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Abstract 
We describe new results for upper and lower bounds on the entries in multi -way tables of counts based on 
a set of released and possibly overlapping marginal tables which have practical import for assessing 
disclosure risk. In particular, we present a generali zed version of the shuttle algorithm proposed by 
Buzzigoli and Giusti that is proven to compute sharp integer bounds for an arbitrary set of fixed 
marginals. 
Keywords: Statistical disclosure control; Log-linear models; Decomposable models; Reducible models; 
Integer programming.  

 
 

1. Introduction. 
 

1 The National Institute of Statistical Sciences has recently assembled a team of statistical researchers from 
multiple universities who, working with statisticians in U.S. statistical agencies, are developing a Web-based 
query system for statistical databases. Their goal is a system that allows the use of disclosure limitation 
methods (e.g., see Will enborg and de Waal 1996; 2000) applied sequentially in response to a series of 
statistical queries in which the public knowledge of releases is cumulative (c.f. a pilot project described in 
Keller- McNulty and Unger, 1998). The idea is to fully automate recent methods for disclosure limitation, 
intruder behavior (c.f., Fienberg, Makov, and Sanil 1997) and alternative approaches to risk assessment. 

 
2 Consider a database consisting of a k-way contingency table, for which the queries come in the form of 

requests for marginal tables. What is intuitively clear from statistical theory is that, as margins are released 
and cumulated by users, there is increasing information available about the table entries. In response to a new 
query, the system now examines it in combination with all those previously released margins and decides if 
the risk of disclosure of individuals in the full unreleased table is too great. Then it might offer one of three 
responses: (1) yes---release; (2) no---don't release; or perhaps (3) simulate a new table, which is consistent 
with the previously released margins, and then release the requested margin table from it (c.f., Fienberg, 
Makov, and Steele, 1998). Because released margins need to be consistent and even simulated, releases 
become highly constrained. 
 

3 How might such a system evaluate the risk of disclosure from the release of a new margin? A number of 
researchers have recently been working on the problem of determining upper and lower bounds on the cells 
of the cross-classification given a set of margins. This is in one sense an old problem (at least for two-way 
tables) but it is also deeply linked to recent mathematical statistical developments and has generated a flurry 
of new research (e.g., see Buzzigoli and Giusti (1999), Cox (1999), Fienberg (1999), and Roehrig, et al. 
(1999)). Here we outline some recent results on this problem due to Dobra and Fienberg (2000) and Dobra 
(2000a, 2000b) and we ill ustrate our methodology on an example. 
 
2. Technical Background. 
 

4 Upper and lower bounds induced by some fixed set of marginals on the cell entries of a contingency table are 
of great importance in measuring the disclosure risk associated with the release of these marginal totals, e.g., 
see the various papers in the 1993 and 1998 special issues of The Journal of Official Statistics, as well as the 
Proceedings of the Statistical Data Protection Conference, Lisbon 1998. The classes of bounds we are 
concerned with also appear in a number of other contexts such as mass transportation problems. Fréchet 
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originally described bounds on cell counts in cross-classifications of positive counts in terms of cumulative 
distribution functions (c.d.f. henceforth). If we normalize each entry in a two-dimensional table by dividing it 
by the grand total, then adding up the appropriate proportions obtained in this way, we end up with the c.d.f. 
Bonferroni and Hoeffding independently developed related results on bounds. Until recently, the efforts of 
solving this bound problem have been largely focused on the situation when the fixed marginals are non-
overlapping (Fienberg, 1999), but our interest is in the cases when the margins being fixed are 
multidimensional and overlapping, in which case consistency constraints have to be imposed (Joe, 1997). 
 

5 Any contingency table with non-negative integer entries and fixed marginal totals is a lattice point in the 
convex polytope Q defined by the linear system of equations induced by the released marginals. The 
constraints given by the values in the released marginals induce upper and lower bounds on the interior cells 
of the initial table. These bounds or feasibilit y intervals can be obtained by solving the corresponding linear 
programming problems. The importance of systematically investigating these linear systems of equations 
should be readily apparent. If the number of lattice points in Q is below a certain threshold, we have 
significant evidence that a potential disclosure of the entire dataset might have occurred. Moreover, if the 
induced upper and lower bounds are too tight or too close to the actual sensitive value in a cell entry, the 
information associated with the individuals classified in that cell may become public knowledge.  

 
6 The problem of determining sharp upper and lower bounds for the cell entries subject to some linear 

constraints expressed in this form is known to be NP-hard (Roehrig, 1999). Several approaches have been 
proposed for computing bounds. However, almost all of them have drawbacks that show the need for 
alternate solutions. Network models need formal structure to work even for 3-way tables and besides there is 
no general formulation for higher-way tables. The most natural method for solving linear programming 
problems is the simplex method. In this case we would have to run the procedure twice for every element in 
the table and consequently we would ignore the underlying dependencies among the marginals by regarding 
the maximization/minimization problem associated with some cell as unrelated to the parallel problems 
associated with the remainder of the cells in the table. Although the simplex method works well for small 
problems and dimensions, by employing it we would ignore the special structure of the problem because we 
would consider every table as a linear list of cells. The computational inadequacy of the simplex approach is 
further augmented by the fact that we may get fractional bounds (Cox, 1999), which are very diff icult to 
interpret. To avoid fractional bounds, one would have to make use of integer programming algorithms, but 
their computational complexity prevent their usage even for problems of modest size. These considerations 
suggest the need for more specialized, computationally inexpensive algorithms that could fully exploit the 
special structure of the problem we are dealing with. 

 
7 Agencies often employ disclosure limitation methods such as cell suppression and data swapping. The object 

of both methods is to create a replacement table for the genuine unsafe marginal. Both table protection 
methods preserve a given set of marginal totals that were previously released. Log-linear models (see Bishop, 
Fienberg and Holland, 1975) are the most usual way of representing and studying contingency tables with 
fixed marginals, and Fienberg et al. (1998) and Fienberg (1999) have demonstrated the clear links between 
log-linear models and disclosure limitation techniques. Throughout this paper, we exploit log-linear models 
theory to identify special settings amenable to alternative and more eff icient techniques for determining sharp 
bounds. In particular, when the released marginals are the minimal suff icient statistics (MSS henceforth) of a 
decomposable log-linear model, we are able to express the upper and lower bounds as explicit functions of 
marginal totals (Dobra and Fienberg, 2000). We extend our results to more general structures for which we 
can considerably reduce the computational effort required to solve the linear problems. 

 
3. New Results on Bounds. 
 

8 We visualize the dependency patterns induced by the released marginals by constructing an independence 
graph for the variables in the underlying cross-classification. Each variable cross-classified in the table is 
associated with a vertex in this graph. If two variables are not connected, they are conditionally independent 
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given the remainder. Models described solely in terms of such conditional independencies are said to be 
graphical (e.g., see Lauritzen, 1996). The data in Table 1 come from a prospective epidemiological study of 
1841 workers in a Czechoslovakian car factory, as part of an investigation of potential risk factors for 
coronary thrombosis (see Edwards and Havranek, 1985). Assume we are provided with three marginal tables 
[BF], [ABCE], and [ADE] of this 6-way table. These are the marginals corresponding to a graphical model 
whose independence graph is given in Figure 1. In order to reach A, D or E starting from F, we have to go 
through B or C, hence F is independent of A, E, D given B and C. This means that [BC] is a separator of the 
graph. In the same way, A, B, C, F are independent of D given E, thus [E] is also a separator of the graph. 
 

    B no yes 
F E D C A no yes no yes 

neg < 3 < 140 no  44 40 112 67 
   yes  129 145 12 23 
  ≥ 140 no  35 12 80 33 
   yes  109 67 7 9 
 ≥ 3 < 140 no  23 32 70 66 
   yes  50 80 7 13 
  ≥ 140 no  24 25 73 57 
   yes  51 63 7 16 

pos < 3 < 140 no  5 7 21 9 
   yes  9 17 1 4 
  ≥ 140 no  4 3 11 8 
   yes  14 17 5 2 
 ≥ 3 < 140 no  7 3 14 14 
   yes  9 16 2 3 
  ≥ 140 no  4 0 13 11 
   yes  5 14 4 4 

Table 1 - Autoworkers Data. Source: Edwards and Havranek (1985). 
A, smoking; B, strenuous mental work; C, strenuous physical work;D, systoli c blood pressure; 

E, ratio of ββ and αα li poproteins; F, family anamnesis of coronary hear t disease. 

D 

A C 

E B F 

 
Figure 1 - Independence graph induced by the marginals [BF], [ABCE] and [ADE]. 

 
9 Decomposable graphical models have closed form structure and special properties. The expected cell values 

can be expressed as a function of the fixed marginals. To be more explicit, the maximum likelihood estimates 
are the product of the marginals divided by the product of the separators. By induction on the number of 
MSSs, in Dobra and Fienberg (2000), we developed Fréchet bounds for decomposable log-linear models with 
any number of MSSs. These Fréchet bounds are sharp in the sense that they are the tightest possible bounds 
given the marginals, and, in addition, we can determine feasible tables for which these bounds are attained. 
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10 Theorem 1 (Fréchet Bounds for Decomposable Models). Assume that the released set of marginals for a k-

way contingency table is the set of MSSs of a decomposable log-linear model. Then the upper bounds for the 
cell entries in the initial table are the minimum of relevant margins, while the lower bounds are the maximum 
of zero, or sum of the relevant margins minus the separators. 
 

12 For example, the upper bounds for the cell entries in Table 1 induced by the marginals [BF], [ABCE], and 
[ADE] are the minimum of the corresponding entries in the fixed marginals, while the lower bounds are the 
sum of the same entries minus the sum of the corresponding entries in the marginals associated with the 
separators of the independence graph, i.e., [B] and [AE]. We give these bounds in Table 2. 

 
    B no yes 

F E D C A no yes no yes 
neg < 3 < 140 no  [0,88] [0,62] [0,224] [0,117] 

   yes  [0,261] [0,246] [0,25] [0,38] 
  ≥ 140 no  [0,88] [0,62] [0,224] [0,117] 
   yes  [0,261] [0,151] [0,25] [0,38] 
 ≥ 3 < 140 no  [0,58] [0,60] [0,170] [0,148] 
   yes  [0,115] [0,173] [0,20] [0,36] 
  ≥ 140 no  [0,58] [0,60] [0,170] [0,148] 
   yes  [0,115] [0,173] [0,20] [0,36] 

pos < 3 < 140 no  [0,88] [0,62] [0,126] [0,117] 
   yes  [0,134] [0,134] [0,25] [0,38] 
  ≥ 140 no  [0,88] [0,62] [0,126] [0,117] 
   yes  [0,134] [0,134] [0,25] [0,38] 
 ≥ 3 < 140 no  [0,58] [0,60] [0,126] [0,126] 
   yes  [0,115] [0,134] [0,20] [0,36] 
  ≥ 140 no  [0,58] [0,60] [0,126] [0,126] 
   yes  [0,115] [0,134] [0,20] [0,36] 

Table 2 - Bounds for Autoworkers data given the marginals [BF], [ABCE], [ADE]. 

 
13 When the log-linear model associated with the released set of marginals is not decomposable, it is natural to 

ask ourselves whether we could reduce the computational effort needed to determine the tightest bounds by 
employing the same strategy used for decomposable graphs, i.e. decompositions of graphs by means of 
complete separators. An independence graph that is not necessarily decomposable, but still admits a proper 
decomposition, is called reducible (Leimer, 1993). Once again, we point out the link with maximum 
likelihood estimation in log-linear models. We define a reducible log-linear model (Dobra and Fienberg, 
2000) as one for which the corresponding MSSs are marginals that characterize the components of a reducible 
independence graph. If we can calculate the maximum likelihood estimates for the log-linear models 
corresponding to every component of a reducible graph G, then we can easily derive explicit formulae for the 
maximum likelihood estimates in the reducible log-linear model with independence graph G (Dobra and 
Fienberg, 2000). We state the result, but postpone explaining how to use it for the moment. 
 

14 Theorem 2 (Fréchet Bounds for Reducible Models). Assume that the released set of marginals is the set of 
MSSs of a reducible log-linear model. Then the upper bounds for the cell entries in the initial table are the 
minimum of upper bounds of relevant components, while the lower bounds are the maximum of zero, or sum 
of the lower bounds of relevant components minus the separators. 
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4. A New Algorithm. 
 

15 When the independence graph corresponding to a set of released marginals is not reducible, the Fréchet-like 
inequali ties presented in the preceding section do not produce sharp bounds, and we must employ an iterative 
procedure. The main drawback of the existing iterative procedures such as the simplex method is that they 
offer no guarantee that the resulting bounds will be the best integer bounds. Again, the statistical li terature on 
contingency tables helps us. Up until now, we were able to visualize the dependencies induced among the 
variables cross-classified in a table of counts by the set of fixed marginals by constructing the related 
independence graph. Nevertheless, if all (k-1)-dimensional marginal tables are given, the corresponding 
independence graph is complete, hence the line of reasoning we followed so far is ineffective in this setting. 
The log-linear model of no (k-1)-order interaction is not graphical, and the only way we could compute the 
maximum likelihood estimates associated with it is through some iterative method such as the iterative fitting 
procedure (Bishop et al., 1975). By exploiting the intrinsic conditional independence relationships, we were 
able to considerably reduce or even completely eliminate the need of employing an iterative procedure in the 
situations we studied before, but in this particular context there are no such relationships to exploit. Buzzigoli 
and Giusti (1999) proposed what they called the shuttle algorithm for computing the upper and lower bounds 
induced by the (k-1)-way marginals on the cell entries of a k-way table. Their procedure alternates iteratively 
between upper and lower bounds, but does not always converge to the sharpest bounds possible (Cox, 1999). 
 

16 Following Fienberg (1999), we note that, if the table is dichotomous, the log-linear model of no kth-order 
interaction has only one degree of freedom, thus we can uniquely express the counts in any cell as a function 
of one single fixed cell alone. By imposing the non-negativity constraints for every cell i n our contingency 
table, we are then able to derive sharp upper and lower bounds. Therefore there is no need for employing 
iterative methods in this case. It turns out that dichotomous tables are the key to derive sharp bounds for an 
arbitrary k-way table. 
 

17 In order to capture the underlying dependencies induced among the cell counts in a k-way table, we consider 
the set S of all possible dichotomous tables obtained by collapsing the original k-way table, not only across 
variables, but also across categories within variables. The categories associated with a variable are divided in 
two groups; hence we replace every variable with a dichotomous one, and end up with a dichotomous k-way 
table. We let T be the set containing the cells of all dichotomizations S of the original table, formed by 
collapsing the initial table in every possible way. Therefore, if we fix a set of marginals, we are able to state 
the bounds problem in a new equivalent form: “Find the bounds TU and TL for the cells T given that we know 
the values of some cells T0 ⊂⊂ T” . 
 

18 It is not hard to see that the upper and lower bounds for the cells in T are interlinked, i.e., bounds for some 
cells in T induce bounds for some other cells in T. The dependencies induced by the fixed marginals among 
the cells in T can be expressed as “ two-cell ” dependencies defined as follows. Let t1 and t2 in T such that their 
join t12 is still i n T. Then upper and lower bounds for the cells t1 and t2 translate into upper and lower bounds 
for their join t12: 

UULL ttttttt 21211221 +≤+=≤+ . 

 
Similarly, bounds for t2 and t12 translate into bounds for t1: 

LUUL ttttttt 2122121212 −≤−=≤− . 

 
19 We iterate thorough these “ two-cell ” dependencies until the upper bounds for the cells in T no longer decrease 

and the lower bounds no longer increase. The careful reader will notice that this is actually a generalized 
version of the Buzzigoli -Giusti shuttle algorithm. We “know” a cell i f the current upper bound is equal to the 
current lower bound. As we attempt to adjust the bounds so that the two-cell dependencies are simultaneously 
satisfied, the feasibili ty interval for every cell will shrink, hence the set of “known” cells T0 will get larger. 
Unfortunately, the bounds we end up with are not necessarily sharp, except in: (i) the decomposable case, and 
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(ii ) the case of a dichotomous k-way table with all (k-1)-way marginals fixed. To be more explicit, if the 
marginals we fix are the MSSs of a decomposable log-linear model, the bounds calculated by the generalized 
shuttle algorithm will coincide with the bounds obtained by making use of Theorem 1, whereas in case (ii ), the 
generalized shuttle algorithm will successfully determine the best integer bounds by expressing any cell as a 
function of any other cell , and then imposing the non-negativity conditions on these constraints. There may be 
other situations when the generalized shuttle algorithm will converge to the best integer bounds, but further 
research is needed to identify them. 

 
20 For the general k-way bound problem, we need to “correct” the resulting bounds by constructing feasible 

integer tables for which those bounds are actually attained. By making use of backtracking, we explore the 
space Q by repeatedly assigning values to the cells in the original table. We do not perform an exhaustive 
search of Q since we immediately adjust the upper and lower bounds for the remaining cells in T once we 
picked a value for a cell entry, and consequently the values we attempt to assign to a particular cell are chosen 
from the current feasibili ty interval associated with that entry. 

 
21 A combination of assigned values is inconsistent if, given that we know t1, t2 and t12 such that the join of t1, t2 

is t12, we have t1 + t2 ≠ t12. Once we encountered an inconsistency, we stop and attempt to assign new values to 
the cells we previously fixed. We successfully determined a feasible table if we managed to pick a value for 
all the cells in the initial table. The algorithm we described will therefore be able to identify any combination 
of marginals that does not correspond to an integer feasible table, i.e., it will be able to highlight the cases 
when the convex polytope defined by the fixed marginals does not contain any lattice points. Further technical 
details can be found in Dobra (2000b). 
 
5. Example Reconsidered. 
 

22 To clarify the concepts and results presented so far, we again make use of autoworkers data in Table 1. This 
time, however, we assume that the fixed marginals are [BF], [BC], [BE], [AB], [AC], [AE], [CE], [DE], [AD]. 
Note that the independence graph associated with this set of marginals is the same in Figure 1 since the log-
linear model whose MSSs correspond to those marginals is not graphical. Hence every component of the 
independence graph is not necessarily associated with a single minimal suff icient statistic, but possibly with 
two or more MSSs. 

 
23 The independence graph in Figure 1 decomposes in three components, [BF], [ABCE], and [ADE], and two 

separators, [B] and [AE]. The first component, [BF], is assumed fixed, hence there is nothing to be done. The 
other two components are not fixed, however, and we need to compute upper and lower bounds for each of 
them. By making use of the generalized shuttle algorithm, we computed bounds for the cell entries in the 
marginal [ABCE] given the marginals [BC], [BE],[AB], [AC], [AE], [CE] (see Table 3). We did the same for 
the marginal [ADE] given the marginals [AE], [DE], [AD] (see Table 4). 

 
  B no no B no yes 

E C A No yes no yes A no yes no yes 

< 3 No  88 62 224 117  [0,206] [0,167] [0,404] 
[0,312] 

∴[0,312.67] 
 Yes  261 246 25 38  [0,421] [0,463] [0,119] [0,119] 

≥ 3 No  58 60 170 148  [0,181] [0,167] [0,363] [0,339] 
 Yes  115 173 20 36  [0,314] [0,344] [0,119] [0,119] 

Table 3 - Marginal [ABCE] of autoworkers data and bounds for this marginal given all two-dimensional totals. 



 7 

 
E D A no Yes A no Yes 
<3 no  333 312  [182,515] [130,463] 
 yes  265 151  [83,416] [0,333] 

≥3 no  182 227  [0,333] [76,409] 
 yes  181 190  [30,363] [8,341] 

Table 4 - Marginal [AED] of autoworkers data and bounds for this marginal given all two-dimensional totals. 

 
24 If we were to compute bounds for the marginal [ABCE] by employing the simplex method, we would obtain a 

fractional upper bound. In Table 3, this fractional upper bound is indicated by the symbol “∴” . Fractional 
bounds are exactly the situations when the simplex approach fails to correctly solve the integer programming 
problem of interest. Although one might argue that these situations rarely occur, we have no way to know 
beforehand when this phenomenon will take place. Since we have upper and lower bounds for each of the 
components of a reducible graph, Theorem 2 now allows us to piece together the bounds for the components 
[BF], [ABCE] and [ADE] to obtain sharp integer bounds for the original 6-way table – see Table 5. Again, we 
note that the simplex would have failed to compute sharp integer bounds for two cells in the table. 
 

    B no Yes 
F E D C A No yes no yes 

Neg < 3 < 140 no  [0,206] [0,167] [0,404] 
[0,312] 

∴[0,312.67] 
   yes  [0,421] [0,463] [0,119] [0,119] 

  ≥ 140 no  [0,206] [0,167] [0,404] 
[0,312] 

∴[0,312.67] 
   yes  [0,416] [0,333] [0,119] [0,119] 
 ≥ 3 < 140 no  [0,181] [0,167] [0,333] [0,339] 
   yes  [0,314] [0,344] [0,119] [0,119] 
  ≥ 140 no  [0,181] [0,167] [0,363] [0,339] 
   yes  [0,314] [0,341] [0,119] [0,119] 

Pos < 3 < 140 no  [0,134] [0,134] [0,126] [0,126] 
   yes  [0,134] [0,134] [0,119] [0,119] 
  ≥ 140 no  [0,134] [0,134] [0,126] [0,126] 
   yes  [0,134] [0,134] [0,119] [0,119] 
 ≥ 3 < 140 no  [0,134] [0,134] [0,126] [0,126] 
   yes  [0,134] [0,134] [0,119] [0,119] 
  ≥ 140 no  [0,134] [0,134] [0,126] [0,126] 
   yes  [0,134] [0,134] [0,119] [0,119] 

Table 5 - Bounds for the Autoworkers data given the margins 
[BF], [BC], [BE],[AB], [AC], [AE], [CE], [DE], [AD]. 

 
25 We emphasize that Theorem 2 is a sound technique for replacing the original problem, namely, computing 

bounds for a 6-way table, by two smaller ones, i.e., computing bounds for a 4-way and a 3-way table. The 
computational effort required for implementing and using Theorem 2 is ignorable, and thus exploiting it in this 
fashion could lead to appreciable computational savings. 
 
6. Conclusions. 
 

26 In this paper we have shown how log-linear model statistical theory can help identify situations when explicit 
formulas exist for computing the best integer bounds on the entries of a cross-classification of arbitrary 
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dimension given a set of marginal totals. When such formulas do not exist, we ill ustrated how to derive 
similar formulas for reducing the computational effort. In addition, we explained how log-linear models 
provide the basis for correcting the shuttle algorithm originally proposed by Buzzigoli and Giusti, and 
transform it into a general procedure for computing sharp integer bounds given any set of marginals. The 
generalized shuttle algorithm described here simultaneously computes sharp integer bounds for the cells in T 
by fully exploiting the structure of the bounds problem for multi-way contingency tables and, in addition, it 
can update the bounds, as more marginals are being released. 
 
Preparation of this paper was supported in part by the National Science Foundation under Grant EIA-
9876619 to the National Institute of Statistical Sciences. 
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