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Abstract

A method based on random walks is developed for estimating the DC conductance and similar

transport properties in small specimens of composite materials. The method is valid over a much

wider range of material structures than are asymptotic methods, and requires only that the internal

structure of the material be known. The error in its estimates is limited primarily by CPU speed.

It is found to work best for composites consisting of a bulk conducting phase and inclusions of

lower conductivity.
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I. INTRODUCTION

Given a conductor that contains many small inclusions of a second phase with a different

conductivity, Maxwell [1] established that the dependence of composition conductivity on

the conductivities of the components can be approximated by a non-trivial function of the

volume fractions of each component in the material. If the specimen is very large, if one

phase consists of monosized spheres randomly dispersed within the other phase, if the spheres

are distributed uniformly and isotropically in space, and if they are spaced far enough apart

so that the influences of neighboring spheres upon the potential field in the continuous phase

are independent of each other, then the approximate conductivity of the composite σ̂c is

σ̂c
σ0

=
2σ0 + σ1 − 2p(σ0 − σ1)

2σ0 + σ1 + p(σ0 − σ1)
(1)

where p is the volume fraction of inclusions, σ0 is the conductivity of the continuous phase,

and σ1 is the conductivity of the dispersed phase. This approximation is appealing in

applications, as it is not conditional on any specific details of the internal structure of the

material. Further, it can be generalized to any other steady-state transport process that can

be modeled by the same type of elliptical PDE and boundary conditions as DC electrical

conduction, including electrical permittivity, magnetic permeability, thermal conductivity,

and diffusivity [2].

If a specimen of composite is small, in the sense that it contains tens rather than thousands

of inclusions, then the derivation of Maxwell’s result is no longer applicable and asymptotic

expressions for material properties may no longer be reliable. Methods are needed for

efficiently estimating small specimen conductance, and these can be found through the use

of statistics based upon random walks.

A. Asymptotic Methods

Asymptotic methods for estimating composite conductivity [3, 4] use the large scale aver-

age properties of disordered composites in order to find approximate relationships between

the composite conductivity σc and σ1, σ0, p, and other material properties. These approxi-

mations may be in the form of functional estimates, or in the form of bounds.

If the inclusions in a material are arranged in a cubic order, then Rayleigh [5] demon-

strated that (1) also describes the effects of an infinite cubic array of spherical inclusions on
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the conductivity of a composite, when the volume fraction p of spheres is small. Rayleigh’s

analysis also included extra terms that accommodated interactions between the electric field

and pairs of neighboring inclusions, making use of the symmetry in the problem to make

the analysis tractable. This analysis was later corrected [6], made fully rigorous [7–9], and

extended to spheroidal inclusions [10]. One asymptotic approximation that applies to mono-

sized discs in the plane (or aligned infinite cylinders in space) [11] is

σc
σ0

= 1−
2p

T + p− 0.305827p4T

T 2−1.402958p8
− 0.013362p8

T

(2)

where

T =
σ0 − σ1

σ0 + σ1

.

The ordered sphere model is useful in that its asymptotics can be rigorously derived from

the geometric structure of the inclusions, which can also be easily simulated.

For materials in which the inclusions are disordered, asymptotic methods that improve

upon Maxwell’s result have been developed. The effective medium theories [12–14] pro-

vide asymptotic approximations that are closely related to coherent potential and average

t-matrix approximations from quantum scattering theory [15]. Bounds can also be found

for the composite conductivity, and Hashin and Shtrikman [16] have shown that Maxwell’s

equation is the best upper bound that can be found that is a function only of phase conduc-

tivities and inclusion volume fraction. Improvements in these bounds are made by making

them functions of n-point correlations [17–20]. These correlations, known in probability the-

ory as the nth moments of the realization of a random set [21, 22], describe the the average

properties of the random structure of inclusions. Their use also requires the assumption

that the random pattern of inclusions is stationary, and thus of infinite extent.

In applications, it is often difficult to make an a priori decision about which asymptotic

approximation will best describe experimental data. As a consequence, practitioners often

try many different asymptotic models before finding one that fits [23–27]. In the case of

dilute oil/water emulsions [24], the unsymmetric effective medium equation provides an

excellent fit, but fails to adequately describe the conductivity of dog’s blood as a function

of red cell concentration [28]. In the latter case, a modification of Maxwell’s equation that

adjusts for the non-spherical shape of red blood cells [29] performs much better. In solid

phase studies of dielectric properties of sintered UO2 powders [30], Maxwell’s equation fits

the data well, while in studies of aluminum powder-epoxy resin composites [31], effective
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medium equations provide better fits. Four reasons that these difficulties may arise are as

follows.

1. The assumptions made in deriving asymptotic approximations may be difficult to

relate to the physical structure of the material. For example, it takes considerable

effort to find a material for which the symmetric effective medium theory acts as a

coherent potential approximation for overall material conductivity [32].

2. The assumptions made in deriving asymptotic approximations are often valid only in

the dilute limit (i.e. p ≤ 0.2). In the case of ordered inclusions, symmetry can be used

to extend these to much higher volume fractions.

3. The model for the transport process may not be complete. For example, failure to

account for frequency-dependent aspects of permittivity can produce errors in experi-

mental studies [33, 34].

4. The specimen may be too small for the asymptotic arguments to apply, and the local

variability of its properties may not be averaged away. Further, there may be boundary

effects that cannot accounted for in the asymptotic arguments, or the specimen may

fail to be stationary or isotropic in other ways.

B. Estimating Conductivity in Large Samples

The conductivity of large samples can be estimated through simulation routines based

upon the Einstein correspondence between diffusivity and random walks [35]. In the ant-in-

the labyrinth algorithm [36, 37], points are randomly chosen within a conductive phase of a

composite. Each of these points is used as the starting point for a simple random walk with

fixed step length and randomly chosen orientation at each step, which is used to simulate a

diffusion. When the random walk hits an inclusion, its step length changes if the inclusion is

conducting, and the walk stops at the surface if the inclusion is insulating. The walk is run

for a fixed number of time steps, and the average Euclidean distance traveled is proportional

to the diffusivity of the composite.

For smaller specimens of composite, this algorithm cannot be used. There will be a

significant probability that the random walk will encounter a specimen boundary, unless
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the walk is restricted to beginning far from any boundaries. If the dispersed phase is not

uniformly distributed, then a walk that avoids parts of the sample may generate biased

estimates of specimen conductance.

II. METHODS FOR SMALL SAMPLES

For this and further sections, the transport property considered will be DC conduction.

The specimen whose conductance is to be estimated is a square region D in R2 with sides of

unit length. This boundary is divided into four parts (Figure 1): the side A1 through which

the current enters, the opposite side A0 through which the current leaves, and two insulated

sides S1 and S2 through which no current may pass. Any inclusions will be assumed to

have boundaries that are Lipschitz-continuous functions, and so do not possess too many

corners or very rough sections. If the inclusions have random size, it will be assumed that

there is a fixed minimum size. The n inclusions present are designated B1, . . . , Bn. The

inclusion conductivity is σ1 ∈ [0,∞), and the continuous phase conductivity is σ0 ∈ (0,∞).

No assumptions will be made about the arrangement of the inclusions within the specimen,

except that their locations, shapes, and orientations are known.

y

x

PSfrag replacements

B1 A1A0

S1

S2

FIG. 1: The specimen considered here is a unit square in the plane. The current enters through

A1 and leaves at A0, and the sides S1 and S2 are insulated. The inclusion B1 may be insulating or

conducting, but not superconducting. The dotted line is the location of the initial points for the

diffusions and random walks discussed in section IIC 1.
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A. The Existence of a Solution

The flow of DC current through the specimen is determined by a potential φ, which must

satisfy

∇σ∇φ = 0 (3)

where σ : R2 → [0,∞) is an L∞ function and the boundary conditions are

φ = 1 on A1 (x = 1) (4)

φ = 0 on A0 (x = 0) (5)

∂φ

∂n
= 0 on S1, S2 (6)

σ
∂φ

∂n
is C1 on the boundary of B1, . . . Bn, (7)

where n is a normal vector to S1, S2, or Bi. The B1 . . . Bn are considered to be part of

the boundary if the inclusions are insulating. Since (3) is an elliptical PDE with an L∞

coefficient and since the boundary conditions are Lipschitz, there exists a unique solution

φ to the equation [38] which will be Hölder continuous if not twice differentiable at almost

every point in the specimen [39].

If there are no inclusions, the solution will be φ(x, y) = x at any point in D. In general,

the solution φ cannot be expressed in terms of elementary functions or power series, but it

is possible to directly estimate the value of φ at any point using random walks on the lattice

or in the plane.

B. Approximation of Conductance Using a Random Walk on A Lattice

The specimen D can be modeled discretely by a square lattice whose edges have resis-

tances determined by the underlying material (Figure 2). If an edge lies entirely within

phase i, the it is assigned conductance ς = σi. If an edge crosses a phase boundary so that a

fraction ρ of its length lies in phase i and the remainder lies in phase j, then the conductance

assigned to the edge will be

ς−1 = ρσ−1
i + (1− ρ)σ−1

j . (8)

If the vertex lies on an insulating edge Si, then it has no edge crossing beyond the insulating

boundary. If the point lies on A0 or A1, then there are no edges coincident with these
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surfaces, and the edge passing into them and connecting the specimen to the power source

has no resistance.

PSfrag replacements

i1

z2

c0

z1

A0 A1

FIG. 2: At left, the lattice representation of the specimen (dotted outline) with lattice edges coin-

cident with S1 and S2, and edges connected to the current source by the slanted superconducting

wires. At right, the curve is the boundary of a spherical inclusion, the edge i1 has conductance σ1,

the edge c0 has conductance σ0, and the edges z1 and z2 have conductance given by (8).

Given this discrete representation of the specimen, the methods of Doyle and Snell [40]

can be used to find the effective resistance of the network. One of the edges connecting to A1

is chosen at random, and a random walker is positioned at the corresponding vertex inside

the material. The next step is taken along the ith edge out of that vertex with probability

qi = ςi/
∑4

j=1 ςj. If the step takes the walker back to A1, the walk ends. Otherwise, the

walker continues until it either reaches A1 or A0. The probability that walk reaches A0

before returning to A1 is the escape probability of the network, and it is proportional to

the effective conductance of the entire network. The ratio of escape probabilities for the

discretizations of two different specimens is an estimate of their relative conductance.

Representation of a specimen by means of a discrete resistor model has been used in

modeling the structure of cement paste [41]. In that case, the percolation threshold of

the composite for the conducting phase was estimated, rather than the conductance. A

continuous version of a resistor model has been used in studies of heat conduction [42–44],

but this model assumes that the equipotential lines {(x, y) : φ(x, y) = k} for fixed k are

straight lines, which yields biased estimates of conductance.
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C. Estimation of Conductance Using a Continuous Random Walk

The discrete approximation of a specimen is slow, since the walk must proceed through

the lattice one edge at a time. The interaction between the walk and the boundaries and in-

terfaces determines the escape probability, but most of the time during the walk is expended

traversing long distances through a single phase of material. The lattice can be coarsened

in order to increase speed, but this increases discretization error. By using simple random

walks in R2 rather than on a lattice, both problems can be avoided.

1. Estimating the Conductance

The relative conductance of two unit square specimens satisfies

ς1
ς2

=
I1
I2

where ςj is the conductance of specimen j, and Ij is its current flux across the line x = 0,

as defined by

Ij =

∫ 1

0

σ(ε, y)
∂φj
∂x

(ε, y)dy.

An estimator of ς1/ς2 can be constructed that avoids having to estimate the derivative

directly.

Assume that there are no inclusions on the line x = ε (see Figure 1), or in the region

between A0 and x = ε, where ε is close to 0. A one-term Taylor series expansion of φ is

φ(ε, y) =φ(0, y) +

(
∂φ

∂x
(0, y)

)
ε

+

(
∂2φ

∂x2
(ξ(y), y)

)
ε2

2

for some value ξ(y) ∈ {(δ, y) : 0 ≤ δ ≤ ε}, and so

∫ 1

0

∂φ

∂x
(0, y)dy =

1

ε

∫ 1

0

φ(ε, y)dy

−
ε

2

∫ 1

0

∂2φ

∂x2
(ξ(y), y)dy. (9)

If the conductance of the specimen is being compared to an inclusion-free specimen whose

potential is φ0(x, y) = x, then
∫ 1

0

∂φ0

∂x
(0, y)dy = 1 and the relative conductance can be
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estimated using the leading term of (9). If the conductances of two specimens with potentials

φi, i = 1, 2 are being compared, then

ς1
ς2

=
ξ1
ξ2

+ ε2

(
ξ1
ξ2
− R1

R2

R1

R2
− ε2

)
(10)

where

ξi =

∫ 1

0

φi(ε, y)dy

and

Ri =

∫ 1

0

∂2φi
∂x2

(ξi(y), y)dy.

As long as the Ri are similar in magnitude, the size of the remainder term will be dominated

by ε.

Continuous random walks can be applied to specimens in R3, so long as the charge enters

and leaves through 2-dimensional subsets of the surface of the specimen. The specimen also

need not be cubic, so long as it possesses no unusual concentrations of corners or other rough

areas.

2. Estimating the Potential

Random walks can be used to approximate the solutions of elliptical boundary value

problems if the local conductivity σ(x, y) is a bounded measurable function [45, 46]. This is

the case when inclusions and the bulk material have finite but different conductivities, but

is not the case when the inclusions are superconducting.

Under the boundary conditions specified in (4-7), if (x, y) is any point in a conducting

region on the interior of the specimen, then

φ(x, y) =

∫

A1

φ(1, ξ)P1(dξ) +

∫

A0

φ(0, ξ)P0(dξ) (11)

where Pi(dξ) is the probability that a Brownian motion that begins at (x, y) reaches a small

neighbourhood around a point ξ on the boundary Ai before reaching any other point on A0

or A1. By fixing φ at 0 and 1 on A0 and A1 respectively, (11) reduces to

φ(x, y) =Pr [ Brownian motion beginning at (x, y)

crosses A1 before crossing A0 ] (12)
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FIG. 3: On the white regions, the random walk proceeds via a walk on spheres. On the lightly

shaded regions, the walk proceeds by steps of fixed length δ0, and the regions have thickness 5δ0.

Within the darker shaded region, the walk proceeds by steps of length (σ1/σ0)δ0, where σ1 is the

inclusion conductivity and σ0 is the continuous phase conductivity. Steps crossing the boundary

between the two shaded regions have their length altered via equation (13).

This allows φ to be estimated at individual points in D [47, 48], unlike finite element methods

that require estimation of φ over the entirety of D. Also, (12) shows that the integral ξ used

in (9) and (10) is the mean escape probability to the surface A1 for points randomly chosen

from a uniform distribution on the line x = ε.

3. Approximating the Brownian Motion

Realizations of a Brownian motion cannot be directly simulated, but must themselves

be simulated via other stochastic processes. A combination of two different simulations is

used, in order to balance the speed of execution against the need for accuracy in the crucial

regions around the boundaries and interfaces in the specimen.

In the neighbourhood of boundaries and interfaces, the Brownian motion is simulated by

a simple random walk, with steps of fixed length δi whose direction is chosen from a uniform

distribution on the unit disc. The step length in the ith phase is chosen to be proportional

to the the conductivity σi of that phase. If a step intersects an insulating boundary, then

the step terminates at the boundary and takes the next step that will send it free from the

insulating surface. If the step crosses a boundary from a phase of conductivity σi to a phase

of conductivity σj > 0 at a fraction ρ of its length, then the step length changes from δi to
(
ρ+ (1− ρ)

σj
σi

)
δi, (13)
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as justified by the arguments of Hong et al. [37]. The subset of phase i in D where the

simple random walk is used is defined to be all points within 5δi of a boundary or interface.

For a single spherical inclusion, these neighbourhoods are shown in Figure 3.

In the remainder of D, the diffusion is simulated by using the random walk on spheres

[49]. In the ith phase, a sphere having diameter 2.5δi less than the distance to the nearest

boundary or interface is constructed at the end of the previous step, and the next step in

the simulation is a point randomly chosen from a uniform distribution on the surface of this

sphere.

Each walk begins from a point (ε, U) on the line x = ε, where U is chosen from a

uniform distribution on the interval [0, 1]. If each choice of starting point and subsequent

step direction are mutually independent, then ξ is estimated by

ξ̂ =
1

n

N∑

i=1

Φi (14)

where each Φi ∼ Binomial(1, φ(ε, Ui)). This is an unbiased estimator when the conductance

relative to the empty square specimen is estimated, since

E[ξ̂] = E[E[Φ1|U1]] = E[φ(ε, U1)] = ξ.

III. SOURCES AND CONTROL OF ERROR

There are three main sources of error in the procedure. The control of these errors is

limited by the capacity of the CPU used.

A. Errors From Approximating The Diffusion

Since the diffusion must be simulated by other stochastic processes, some error will be

introduced. While this error is difficult to quantify when two simulation methods are used,

its magnitude can be minimized by choosing the step size in the simple random walks to be

as small as feasible. In this case, it was found that step sizes on the order of 0.00001-0.00005

worked best. These are much smaller than those recommended by Schwartz and Banavar

[50], who recommended using a step size 0.01 times the diameter of the smallest inclusion.
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B. Errors From Estimating the Derivative

As can be seen from the remainder terms of the derivative estimates (9, 10), the quality

of ξ̂ as an estimator of relative conductance depends upon the linearity of φ(x, y) for fixed

y in the thin strip between x = 0 and x = ε. Since the relative error in this estimate will

be roughly proportional to ε in these circumstances, taking ε as close to zero as feasible will

yield the best results. If the equipotential lines in the strip show sharp curvature, as would

be present if inclusions are close to or intersect with strip, then this is likely to introduce

additional error into this estimate, and still smaller values of ε would be required.

C. Errors From Estimating The Potential

The error in the estimation of ξ is best expressed as the standard deviation of the esti-

mator ξ̂. The variance of ξ̂ is given by

NVar [ξ̂] = E [Var [Φ1|U1]] + Var [E [Φ1|U1]]

=
(
E [φ(ε, U1)]− E

[
φ(ε, U1)

2
])

+
(
E
[
φ(ε, U1)

2
]
− E [φ(ε, U1)]

2
)

= ξ (1− ξ) ,

and so the standard deviation of ξ̂ is

SD[ξ̂] =

√
ξ(1− ξ)

N
.

By choosing N large, this error can be made as small as needed. Confidence intervals

based on this standard deviation alone in the experiments described below indicate that the

observed errors in those experiments arise primarily from the other two types of error when

N = 106.

IV. SIMULATION EXPERIMENTS AND COMPARISON WITH THEORY

Two sets of simulation experiments were carried out, one based on a regular arrangement

of discs and the other based on disordered arrangements.

In each case, 106 random walks were simulated on a Sun Ultra 10 CPU. The program

was written in C, incorporating the ran2 random number generator from Numerical Recipes
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[51]. The time required is proportional to p and to the number of spheres used, for any fixed

ratio of σ1/σ2. Each walk is allowed to take at most 50 million steps. Each data point

requires between 5 and 90 hours to estimate, but this may be reducible through further

refinements to the diffusion approximation (e.g. parallelization), or through acceptance of a

higher error.

A. Ordered Inclusions

The conductance of a specimen whose inclusions are arranged in a centered square array

within the specimen (e.g. Figure 4, left) is estimated relative to the conductance of a pure

conductor specimen. Results are compared with the theoretical prediction of Perrins et al.

(2) for σ1 < σ0 in Figure 5 and for σ1 > σ0 in Figure 6.

FIG. 4: From left to right: an ordered array of nine inclusions, a perturbed ordered array, and an

arbitrarily arranged array. All inclusions are assumed to be insulating, and of the same size. The

volume fraction of inclusion in all three specimens is p = 0.5.

In all cases where the inclusions are less conductive, the simulations and (2) are in very

strong agreement. This could be on account of similar biases in both methods, but if this

were not the case then it indicates that the asymptotic result can be used on any scale

of rectangular array. The comparison of results from a single inclusion with those from a

centered square array of 16 inclusions (Table I) reinforces this conclusion. Variation around

the asymptotic estimate increases with inclusion conductivity, and also as the size of the

inclusions is reduced.

B. Disordered Inclusions

To test the effect of inclusion position, the conductances of the disc arrangements given

in Figure 4 are estimated. The first arrangement is a regular square array, the second is that
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FIG. 5: Comparison of asymptotic estimates (lines, as found from (2)) with simulation estimates

for specimens with a single inclusion whose conductivity satisfies σ1/σ0 = 0.0 (+), σ1/σ0= 0.1 (×)

and σ1/σ0= 0.5 (¤). Note that error decreases as p and σ1/σ0 decreases. All estimates are made

relative to a specimen of pure conductor.
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FIG. 6: Comparison of asymptotic estimates (lines, as found from (2)) with simulation estimates

for specimens with a single inclusion whose conductivity satisfies σ1/σ0 = 2 (+) and σ1/σ0= 10

(×). Note that error decreases as p and σ1/σ0 decreases. All estimates are made relative to a

specimen of pure conductor.

array slightly perturbed, and the third is an arbitrary arrangement. The second arrangement

was prepared by dividing the specimen into a grid of 9 cells with sides of length 1/3, and

the choosing the location of the centre of each inclusion from a uniform distribution on

the square region that contains all possible disc locations that still lie within the cell when

p = 0.5. In all cases, the 9 discs are of identical size.
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p Asymptotic Simulation Simulation

Estimate Estimate (1 inc.) Estimate (16 inc.)

0.05 0.9048 0.9172 0.9048

0.1 0.8182 0.8398 0.8290

0.2 0.6667 0.6746 0.6683

0.4 0.4286 0.4225 0.4260

0.6 0.2304 0.2292 0.2286

TABLE I: Comparison of estimates based upon 1 insulating inclusion and 16 insulating inclusions.
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FIG. 7: Plot of the effects of inclusion arrangement on specimen conductance. All inclusions were

centered at the same locations as those seen in Figure 4, and sphere radii were reduced to give

other values of p. The solid line is equation (2), while the points represent simulation estimates

for the ordered (+), randomly perturbed (×), and arbitrarily arranged (¤) specimens.

The locations of the centres of discs in Figure 4 were used as the centres of smaller discs

to obtain lower volume fractions p of inclusion. For p ≤ 0.4, the ordered and perturbed

specimens are indistinguishable from the prediction of equation (2) and from each other. For

larger values of p, the perturbed specimen was slightly more conductive than expected. The

arbitrarily arranged specimen was consistently less conductive than the ordered specimen,

to a greater degree with increasing p. These differences are not attributed to error, as the

estimates are assumed to have the same distribution around the true conductance as do the
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ordered specimen simulations around the prediction from (2).

V. OTHER INTERPRETATIONS OF THE METHOD

The use of escape probabilities in estimating overall conductance can be interpreted

heuristically as a stochastic technique for estimating the physical properties of complex and

possibly disordered structures. The continuous, conducting phase of the composite is formed

by the inclusions into a network, and the overall conductance properties of this network are

either enhanced or reduced by the inclusions. For the remainder, assume that the inclusions

are insulators (σ1 = 0).

If a rectangular specimen consists of a single phase, its overall conductance is proportional

to its widthWi and inversely proportional to its depth di. Basic results from diffusion theory

[52] imply that di ∝ ξ−1
i when no inclusions are present, and (10) implies that

ς1
ς2
≈
W1

W2

×
ξ1
ξ2

when inclusions are present. This suggests that ξ−1
i is measuring an average distance be-

tween the current source and sink, through the network of conductor that is formed by the

inclusions.

The conducting phase network can be described in terms of its global and its local prop-

erties. If the inclusions are spherical, then the global topological structure of the network

can be identified with the Voronoi tessellation [53] generated by the centres of the inclu-

sions. Two specimens have the same global topological structure if their associated Voronoi

tessellations can be transformed into one another by translations, rotations, and dilations,

without breaking and reforming any edges. A conductance is associated with each edge in

the tessellation, and this conductance is a function of the inclusions that define the edge. A

discrete version of the specimen can be constructed by assigning conductances to the edges

of the tessellation in a particular specimen [54] and the effective conductance of this network

can be found by using the methods of Doyle and Snell [40]. The effective conductance of a

network of this sort is an example of a distance metric across a graph known as the resistance

distance [55], and so ξ−1 is a continuous analogue of this metric for a network of conductor.

The structure of the global network will have a strong effect on the conductance of the

specimen, which is constrained to lie between the Wiener bounds [56]. For a specimen with
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inclusion conductivity σ1 and conducting phase conductivity σ0, these bounds will be

ς ≤ pσ1 + (1− p)σ0 (15)
(
p

σ1

+
1− p

σ0

)−1

≤ ς (16)

where p is the volume fraction of inclusions. For rectangular inclusions of the type shown

in Figure 8 (left and centre), the lower and upper bounds hold exactly. In the central case,

1 − p is also the fraction of A1 available for charge to enter the specimen, and so for two

square specimens of this type,
ς1
ς2

=
1− p1

1− p2

.

This implies that for that particular geometry, the inclusions have a pure dilution effect, and

the conductance is proportional to the amount of conductor present. If the geometry of the

inclusions beyond A1 does not consist of oriented rectangles that run through the specimen

to A0 (e.g. Figure 8, right), then the conductance will lie between the two bounds and will

be approximately
ς1
ς2
≈

1− p1

1− p2

×
ξ1
ξ2
. (17)

The first term in (17) accounts for dilution, and the ratio of escape probabilities is a measure

of tortuosity [57] adapted to DC conduction and similar transport processes.
PSfrag replacements

A0 A0A1 A1 A1 A0

S2

S1

S2

S1

S2

S1

FIG. 8: For the specimen at left, the lower Wiener bound (15) holds exactly. For the centre

specimen, the upper Wiener bound (16) holds exactly. For the specimen at right, its conductance

lies between the two bounds.

By thinking of ξ−1 as a measure of distance, a contrast can be made with asymptotic

approaches to conductance estimation. Suppose that the conductance of a specimen with

inclusions is to be compared with the conductance of a specimen of pure conductor of the

same size and shape. The Unsymmetric Effective Medium Approximation in this context

yields a new specimen of a single phase whose conductivity lies between the Weiner bounds,

and whose size, shape and conductance are the same as the original composite specimen.

17



In contrast, the methods developed here replace the specimen with one of pure conducting

phase but different dimensions from the original. If no inclusions are present at A1, the

effect is to increase the length of the original inclusion free specimen by a factor of ε/ξc,

where ξc is calculated for the composite specimen based on random walks starting from

the line x = ε. In this way, the methods developed here unravel the network structure

of the particular specimen, and replace the topologically complex original specimen with a

topologically trivial one having the same transport property.

VI. CONCLUSIONS

To summarize:

• The use of escape probabilities enables a conductance estimate to be made based on

the structure of a particular given composite specimen.

• The procedure does not depend upon strong assumptions regarding internal specimen

geometry or the dimensions of the problem, only that boundaries be reasonable and

that they be known.

• The accuracy of the method can be controlled, and is only limited by computing

capacity.

• The escape probabilities can be used to construct measures of tortuosity that are

specifically suited to DC conductivity in materials that contain insulating inclusions.

• All results extend to specimens in R3.
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