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Abstract 
 
In microarray data there are a number of biological samples, each assessed for the level of 
gene expression for a typically large number of genes. There is a need to examine this data 
with statistical techniques to help discern possible patterns in the data. Our method applies 
a combination of mathematical and statistical methods to progressively take the data set 
apart so that different aspects can be examined for both general patterns and for very 
specific effects. Unfortunately, these data tables are often corrupted with extreme values 
(outliers), missing values, and non-normal distributions that preclude standard analysis. We 
develop a robust analysis method to address these problems. The benefits of this robust 
analysis will be both the understanding of large-scale shifts in gene effects and the isolation 
of particular sample-by-gene effects that might be either unusual interactions or the result 
of experimental flaws. Our method requires a single pass, and does not resort to complex 
“cleaning” or imputation of the data table before analysis. We illustrate the method with a 
data set from the literature, where missing values, extreme values and non-normal 
distribution hamper standard methods.  
 
 
Introduction 
 
Biologists are using DNA microarrays to monitor the level of gene expression of biological 
samples. Thousands of genes are typically monitored on a few to tens of samples. In the 
near future, it is expected that there will be data sets of hundreds of samples. Patterns of 
gene expression can be used to determine co-regulated genes, suggest biomarkers of 
specific disease, and propose targets for drug intervention.   
 
Microarray data present a number of challenges to statistical modeling. The size of the 
typical array – up to thousands of columns and perhaps hundreds of rows – defies easy 
graphical analyses. There may be severe distributional difficulties such as non-normal 
distributions, outliers (unusual data values), and numerous missing values.   Common 
objectives are finding ‘patterns’ in the data, in particular 
 
• clustering the biological samples (rows) into groups with similar expression profiles;  
• clustering the genes (columns) into groups where the level of gene expression is 

similar in the samples.  
 
One attractive way of clustering is a by-product of ‘ordination.’  Ordination involves 
finding suitable permutations of the rows (and perhaps of the columns) that lead to a steady 
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progression going down the rows (and perhaps across the columns).   A clustering is given  
by placing vertical (and perhaps horizontal) dividing lines in the array to break it up into 
rectangular blocks within which the values are homogeneous.   
 
Conversely, not all clustering methods are hierarchical, but if we cluster the rows and elect 
to do so with any hierarchical clustering method, the clustering induces an ordering of the 
rows (‘dendrogram ordering’).   Thus good ordination methods can lead to good clustering; 
any hierarchical clustering solution corresponds to a row ordination. 
 
Method 
 
The classical method of ordination is through the singular value decomposition.  Write the 
expression data as an nxp array X with rows representing the n biological samples and 
columns representing the p genes.  Approximate X with a bilinear form 
 ij i j ijx rc e= + , 
where ri is a parameter corresponding to the ith biological sample,  cj corresponds to the jth  
gene, and eij is a ‘residual’.  This representation solves the ordination problem in that the 
rows can be ordered by their ri values and the columns by their cj values.  Ordering the 
rows by r and the columns by c permutes the original data array to one in which we have 
high and low values in the corners and medium values in the middle, leading to an 
informative display. 
 
Subsequently, grouping together those rows whose ri are similar will give clusters of 
biological samples.  Grouping the columns with similar cj will give clusters of genes. To 
the extent that the residuals are small, the ordination and subsequent clustering will be 
unique. 
 
Standard practice is to remove ‘uninteresting structure’ such as a grand mean, or even the 
row or column means from X prior to attempting the approximation.  This is more of an 
implementation detail than a central aspect of the method. 
 
The conventional method of getting this bilinear approximation is from the singular value 
decomposition (SVD) of X, Healy (1).  It is well known that the leading term of the SVD 
provides the bilinear form with the best least squares approximation to X.    The SVD is 
often found by performing a principal component analysis on X’X and XX’. 
 
The conventional SVD however has some serious deficiencies.  First, being a least squares 
method, it is highly susceptible to outlier values in the array X.  Such outliers are an 
accepted fact of life when dealing with microarray data, where a sprinkling of entries are 
found to be very large or small.  Second, finding the SVD through a principal component 
analysis of X’X requires that all elements of X be observed.  This goes counter to a second 
reality of microarray data, which is that missing values are a routine feature of the 
experimental data. 
 
Alternating least squares  There is a standard remedy for the second of these deficiencies – 
the Gabriel-Zamir alternating least squares algorithm (2).  This begins with a tentative 

  2 



estimate of the column factors cj.  These are used to provide a matching scaling for the 
rows.  Regarding 
 
 xij = ricj + eij 
as a regression of the ith row of X on the column factors identifies rj as the coefficient of a 
no-intercept regression.  Fitting this regression row by row using all non-empty cells then 
leads to an estimate of the row factors ri.  Then switching roles, we take the row factors ri 
as given, and use regression of all non-empty cells in exactly the same way to calculate 
fresh estimates of the column factors cj. Thus the ri and cj are determined without removal 
of entire rows or entire columns or resort to imputation. 
 
Alternating robust fitting (ARF).  The ALS method is effective in solving the missing 
information problem.  But it does nothing about the sensitivity to outliers.  Solving the 
outlier issue however can be done by a simple change in the regression method that lies at 
the heart of the Gabriel-Zamir algorithm.  Instead of using ordinary least squares (OLS) to 
carry out the alternating regressions, we can use an outlier-resistant regression method such 
as L1 (refer to Hawkins et al. (3) for details), weighted L1 (refer to Croux et al. (4) for 
details), least trimmed squares (refer to Ukkelberg et al. (5) for details), or more generally 
an M-estimation method.  In this paper, we use the L1 method proposed by Hawkins et al. 
(3). The resulting algorithm then is to take the model 
 
 xij = ricj + eij, 
Use any convenient initial values for the column factors cj (or optionally for the row 
factors) and then apply a robust no-intercept linear regression algorithm to alternately use 
the cj to refine the estimates of the ri; and the ri to refine the estimates of the cj. 
 
Using any M-estimation criterion, each of these alternating regressions will lead to a 
reduction in the regression criterion, so the algorithm will converge. 
 
Properties of the ARF fit.  Broad properties of the ARF bilinear fit follow at once.  The 
method handles missing information routinely, without requiring a separate ‘fill-in’ step.  
And it is impervious to a minority of outlier cells.  Outliers will, of course, create a 
problem for the ARF, as with almost any conceivable method, if they constitute the 
majority of the elements of any row or column. 
 
Clustering of the rows and columns.  As already noted, sorting the rows by their ri values 
will create a natural ordination.  This can be turned into a clustering of k groups of 
biological samples by finding  ‘breakpoints’ b(0)=0 < b(1) < b(2)<b(k-1)<b(k)=n and 
allocating to cluster h those genes which, in the reordering, have index b(h-1)<i<=b(h).  
The breakpoints need to be chosen so that the biological samples within each cluster have ri 
values as similar as possible.  This can be made operational by the criterion that the pooled 
sum of squared deviations of the ri broken down into the k clusters should be a minimum.  
Exact algorithms for finding breakpoints to attain this minimum are given by Steel and 
Venter (6), and by Hawkins (7).  Similarly, applying the optimal segmentation algorithm to 
the column factors cj can cluster the genes. 
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Relationship to other clustering approaches 
 
A common approach to clustering genes has been through (dis)similarity indices between 
the rows of X – for example the Euclidean distance between rows as a dissimilarity 
measure, or their correlation as a similarity measure.  These measures can then be used in  
any convenient dissimilarity-based cluster method such as average linkage.  If we look at 
this approach through the bilinear approximation 
 
 xij  = ricj + eij 
 
(now regarded as an identity, without regard to quality of fit and trivially true for vectors r 
and c), we see that the squared Euclidean distance between any two rows i and k can be 
written 
 

  2 2

1 1
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Now, specialize the interpretation of this identity. Suppose that the bilinear term ricj has 
captured all the ‘structure’ in the sample-gene association, and all that is left is statistically 
independent measurement noise – not necessarily small – as is the case when the SVD is 
used to get the bilinear approximation. Consider the three terms comprising : the first is 
recoverable from the bilinear approximation and the last is zero by statistical independence;  
the center term is made up simply of measurement noise and it can not contribute usefully 
to the clustering. In fact it will have the effect of degrading the clustering. Theory therefore 
implies that a well-fitting bilinear approximation to the matrix X should give a better 
picture of the biological sample differences through its row factors ri than can be found 
directly using the Euclidean distances between rows.  A similar conclusion applies to using 
the correlation between pairs of row profiles. 

2
ikD

 
There is yet another consideration favoring use of the ARF for clustering. If the matrix 
contains outliers, these outliers contaminate the Euclidean distances (and the correlation 
coefficients) between rows. However it is a consequence of the robust fits used in the ARF 
that the outliers do not contaminate the ri or cj substantially.   
 
NCI60 data 
 
We will illustrate the bilinear fit using the ARF and the subsequent segmentation of the 
genes and biological specimens using the well-studied NCI60 data set.  The dataset is from 
the National Cancer Institute. The cDNA microarrays were used to assess gene expression 
profiles in 60 human cancer cell lines used in a drug discovery screen (8). The cell lines 
were derived from tumors with the following different sites of origin: breast (BR), central 
nervous system (CNS), colon (CO), leukemia (LE), melanoma (ME), non-small-cell-lung-
carcinoma (LC), ovarian (OV), prostate (PR) and renal (RE). The reference sample was 
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prepared by pooling equal mixtures of mRNA from 12 of the cell lines. For each of the 60 
cell lines, labelled cDNA was synthesized by reverse transcription from the cell mRNA 
with the red dye (CY5), and from the reference mRNA with the green dye (CY3). After 
competitive hybridization, laser scanner was used to measure the intensities of the red 
signals and the green signals, and the ratios were computed.  
 
This data set can be downloaded from http://discover.nci.nih.gov/nature2000/. There are 
1416 (1376 ESTs+ 40 known) genes, 60 cell lines, and each cell in the table represents the 
gene expression levels expressed as log (ratio), where the ratio is the red/green 
fluorescence ratio. There are about 2.4% missing values in the data. To give more details, 
all the rows (cell lines) have at least 1 missing value, and the median number of missing 
values is 13. As to the columns (genes), 850 out of 1416 genes have at least 1 missing 
values. It is important to handle the missing values properly.  
 
Figure 1A shows the image of the unordered data matrix, where the rows correspond to the 
cell lines and the columns correspond to the genes, the white cells represent the missing 
values, the black cells represent the unchanged genes (log ratio =0), the green cells 
represent the under expressed genes (negative log ratio), the red cells represent the over 
expressed genes (positive log ratio), and the intensity of the color corresponds to the value 
of the log ratio. In this image, we cannot see any clear patterns.  
 
Our goal is to cluster similar genes together and similar cell lines together, and at the same 
time we hope that the clusters will not be influenced by outliers, missing values or non-
normal distribution of the noises in the data. Graphically, we hope to form blocks of reds 
and greens. 
 
We used the ARF to fit a bilinear approximation to the activity matrix after subtracting out 
a grand mean.  Using the resulting bilinear approximation to order the rows and the 
columns of X leads to the display of Figure 2.  Note that visually, the ordination has been 
highly successful in rearranging the matrix so as to give blocks of high and low values in 
the corners and in-between values in the remainder of the array. 
 
Next, we applied the segmentation algorithm to the row factors ri  to segment the biological 
samples, and to the column factors cj to segment the genes.  Tables 1 and 2 show the results 
of fitting various numbers of clusters.  In an exploratory statistical analysis such as this, we 
do not need a rigorous answer to the question of the number of genuine clusters, but 
guidance comes from the variance explained by breaking the factors into 2, 3,…, groups.  
In both tables, the major explained variability is attained once three clusters are formed, 
and so we will use this as our working solution, dividing the columns (cell lines) into three 
segments, cell lines 1-28, 29-54 and 55-60. If we look at Figure 2A, we can see that the last 
six rows (cell lines 55-60) are indeed different from the rest, and the cell line names 
corresponding to the last six rows (cell lines 55-60) are the six 'LE' (leukemia). So the 
bilinear fit gives a good separation of leukemia from other cell lines. Similarly, based on 
Table 2, we can divide the genes into three segments, genes 1-462, 463-1096 and 1097-
1416.   
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There is clearly an enrichment for leukemia cell lines (samples 55-60) in one of the cell 
line groups. In these leukemia cell lines, some genes are over expressed (shown in red) and 
some are under expressed (shown in green) as shown in Figure 2A. Among the genes found 
to be significantly over expressed in the leukemia lines are the transcription factor NFATx 
(gene 1398), a homolog of v-Myc (gene 1405), and cyclin dependent protein kinase (gene 
1414). We now provide a summary of some of the literature for these genes.  
 
NFAT(gene 1398): In the T-cell lymphoma cell lines EL4 and Jurkat, the NFAT proteins 
are reported to be activated by the oncogene Tpl-2 and may contribute to the molecular 
mechanism of the oncogenicity of Tpl-2 (9). Myc (gene 1405): In addition to the cell lines 
employed in this study, over expression of the myc oncogene was also noted in a multiple 
myeloma cell line, NCU-MM-1, and correlated with aggressive tumor growth of human 
TUR leukemia cells (10-11). Gene 1414: There is a significant amount of research on 
p27(Kip1), a cyclin-dependent kinase inhibitor, on the progression of hematological 
malignancies. Down regulation of p27 (functionally analogous to an up regulation of 
cyclin-dependent kinase, as seen in this study) has been shown to promote survival and cell 
cycle progression of T-cell acute lymphoblastic leukemia cells (12). Other cyclin-
dependent kinase regulators such as flavopiridol induce growth arrest and apoptosis in 
chronic B-cell leukemia lines (13). In a separate study, cyclin dependent kinase 4 along 
with cyclin D1 were found to be the most important prognostic factors for children with 
acute lymphoblastic leukemia (14). 
 
A literature search on the most down regulated genes in leukemia cell lines (as observed in 
this study) does not produce as clear picture as for the up regulated genes. It appears that in 
many cases, the expression of the gene depends upon the type and stage of leukemia. Some 
examples include laminin (gene 50) and caveolin (gene 55), covered next.  
 
Lamin (gene 50): Indirectly, expression of the 67-kDa laminin receptor in acute myeloid 
leukemia cells mediates adhesion to laminin and is frequently associated with monocytic 
differentiation; thus loss of lamin or lamin receptor would inhibit differentiation and 
possibly maintain the transformed phenotype, (15). Caveolin (gene 55): Caveolin proteins 
are not detected in peripheral blood cells or blood cell lines which is consistent with down 
regulation in leukemic cell lines in this study. It is only in certain states of cell activation 
that caveolin-1 has been reported to be expressed in adult T cell leukemia cell lines (16).  
 
Finding additional structure 
 
The bilinear fit produced by the ARF does not necessarily exhaust all structure in the 
matrix X.  As with the conventional, non-robust least-squares SVD, we can remove the 
initial bilinear fit from X to get the initial residual matrix (xij – ricj) and apply the ARF to 
this matrix to get a second pair of matching row and column factors which may be 
segmented, just as were the leading pair. 
 
Doing so does indeed uncover additional biologically meaningful structure, as shown in  
Figure 2B. The segmentation algorithm (refer to Table 4), suggests two segments for the 
cell lines: 1-51, and 52-60. The cell line names of the last 9 rows, show that they are the 
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seven 'ME' (melanoma) and two 'BR-MDA' (breast) cell lines. It is interesting that the two 
breast cell lines are grouped together with all the melanoma. It was pointed out (8) that the 
two breast cell lines (MDA-MB435 and MDA-N) were derived from a single patient with 
breast cancer, and have been treated as breast cancer cell lines. But it is likely that the 
patient had a co-existing occult melanoma. Corresponding to this cell line segmentation, 
we divide the genes into three segments, genes 1-481, 482-1124, and 1125-1416.  
 
Subtracting this second bilinear term and repeating the ARF gives a  third component.  
Segmentation divides the cell lines into 3 segments, cell lines 1-10 (which includes all the 
colon cancers), 11-35 and 36-60 (which includes the CNS and renal cancers).  Similarly, 
we can divide the genes into three segments, genes 1-345, 346-971 and 972-1416. Thus, we 
divide the whole matrix into 9 homogenous blocks. 
 
As we can see, the three components give three sets of ordering of genes and cell lines, and 
represent different aspects of the gene expression data. This cannot be achieved by one 
single ordering of genes and samples.   
 
Finding outliers, filling in estimates of missing values, and smoothing 
 
A strength of our method is that it does not require complete information, and is not 
affected by a minority of outliers.  Outliers can be identified automatically by looking at 
the final residuals after removal of the three structural components.  A simple outlier model 
might be that most of the residuals follow a normal distribution, but that some small 
number are ‘wild’.  A probability plot shows that, rather than this simple two-bin model, 
the residuals follow a heavy-tailed distribution. If we so wish, we can flag those readings 
that seem particularly anomalous.  For example, finding the median absolute deviation 
(MAD) of all the residuals, under a normal distribution values more than 6*MAD in 
absolute value, a cutoff equivalent to 4 standard deviations, should be extremely rare.  In 
the actual data however some 2% are outside this range.  This is a red-flag warning against 
the use of non-robust methods (17).  
 
Enriching notation slightly, write rim and cjm for the row and column factors given in the mth 
bilinear pair fitted.  Then for any missing cell ij, we could predict the missing value by 

.  Another possible use of the ARF fits is to replace the entire matrix by the rank-m 

approximation given by using this missing value fill-in for all cells for purposes of other 
statistical analyses or displays.  The potential attraction of this approach is that it would 
largely remove the impact of outlier cells as well as avoiding gaps in the matrix. 

im jm
m
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Discussion 
 
We have proposed an analysis based on a variant of the SVD that is largely impervious to 
outliers and missing information.  This can be used for ordination and display of the 
microarray, and also for segmentation. 
  
The microarray example illustrates the usefulness of this method, where the cell lines of the 
same origin are grouped together, and some genes found are confirmed by previous 
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literature. The outlier detection points out some possible outliers. They may be 
experimental mistakes, or specific gene actions that deserve further study.   
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Table 1. The segmentation of cell lines in component 1 
No.  Explained SS   Change   Break points 
2          78.6103                      54  60 
3          92.4562      13.8459   28  54  60 
4          96.1626        3.7064   25  52  55  60 
5          98.4368        2.2742   24  51  54  58  60 
6        100.3947        1.9579   15  33  51  54  58  60 
 
Table 2.  The segmentation of genes in component 1 
No.  Explained SS  Change  Break points                 
2 72.1226                    835 1416 
3 84.1818   12.0592    462 1096 1416 

 4         88.6127     4.4309    277 758 1179 1416 
 5         90.7224     2.1097    211 582 988 1256 1416 
 6         92.0583     1.3359    188 516 865 1132 1333 1416 
 
 
Table 3. Description of genes from the 1st and 2nd components. 
 
Gene index    Place 1st comp    Description  
         7               1398               SID W 245450, Human transcription factor NFATx mR-99, complete cds  
       29               1405               MYC V-myc avian myelocytomatosis viral oncogene homolog Chr.8 
       76               1414               Human cyclin-dependent protein ki-99se mR-99, complete cds Chr.12  
     845                   50               LAMC1 Laminin, gamma 1 (formerly LAMB2) Chr.1  
    874                 55             SID 472015, Homo sapiens caveolin-2 mR-99, complete cds 
 
Gene index   Place 2nd  comp  Description  
   1315               1393               SID W 486432, Dopachrome tautomerase (dopachrome delta-isomerase, tyrosine- related 

protein)  
   1345              1402                H.sapiens mR-99 for Gal-beta(1-3/1-4)Glc-99c alpha-2.3-sialyltransferase Chr.11  
   1043                  11                SID W 429859, Villin 2 (ezrin)  
     248                  25                ANX3 Annexin III (lipocortin III) Chr.4    
     262                  26                DESMOPLAKIN I AND II Chr.6  
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Table 4. The segmentation of cell lines in component 2 
No. of segments    Explained Sum of Squares    Change      Break points 
2                            84.3986                                                    51   60 
3                            88.5639                                  4.1653       28   51   60 
4                            89.7414                                  1.1775       14   39   51   60 
5                            90.6048                                  0.8634       14   39   51   55   60 
6                            91.1050                                  0.5002         6   28   44   51   55   60 
 
Table 5.  The segmentation of genes in component 2 
No. of segments    Explained Sum of Squares             Change      Break points     
 2                              59.3728                                                           802 1416 
 3                              75.4268                                       16.0540       481 1124 1416 
 4                              81.6079                                         6.1811       304  779 1202 1416 
 5                              84.6040                                         2.9961       227  602  994 1284 1416 
 6                              86.4369                                         1.8329       148  420  779 1111 1310 1416 
 
Table 6. The segmentation of cell lines in component 3 
No. of segments    Explained Sum of Squares    Change      Break points 
2                            56.2300                                                    19   60 
3                            76.1226                                 19.8926      10   35   60 
4                            79.5835                                   3.4609      10   34   55   60 
5                            82.0603                                   2.4768        9   19   36   56   60 
6                            83.6325                                   1.5722        2   10   19   36   56   60 
 
Table 7.  The segmentation of genes in component 3 
No. of segments    Explained Sum of Squares             Change      Break points     
2                                65.5843                                                          722 1416 
3                                81.0274                                      15.4431       345  971 1416 
4                                86.6599                                       5.6325        236  687 1098 1416 
5                                89.5089                                       2.8490        128  408  781 1133 1416 
6                                91.2666                                       1.7577        119  348  687  989 1261 1416 
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Fig. 1. (A)The unordered gene expression data matrix of human tumor cell lines. (B)Outliers identified in the image of
the residuals : The missing values are colored white, and the outliers are colored yellow (higher than expected) or 
blue (lower than expected). To be able to view the figure clearly, we only select 40 columns to illustrate here.  
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Fig. 2. (A) The first SVD component. (B) The second SVD component. (C) The third SVD component. 
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Fig. 3. The plot of the eigenvalues 

Fig. 4. The QQ plot of the residuals 
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