (a
major arterial).

The means of the distributions in Figure 6 constitute predictors R̂ET — for use in (9) — that
are functions of time of day and entry movement.

4.2 Predicting R

Figure 7 contains kernel density estimates (smoothed histograms) of the distribution of R before
and after 4:00 PM. The associated means become the predictors R̂ in (9).

4.3 Predicting POS

Rather than predict POS directly, we predict NV, the number of cars that exit via a through move-
ment during the same cycle as the probe. Clearly POS lies between 1 and NV, with large values
corresponding to large relative entry times. If arrivals at the end of the link were uniform over a
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Figure 7: Kernel Density Estimates of Red Phase Length by Time of Day. Left: Prior to 4:00 PM.
Right: After 4:00 PM.

signal cycle, we would have

POS = RET

R + G
NV. (10)

One model leading to (10) assumes that arrivals at the end of the link follow a Poisson process
whose intensity parameter reflects the volume of traffic, which can estimated as a function of time
of day from detector counts.10

Figure 8 contains plots of POS/NV against RET, before (left) and after (right) 4:00 PM.11

Arrivals are relatively homogeneous before 4:00, which is evidence in support of (10), but less so
afterward. The second plot suggests a piecewise linear fit, which could be interpreted as one arrival
rate while the exit light is red and a larger arrival rate while the exit light is green; (10) could then
be modified correspondingly.

From (10), given a predictor N̂V, we can predict POS directly:

P̂OS = R̂ET

R̂ + Ĝ
N̂V, (11)

10This is an approximation: since cars travel in platoons, the observed data are over-dispersed relative to the Poisson
model.

11Adjustment for cycle failures is described in §3.3.
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Figure 8: Position in queue relative to queue length as a function of relative entry time. Left:
Before 4:00 PM. Right: After 4:00 PM.

where R̂ET and R̂ are calculated as in §4.1 and 4.2.12

Finally, NV can be predicted using detector data. Figure 9 plots exit counts per signal cycle
(from video data) — that is, NV — against 5-minute detector counts. The visible, positive rela-
tionship, however, is not strong statistically because of over-aggregation and low quality of data
from the detectors.13

4.4 Other Prediction Issues

Here we discuss two additional issues associated with prediction.

Predicting Left Turn Group. Modification of the methodology described at the beginning of
the Section to apply to other turning movements is largely straightforward, except that for vehicles
exiting via a left turn, it is necessary to predict to which of the three groups described in §3.3 they
belong. Group membership is closely related to POS, as seen in Table 1. Each column corresponds
to a value of POS and lists the numbers of probes with that value of POS that fall in each of the

12Ĝ is calculated using distributions analogous to those in Figure 7, omitted here for brevity.
13An approximate calculation suggests that recorded counts are 18% too low.
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Figure 9: Video Exit Volumes (per signal cycle) vs. Five-Minute Detector Counts.

1 2 3 4 5 6 7 8 9 10
Group 1: 13 27 23 19 15 5 9 5 1 0
Group 2: 1 9 11 12 19 20 21 19 14 14
Group 3: 1 0 0 0 0 1 1 5 2 8

11 12 13 14 15 16 17 18 19 20
Group 1: 0 0 0 0 0 0 0 0 0 0
Group 2: 10 8 3 2 0 1 1 1 0 0
Group 3: 11 6 9 3 2 2 0 2 0 1

Table 1: Left Turn Group Membership as a Function of POS.

three groups: POS ≤ 4 tends to imply Group 1, while POS ≥ 13 suggests Group 3, the remainder
going into Group 2.

Predicting Travel Time Distributions. Prediction of mean travel times is immediate: means
of the distributions discussed in §4.1–4.3 can be inserted directly into (9).

In other settings, however, the entire distribution of travel times T̂T in (9) may be of interest;
for example, distributions are needed to combine travel time predictions for individual links to
form a predicted travel time for a multi-link route. While (9) still applies, possible dependence
among R̂ET, P̂OS and R̂ must be addressed.

The fundamental ingredients of (9) are R̂ET, which is derived from probe data (see Figure 6),
R̂ and Ĝ, derived from video data, and N̂V, which is derived from detector data. It is plausible to
assume that R̂ET, the pair (R̂, Ĝ) and N̂V are conditionally independent given the time of day.14

(For demand-actuated signals, this conditional independence is less plausible.) Clearly R̂ and Ĝ
are not independent, but a joint distribution can be derived from video data.

From these objects, the joint distribution of (R̂ET, R̂, Ĝ, N̂V) can be derived, which coupled
with (10) yields that for (R̂ET, P̂OS, R̂). The latter, via (9), then yields the distribution of T̂T.

14Application of (9) yields time-of-day-dependent predictions.

13



5 Conclusions

The models presented here apply to travel times for moderate traffic on arterial streets. They
are not strongly location-dependent, but may not apply if our assumption that cruise delays are
compensated by shorter queueing delays fails, (as in highly congested settings characterized by
frequent or multiple cycle failures). Context-dependent parameters (e.g., free flow travel times,
signal characteristics and volumes) would need to be observed or estimated. By contrast, the
regression coefficients that parameterize queue clearing are not likely to change radically from one
setting to another. Qualitative differences (for example, absence of dedicated left turn lanes or
complicated intersection geometries) would require more detailed consideration.
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