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Abstract

We describe new results for upper andlower bounds onthe entriesin multi-way tables of courts based on
a set of released and pasbly overlappng margina tables which have practical import for assessng
disclosure risk. In paticular, we present a generalized version d the shuttle algorithm proposed by
BuzZgdi and Giusgti that is proven to compute sharp integer bound for an abitrary set of fixed
marginals.
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1. Introduction.

The National Institute of Statistical Sciences has recently assambled a team of statistical researchers from
multiple universities who, working with statisticians in U.S. statistical agencies, are developing a Web-based
query system for statistical databases. Their goal is a system that allows the use of disclosure limitation
methods (e.g., see Willenborg and ¢ Wad 1996 2000 applied sequentially in response to a series of
statistical queries in which the public knowledge of reeases is cumulative (c.f. a pilot project described in
Kdler- McNulty and Unger, 1998. The idea is to fully automate recent methods for disclosure limitation,
intruder behavior (c.f., Fienberg, Makov, and Sanil 1997 and alternative approaches to risk asssament.

Consider a database consisting d a k-way contingency table, for which the queries come in the form of
requests for marginal tables. What is intuitively clear from statistical theory is that, as margins are released
and cumulated by users, there is increasing information avail able about the table entries. In response to a new
query, the system now examines it in combination with all those previousdly released margins and cecides if
the risk of disclosure of indviduals in the full unrdeased table is too geat. Then it might offer one of three
responses. (1) yes--rdease; (2) no---dorit rdlease; or perhaps (3) simulate a new table, which is consistent
with the previously released margins, and then rdease the requested margin table from it (c.f., Fienberg,
Makov, and Stede, 1998. Because rdeased margins neal to be consistent and even simulated, releases
become highly constrained.

How might such a system evaluate the risk of disclosure from the rdease of a new margin? A number of
researchers have recently been working onthe problem of determining upper and lower bounds on the cels
of the crossclasdfication gven a set of margins. This is in ore sense an dd problem (at least for two-way
tables) but it is also deeply linked to recent mathematical statistical developments and has generated a flurry
of new research (eg., see Buzzigdi and Giusti (1999, Cox (1999, Fienberg (1999, and Rodhrig, & al.
(1999). Here we outline some recent results on this problem due to Dabra and Fienberg (2000 and Dobra
(200Qy, 20008 and weill ustrate our methoddogy onan example.

2. Tedhnical Background.

Upper and lower bounds induced by some fixed set of marginals on the cdl entries of a contingency table are
of great importance in measuring the disclosure risk associated with the rdease of these marginal totals, e.g.,
seethe various papers in the 1993and 1998 special isales of The Journal of Official Satistics, as wdl as the
Procealings of the Satistical Data Protedion Conference Lisbon 1998 The classes of bounds we are
concerned with also appear in a number of other contexts guch as mass transportation problems. Fréchet



originally described bounds on cdl counts in crossclassfications of positive counts in terms of cumulative
distribution functions (c.d.f. henceforth). If we narmalize each entry in a two-dimensional table by dividing it
by the grand total, then adding up the appropriate proportions obtained in this way, we end up with the c.d.f.
Borferroni and Hoeffding independently developed rdated results on bounds. Until recently, the dforts of
solving this bound problem have been largely focused on the situation when the fixed marginals are non
overlapping (Fienberg, 1999, but our interest is in the cases when the margins being fixed are
multidimensional and owerlapping, in which case consistency constraints have to be imposed (Joe, 1997).

Any cortingency table with norinegative integer entries and fixed marginal totals is a lattice point in the
convex polytope Q defined by the linear system of equations induced by the rdeased marginals. The
constraints given by the values in the rdeased marginals induce upper and lower bounds on the interior cels
of the initial table. These bounds or feasibility intervals can be obtained by solving the correspondng linear
programming problems. The importance of systematically investigating these linear systems of equations
should be readily apparent. If the number of lattice points in Q is bdow a certain threshdd, we have
significant evidence that a potential disclosure of the aitire dataset might have occurred. Moreover, if the
induced upper and lower bounds are too tight or too close to the actual sensitive value in a cdl entry, the
information associated with the individuals clasdfied in that cedl may become pulic knowledge.

The problem of determining sharp upper and lower bounds for the cdl entries subject to some linear
constraints expressed in this form is known to be NP-hard (Roehrig, 1999. Several approaches have been
proposed for computing bounds. However, almost all of them have drawbacks that show the nead for
alternate solutions. Network modds neead formal structure to work even for 3-way tables and besides there is
no ¢eneral formulation for higher-way tables. The most natural method for solving linear programming
problems is the simplex method In this case we would have to run the procedure twice for every dement in
the table and consequently we would ignae the underlying dependencies among the marginals by regarding
the maximization/minimization problem associated with some cdl as unrelated to the paralld problems
aswociated with the remainder of the cdls in the table. Although the simplex method works well for small
problems and dmensions, by employing it we would ignare the special structure of the problem because we
would cornsider every table as a linear list of cdls. The computational inadequacy of the simplex approach is
further augmented by the fact that we may get fractional bounds (Cox, 1999, which are very difficult to
interpret. To avoid fractional bounds, one would have to make use of integer programming algorithms, but
their computational complexity prevent their usage even for problems of modest size. These considerations
suggest the neal for more specialized, computationally inexpensive algarithms that could fully exploit the
special structure of the problem we are dealing with.

Agencies often employ dsclosure limitation methods auch as cell suppresson and dita swapping. The object
of both methods is to create a replacement table for the genuine unsafe marginal. Both table protection
methods preserve a given set of marginal totals that were previously released. Loglinear modds (see Bishop,
Fienberg and Holland, 1975 are the most usual way of representing and studying cortingency tables with
fixed marginals, and Fienberg & al. (1998 and Fienberg (1999 have demonstrated the clear links between
log-linear moddls and dsclosure limitation techniques. Throughaut this paper, we eploit loglinear modds
theory to identify special settings amenable to alternative and more dficient techniques for determining sharp
bounds. In particular, when the released marginals are the minimal sufficient statistics (MSS henceforth) of a
decomposable logrlinear modd, we are able to express the upper and lower bounds as explicit functions of
marginal totals (Dobra and Fienberg, 2000. We extend aur results to more general structures for which we
can considerably reduce the computational eff ort required to solve the linear problems.

3. New Resultson Bounds.

We visualize the dependency patterns induced by the rdeased marginals by constructing an independence
graph for the variables in the underlying crossclassfication. Each variable crossclasdfied in the table is
asgociated with a vertex in this graph. If two variables are nat conrected, they are condtionally independent



given the remainder. Modds described soldly in terms of such condtional independencies are said to be
graphical (e.g., seeLauritzen, 1996. The data in Table 1 come from a prospective gidemiological study of
1841 workers in a Czechadlovakian car factory, as part of an investigation d potential risk factors for
coronary thrombosis (see Edwards and Havranek, 1985. Asaume we are provided with three marginal tables
[BF], [ABCE], and [ADE] of this 6-way table. These are the marginals correspondng to a graphical modd
whaose independence graph is given in Figure 1. In arder to reach A, D or E starting from F, we have to go
through B or C, hence F is indegpendent of A, E, D given B and C. This means that [BC] is a separator of the
graph. Inthe sameway, A, B, C, F are independent of D given E, thus [E] is also a separator of the graph.

B no ves
F E D C |A no yes no yes
neg <3 <140 no 44 40 112 67
yes 129 145 12 23
>140 no 35 12 80 33
yes 109 67 7 9
>3 <140 no 23 32 70 66
yes 50 80 7 13
>140 no 24 25 73 57
yes 51 63 7 16
pos <3 <140 no 5 7 21 9
yes 9 17 1 4
>140 no 4 3 11 8
yes 14 17 5 2
>3 <140 no 7 3 14 14
yes 9 16 2 3
>140 no 4 0O 13 11
yes 5 14 4 4

Table 1 - Autoworkers Data. Source: Edwards and Havranek (1985.
A, smoking; B, strenuous mental work; C, strenuous physical work;D, systolic blood presaire;
E, ratio o B and a lipoproteins; F, family anamnesis of coronary heart disease.

F‘ B E D

Figure 1 - Independence graph induced by the marginals [BF], [ABCE] and [ADE].

Decomposable graphical modds have closed form structure and special properties. The expected cdl values
can be epressd as a function d the fixed marginals. To be more eplicit, the maximum likelihood estimates
are the product of the marginals divided by the product of the separators. By induction onthe number of
MSSs, in Dobra and Fienberg (2000, we deveoped Fréchet bounds for decomposable log-linear modds with
any number of MSSs. These Fréchet bounds are sharp in the sense that they are the tightest possble bounds
given the marginals, and, in addtion, we can determine feasible tables for which these bounds are attained.
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Theorem 1 (Fréchet Bounds for Decomposable Models). Asume that the released set of marginals for a k-
way cortingency table is the set of MSSs of a decomposable log-linear modd. Then the upper bounds for the
cdl entries in the initial table are the minimum of relevant margins, while the lower bounds are the maximum
of zero, or sum of the rdevant margins minus the separators.

For example, the upper bounds for the cdl entries in Table 1 induced by the marginals [BF], [ABCE], and
[ADE] are the minimum of the correspondng entries in the fixed marginals, while the lower bounds are the
sum of the same aitries minus the sum of the correspondng entries in the marginals associated with the
separators of the independence graph, i.e., [B] and [AE]. We give these bounds in Table 2.

B no ves
F E D C A no yes no yes
neg <3 <140 no [0,88] [0,62] [0,224 [0,117
yes [0,261] [0,24 [0,25 [0,3g
>140 no [0,88] [0,62] [0,224 [0,117
yes [0,261] [0,151 [0,25 [0,38
>3 <140 no [0,58 [0,60] [0,A7(0 [0,148
yes [0,219 [0,173 [0,200 [0,36]
>140 no [0,58 [0,60] [0,A7(0 [0,14§8
yes [0,219 [0,173 [0,200 [0,36]
pos <3 <140 no [0,88] [0,62] [0,126 [0,117
yes [0,134 [0,134 [0,25 [0,3g
>140 no [0,88] [0,62] [0,126 [0,117
yes [0,134 [0,134 [0,25 [0,3g
>3 <140 no [0,58 [0,60] [0,126 [0,126
yes [0,215 [0,134 [0,200 [0,36]
>140 no [0,58 [0,60] [0,126 [0,126
yes [0,215 [0,134 [0,20] [0,36]

Table 2 - Boundsfor Autoworkersdata gven the marginals[BF], [ABCE], [ADE].

When the log-linear modd associated with the released set of marginals is nat decomposable, it is natural to
ask oursdves whether we could reduce the computational effort neaded to determine the tightest bounds by
employing the same strategy used for decomposable graphs, i.e. decompositions of graphs by means of
complete separators. An independence graph that is nat necessarily decomposable, but still admits a proper
decomposition, is called reducible (Leimer, 1993. Once again, we point out the link with maximum
likelihood estimation in log-linear modds. We define a reducible log-linear model (Dobra and Fienberg,
2000 as ore for which the correspondng MSSs are marginals that characterize the components of a reducible
independence graph. If we can calculate the maximum likdihood estimates for the loglinear modds
correspondng to every component of a reducible graph G, then we can easily derive eplicit formulae for the
maximum likelihood estimates in the reducible loglinear modd with independence graph G (Dobra and
Fienberg, 2000. We state the result, but postpone explaining hav to use it for the moment.

Theorem 2 (Fréchet Bounds for Reducible Models). Asaume that the released set of marginals is the set of
MSSs of a reducible log-linear modd. Then the upper bounds for the cel entries in the initial table are the
minimum of upper bounds of rdevant componrents, while the lower bounds are the maximum of zero, or sum
of the lower bounds of redevant components minus the separators.
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4. A New Algorithm.

When the independence graph correspondng to a set of released marginals is nat reducible, the Fréchet-like
inequalities presented in the preceding section do no produce sharp bounds, and we must employ an iterative
procedure. The main drawback of the «isting iterative procedures duch as the simplex method is that they
offer no guaranteethat the resulting bounds will be the best integer bounds. Again, the statistical literature on
contingency tables helps us. Up until now, we were able to visualize the dependencies induced among the
variables crossclassfied in a table of counts by the sat of fixed marginals by constructing the rdated
independence graph. Neverthdess if al (k-1)-dimensional marginal tables are given, the correspondng
independence graph is complete, hence the line of reasoning we followed so far is ineffective in this stting.
The loglinear modd of no (k-1)-order interaction is nat graphical, and the only way we could compute the
maximum likelihood estimates assciated with it is through some iterative method such as the iterative fitting
procedure (Bishop & al., 1975. By exploiting the intrinsic condtional independence rdationships, we were
able to cornsiderably reduce or even completely diminate the need o employing an iterative procedure in the
situations we studied before, but in this particular context there are no such rdationships to exploit. Buzzigadli
and Giusti (1999 proposed what they called the shuttle algorithm for computing the upper and lower bounds
induced by the (k-1)-way marginals on the cdl entries of a k-way table. Ther procedure alternates iteratively
between upper and lower bounds, but does nat always converge to the sharpest bounds possble (Cox, 1999.

Following Fienberg (1999, we nde that, if the table is dichatomous, the log-linear modd of no kth-order
interaction has only one degree of freedom, thus we can uniqudy expressthe counts in any cel as a function
of one singe fixed cdl alone. By imposing the nonnegativity constraints for every cdl in aur contingency
table, we are then able to derive sharp upper and lower bounds. Therefore there is no real for employing
iterative methods in this case. It turns out that dichatomous tables are the key to derive sharp bounds for an
arbitrary k-way table.

In arder to capture the underlying degpendencies induced among the cel counts in a k-way table, we consider
the set S of all possble dichatomous tables obtained by collapsing the original k-way table, nat ornly across
variables, but also across categaries within variables. The categories associated with a variable are divided in
two groups; hence we replace every variable with a dichatomous one, and end up with a dichatomous k-way
table. We let T be the set containing the cels of all dichotomizations S of the original table, formed by
collapsing the initial table in every possble way. Therefore, if we fix a set of marginals, we are able to state

the bounds problem in a new equivalent form: “ Find the bounds TU and TL for the cdls T given that we know
the \alues of some cdlsTo I T".

It is nat hard to seethat the upper and lower bounds for the cdls in T are interlinked, i.e., bounds for some
cdls in T induce bounds for some other cdls in T. The dependencies induced by the fixed marginals among
the cdlsin T can be epressed as “two-cdl” dependencies defined as follows. Let t; andt, in T such that their
join ty; is gill in T. Then upper and lower bounds for the cells t; and t, trandlate into upper and lower bounds
for their join tyo:

th+t <t, =t +t, <t +t)

Similarly, bounds for t, and t;, translate into bounds for t;:

t,—t; <t =t,—-t, <t —t;.

We iterate thorough these “two-cdll” dependencies until the upper bounds for the cdls in T no longer decrease
and the lower bounds no longer increase. The careful reader will natice that this is actualy a generalized
version d the Buzzigdi-Giusti shuttle algarithm. We “know” a cdl if the current upper bound is equal to the
current lower bound. As we attempt to adjust the bounds  that the two-cdl dependencies are simultaneously
satisfied, the feasihility interval for every cdl will shrink, hence the set of “known” cdls T, will get larger.
Unfortunatdy, the bounds we end up with are nat necessarily sharp, except in: (i) the decomposable case, and
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(i) the case of a dichatomous k-way table with all (k-1)-way marginals fixed. To be more &plicit, if the
marginals we fix are the MSSs of a decomposable log-linear modd, the bounds calculated by the generalized
shuttle algorithm will coincide with the bounds obtained by making use of Theorem 1, whereas in case (ii), the
generalized shuttle algorithm will succesgully determine the best integer bounds by expresdang any cdl as a
function d any aher cdl, and then imposing the non-negativity condtions on these constraints. There may be
other situations when the generalized shuttle algorithm will conwverge to the best integer bounds, but further
research is nealed to identify them.

For the general k-way bound problem, we need to “correct” the resulting bounds by constructing feasible
integer tables for which those bounds are actually attained. By making use of backtracking, we eplore the
space Q by repeatedly asdgning values to the cdls in the original table. We do nd perform an exhaustive
search o Q since we immediatdly adjust the upper and lower bounds for the remaining cells in T once we
picked a value for a cdl entry, and consequently the values we attempt to assgnto a particular cell are chosen
from the curr ent feasibili ty interval associated with that entry.

A combination d assgned values is inconsistent if, given that we know t;, t, andt,, such that thejoin dof t , t,
ist,,, wehavet, +t, # t,,. Once we encountered an inconsistency, we stop and attempt to assgn rew values to
the cdls we previously fixed. We succes<ully determined a feasible table if we managed to pick a value for
al the cdls in the initial table. The algarithm we described will therefore be able to identify any combination
of marginals that does nat correspond to an integer feasible table, i.e, it will be able to highlight the cases
when the convex polytope defined by the fixed marginals does nat contain any lattice points. Further technical
detail s can be found in Dobra (20008).

5. Example Remnsidered.

To clarify the concepts and results presented so far, we again make use of autoworkers data in Table 1. This
time, however, we assume that the fixed marginals are [BF], [BC], [BE], [AB], [AC], [AE], [CE], [DE], [AD].
Note that the independence graph associated with this st of marginals is the same in Figure 1 since the log-
linear modd whaose MSSs correspond to those marginals is nat graphical. Hence every component of the
independence graph is nat necessarily associated with a singe minimal sufficient statistic, but posshbly with
two a more MSSs.

The independence graph in Figure 1 decomposes in three components, [BF], [ABCE], and [ADE], and two
separators, [B] and [AE]. The first component, [BF], is assumed fixed, hence there is nathing to be dore. The
other two componrents are na fixed, however, and we neal to compute upper and lower bounds for each o
them. By making use of the generalized shuttle algorithm, we computed bounds for the cel entries in the
marginal [ABCE] given the marginals [BC], [BE],[AB], [AC], [AE], [CE] (seeTable 3). We did the same for
the marginal [ADE] given the marginals [AE], [DE], [AD] (seeTable 4).

B no no B no yes
E C |A No yes no yes|A no yes no yes
[0,312
<3 No 88 62 224 117 [0,206 [0,167] [0,404 1[0,31267]
Yes 261 246 25 38 [0,427] [0,463 [0,119 [0,119
>3 No 58 60 170 148 [0,287] [0,167] [0,363 [0,339
Yes 115 173 20 36 [0,314 [0,344 [0,119 [0,119

Table 3- Marginal [ABCE] of autoworkersdata and bounds for thismarginal given all two-dimensional totals.
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E DJA no Yes || A no Yes

<3 no 333 312 [182515] [130463
yes 265 151 [83414 [0,333

>3 no 182 227 [0,333 [76,409
yes 181 190 [30,363 [8,34]]

Table4 - Marginal [AED] of autoworkersdata and boundsfor this marginal given all two-dimensional totals.

If we were to compute bounds for the marginal [ABCE] by employing the simplex method we would dbtain a
fractional upper bound. In Table 3, this fractional upper bound is indcated by the symbol “[0". Fractional
bounds are eactly the situations when the simplex approach fails to correctly solve the integer programming
problem of interest. Although ore might argue that these situations rarely occur, we have no way to know
beforehand when this phenaomenon will take place. Since we have upper and lower bounds for each o the
componrents of a reducible graph, Theorem 2 now allows us to piece together the bounds for the componrents
[BF], [ABCE] and [ADE] to dbtain sharp integer bounds for the original 6-way table — seeTable 5. Again, we
note that the simplex would have fail ed to compute sharp integer bounds for two cells in the table.

B no Yes
F E D CJlA No yes no yes

[0,312

Neg <3 <140 no [0,206 [0,167] [0,404 1[0,31267]
yes [0,427] [0,463 [0,119 [0,219
[0,312

>140 no [0,206 [0,167] [0,404 1[0,312.67]
yes [0,416 [0,333 [0,119 [0,219
>3 <140 no [0,287] [0,167] [0,333 [0,339
yes [0,314 [0,344 [0,119 [0,219
>140 no [0,287] [0,167] [0,363 [0,339
yes [0,314 [0,347] [0,119 [0,219
Pos <3 <140 no [0,234 [0,134 [0,12q9 [0,126]
yes [0,234 [0,134 [0,119 [0,219
>140 no [0,234 [0,134 [0,12q9 [0,126
yes [0,234 [0,134 [0,119 [0,219
>3 <140 no [0,234 [0,134 [0,12q9 [0,126]
yes [0,234 [0,134 [0,119 [0,219
>140 no [0,234 [0,134 [0,12q9 [0,126
yes [0,234 [0,134 [0,119 [0,119

Table 5 - Boundsfor the Autowor kers data gven the margins
[BF], [BC], [BE][AB], [AC], [AE], [CE], [DE], [AD].

We anphasize that Theorem 2 is a sound technique for replacing the original problem, namey, computing
bounds for a 6-way table, by two smaller ones, i.e., computing bounds for a 4-way and a 3-way table. The
computational effort required for implementing and using Theorem 2 is ignaable, and thus explaiting it in this
fashion could lead to appreciable computational savings.

6. Conclusions.

In this paper we have shown haw log-linear modd statistical theory can help identify situations when explicit
formulas exist for computing the best integer bounds on the entries of a crossclasdfication d arbitrary



dimension gven a set of marginal totals. When such formulas do nd exist, we illustrated hawv to derive
similar formulas for reducing the computational effort. In addtion, we eplained hov loglinear modds
provide the basis for correcting the shuttle algorithm originally proposed by Buzzigdi and Giusti, and
transform it into a general procedure for computing sharp integer bounds given any set of marginals. The
generalized shuttle algorithm described here simultaneously computes sharp integer bounds for the cdlsin T
by fully exploiting the structure of the bounds problem for multi-way cortingency tables and, in addtion, it
can update the bounds, as more marginals are being released.

Preparation d this paper was suppated in pat by the Nationd Science Founddion undyr Grant EIA-
98766190 the Nationd Institute of Statistical Sciences.
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