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Abstract

We study the problem of nonparametric estimation of the conditional distri-
bution function when we have current status data on the outcome variable and
a single continuous-valued covariate. An estimator of the conditional distribution
function F(Y|X = z), called the local nonparametric maximum likelihood estima-
tor (LNPMLE) is proposed. This estimator is a locally weighted version of the
nonparametric maximum likelihood estimator (NPMLE) for current status data in
the absence of covariates. The primary goal of this work is to obtain an expres-
sion for the optimal bandwidth used to pick neighborhood size. The asymptotic
distribution of the LNPMLE of the conditional distribution function at a point,
F(t|X = z), is studied, and the asymptotically optimal bandwidth is shown to be
of the order n=/7. The LNPMLE of the conditional distribution function can be
obtained as a solution to a weighted isotonic regression problem. A plug-in estimate
is suggested for the bandwidth, and the computation of the LNPMLE is illustrated

on a simulated sample.
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1 Introduction

In many studies, the time to occurrence of some event is of interest. In some cases it is
not possible to observe directly the time at which the event of interest occurs but one is
able to observe a time interval in which the event has occurred. A particular case arises
in those situations where the testing is destructive, or when observing the subject at more
than one time is not possible. A specific practical situation of this sort is an experiment
in which rats are injected with a dose of a carcinogenic substance, and are operated on at
certain times to see if a cancerous tumor has developed in a particular organ. When the
rat must be sacrificed, or the organ either must be extracted in order to do a complete
pathological examination, or is damaged or altered, no second measurement is possible.
So each rat is observed at a single time and it is known whether it shows the presence
of the tumor at that time. Let Y}, Y,, ..., Y, be independent random variables denoting
the time to development of cancer, and let 7} be the time at which the i rat is operated
upon, for i = 1, 2, ..., n. The data available in these cases, i.e., the combination of the
examination/censoring time 7', and the event indicator, 6 = I(Y < T), are known as
current status data. This censoring mechanism is also referred to as interval-censoring,
case 1 (Groeneboom and Wellner, 1992).

One could also consider the Y’s above as differences between an initiating event (time
of injection of carcinogen in the example above) and a subsequent event (time of tumor
formation). Implicit in the above description of current status observations is the assump-
tion that the time of the initiating event is known. An alternative formulation for current
status observations is to consider both the initiating time and the time to subsequent
event as being current status observations — in such cases the data are referred to as
doubly censored current status data (see Rabinowitz and Jewell (1996)).

Consider the situation where information on a covariate X, for example the dose of
the carcinogen injected in the rat, is also available. The observed data are then the
triplets (71,01, X1), (12,02, X2), -« (T, 0n, Xy), where §; = I(Y; < T;), and X; is the
dose administered to the i subject. The problem of nonparametric estimation of the
conditional distribution function, when current status data on the outcome variable and
a single continuous-valued covariate are available, is studied here. We assume that the
time of the initiating event is known.

Estimation of the distribution function for current status observations in the absence
of covariates has been studied by various authors. Ayer et al (1955) show that the non-
parametric maximum likelihood estimate (NPMLE) can be easily computed and establish

its consistency. Turnbull’s (1976) work, applicable to a broader class of censored and



truncated data than just current status, describes a “self-consistency algorithm” (a spe-
cial case of the EM algorithm (Dempster, Laird, and Rubin, 1976)). Groeneboom and
Wellner (1992) show that the NPMLE can be characterized as a solution to an isotonic re-
gression problem, establish consistency and convergence in distribution, and show asymp-
totic normality of the mean. Huang and Wellner (1995) show that the self-consistency
equation is satisfied by the NPMLE, and prove asymptotic normality of the NPMLEs of
linear functionals. Van der Laan (1994) shows that the NPMLE is efficient. Jewell, Malani
and Vittinghoff (1994) consider nonparametric estimation of the distribution function for
doubly censored current status data.

Work on the regression case for current status data includes that of Murphy, van der
Vaart, and Wellner (1999) who consider asymptotic properties of the MLE and penalized
MLE of the slope parameter in linear regression; Rabinowitz, Tsiatis and Aragon (1995)
considered estimation and inference using score statistics for the regression parameters
in a linear model for current status data, assuming the error distribution is unknown;
Rabinowitz and Jewell (1996) establish a correspondence between current status data
and doubly censored current status data when the initiating event can be assumed to be
uniformly distributed; Rossini and Tsiatis (1994) study estimation in the context of the
proportional odds regression model; van der Laan, Bickel, and Jewell (1994) introduce
a regularized MLE and obtain results for linear regression for both current status and
doubly censored current status data. A useful summary of work on current status and
interval censored data is given by Huang and Wellner (1996). Other related references
are Diamond, McDonald, and Shah (1986), Jewell and Shiboski (1990), Diamond and
McDonald (1991), and Keiding (1991).

To the best of our knowledge, existing regression estimators considered so far have
been at most semi-parametric, i.e., either distributional assumptions are made on the
error terms, or a parametric or semi-parametric form has been assumed for the model.
In addition, most of the work on regression has centered on estimation of the mean. The
focus in this work is on nonparametric estimation of the conditional distribution function
for current status data. We propose an estimator called the “local nonparametric maxi-
mum likelihood estimator” (LNPMLE), which is a locally smoothed modification of the
nonparametric maximum likelihood estimator (NPMLE) of the distribution function for
the no-covariate case discussed by Ayer et al (1955) and Groeneboom and Wellner (1992).

The LNPMLE depends on the size of the neighborhood used to obtain the estima-
tor; hence an appropriate choice of neighborhood is critical to the estimation process.
Neighborhood size is typically expressed in terms of the bandwidth h. We will obtain

an expression for the asymptotically optimal bandwidth using the bias and variance of



the asymptotic distribution of the LNPMLE of F(Y = t|X = z). This asymptotically

1/7

optimal bandwidth is shown to be of order n™'/, whereas, under similar assumptions,

the optimal bandwidth for estimating the distribution function with uncensored data is
of order n=1/5.

We also show that the LNPMLE can be obtained as the solution to a weighted isotonic
regression problem. A method is suggested for estimating the optimal bandwidth, and a
simulated sample is used to demonstrate the computation.

In Section 2 below we present the estimation method. Section 3 gives the distribution
theory result and the derivation of the asymptotically optimal bandwidth. Section 4
discusses computation of the estimate, and illustrates this computation on a simulated

sample.

2 The Estimation Method

Consider current status data, consisting of random observation times and event indicators
(T1,61), (13,02), ..., (Tn,0n), corresponding to the occurrence times Y1, Y3, ..., Y,. The
Y; and 7; are non-negative random variables, assumed independent, with distribution
functions F' and G respectively. We will assume, without loss of generality, that the 7;’s
are arranged in increasing order, i.e. T} < Ty < --- < T,,. The log likelihood, up to an

additive term that does not involve F', is

n

8(F) = 3-{dilog(F(T) + (1 - ) log (1 - F(17) }. 1)
i1
The NPMLE of F is the F' that maximizes ¢ subject to the constraint F() < F(T) <

--- < F(T,). Obtaining such an estimate is equivalent to finding the F' that maximizes

0(F) = [ {T<elog(F(0) + I log(1 = F(0) fdPa(y. 1), (2.2)

where P, is the empirical probability measure of the pairs (Y;,T;), 1 < i < n, subject to
the constraint above.

As only the values of F at the observation points matter for this maximization problem,
the NPMLE can be arbitrarily taken to be a distribution function which is piecewise
constant with jumps only at the observations points 7; (Groeneboom and Wellner (1992)).
It is possible that the function obtained by the maximization of ¢(F') may be a sub-
distribution function, i.e., F (t) < 1 at each observation point t. In such cases, the
location of the remaining mass is not specified. With this understanding, the NPMLE is

uniquely determined.



Groeneboom and Wellner (1992) have shown that the values of {F(T;)}i=1, ., that
maximize @¢(F') are the solutions to a certain isotonic regression problem, namely the
minimization of Y ; (6; — u;)? with respect to (u1,us, ..., u,), subject to u; <upy < -+ <
u,. Here the u;’s represent the values of the distribution function F' at the n values of T;.

Groeneboom and Wellner (1992) also show that when n current status observations

are available, we have
n3(E(t) — F(t)) 2, 9y, (2.3)
{P®(1-F0)F0)/9(1))

where V' is the last time at which standard two-sided Brownian motion minus the parabola

Wl

y = 2 reaches it maximum. Here f(t) and g(t) are the derivatives of F' and G at t, where
G is the distribution function of 7. It is assumed that f(¢) and g(t) are strictly positive,
Y and T are independently distributed, and the probability measure induced by F' is
absolutely continuous with respect to the probability measure induced by G.

An unusual feature of the result above is that F'(t) has an n'/3 rate of convergence,
unlike the usual n'/? rate which holds for the estimators of F' for uncensored or right-
censored data, for example. Also, the limit distribution is not the usual normal limit.

We will modify the above estimation method to obtain an estimator of the conditional
distribution function. In the situation above, n independent current status observations
drawn from the distribution F' are used in order to estimate F'. In our framework we
assume that the conditional distribution function is smooth in the covariate values, i.e.,
F,(y) is smooth in z for fixed y. Thus, although multiple observations from F,, may
not be possible, weighted observations from F,, where z is in the neighborhood of z,
serve as surrogates for a sample from Fj,. The i"* point in the neighborhood is assigned
a weight, w;, generated by a smoothing method — points that are close to =y are given
higher weights than those that are further away from x,.

Let (T(1), 61y, X)), (T12),02): X2))s ---» (L(n); 6(n)» X(n)) denote the observations, ar-
ranged in ascending order of the 7" values. The local nonparametric maximum likelihood
estimator (LNPMLE) of the conditional distribution function F, at the target point z,

is F, which maximizes

0(Fyy) = ﬁ; wi{a(,-) log(Fy, (Tis)) + (1 — 5)) log (1 — Fay (T } (2.4)

subject to
Fpo(Thy) < Fpo(Tig)) < -+ < Fipy(Twy)-

Here 7 is the local log likelihood (except for an additive constant that does not involve

F,,). This local log likelihood, defined over points in the covariate neighborhood of the
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target point, is just a weighted version of the log likelihood in (2.1). As noted in the
no-covariate case, the maximization above determines the LNPMLE only at observed 7’
values in the covariate-neighborhood of x;. We will follow the convention of using a linear
interpolation for values of T that do not lie on this grid. Subject to the above conditions,
and allowing for the possibility of obtaining a sub-distribution function as an estimate,
the LNPMLE is unique. In Section 4 we show that an isotonic regression characterization
can be obtained for the LNPMLE F,.

3 Asymptotic Distribution and Optimal Bandwidth

We will see that optimal bandwidths for current status data will be larger than those
required in estimation for uncensored data, i.e., for current status observations one would
expect a slower reduction in bandwidth as sample size increases. When uncensored ob-
servations are used, optimal bandwidths for nonparametric regression function estimation
are of the order of n='/® under the assumption that the regression function is twice con-
tinuously differentiable. We show heuristically that for current status data the order of

/7 under similar assumptions on the covariate

the aysmptotically optimal bandwidth is n~
distribution.

We are interested in extending the result stated in Groeneboom and Wellner (1992), in
Equation (2.3) above, to estimates of F,, based on kernel weights. The procedure proposed
here amounts to estimating the conditional distribution function by imitating the NPML
estimation on the “n,” points in the covariate-neighborhood, instead of using all n points.
When estimating at the target point x, points are assigned weights w; according to their
distance from the target covariate value. We will denote by N, ;, those points for which w;

is non-zero. The following Nadaraya-Watson weights (Nadaraya (1964), Watson (1964))

K (25%)

w; = wz(Xz) = Sn o a—X\
p K (55)

(3.5)

are considered in (2.4), where K is a kernel, X; are observed values of the covariate, and h
is the bandwidth. When weights from a uniform kernel are considered, equally weighted
points in a neighborhood of length 2h around the target point x are used. In this case, the
estimation procedure is equivalent to that outlined in Groeneboom and Wellner (1992)
for the no-covariate case operating only on the n, points in the neighborhood.

In the case of the uniform kernel, each point in the support of the kernel is assigned
the same weight, thus the effective sample size n, is just the number of points that are

assigned non-zero weights by the kernel. However, since a kernel function may assign



unequal, non-zero weights to all points on the real line, for non-uniform kernels it is not
appropriate to take m, to be the number of points that are assigned non-zero weights.
The inverse of the sum of the squared weights, (37 wf)_l, provides a natural measure of
the effective sample size in this case.

In the estimation scheme discussed by Groeneboom and Wellner (1992) current status
observations from the distribution function F' are available for its estimation. Our estima-
tion scheme, on the other hand, uses neighboring observations to estimate the conditional
distribution function F,. Each (T, ) point in the neighborhood corresponds to a Y that
comes from a distribution F, (not F}), where z is the covariate value associated with Y.
Assume that the covariates are randomly and independently distributed. Consider an (as
of yet) unobserved covariate value z, that will be generated according to a probability
distribution L, along with an additional n» — 1 points, to form a sample of size n. When
estimating at the target point z, the weight assigned to the random observation with co-
variate value z is denoted w;(z). Denote the probability law of the covariate, conditional
on the covariate being in the neighborhood N 5, by L,. As we will effectively be sampling
the covariate values from a weighted mixture of covariate densities in the neighborhood,
dLy(2) = wa(2)dL(2)/ [v, , we(u)dL(u). The values of the unobservable random variable
Y with covariate values in the neighborhood of x will arise from a mixture of distributions,
which will be denoted by Fj,. For simplicity we assume that 7" is independent of X. Let
G denote the distribution of 7", and g the corresponding density. This gives

F()= |,

F,(1)dLy(z) = /N Ry iw(f))duu) dL(2).

Letting
w(z) = wy(2) _ K %)
27 Twp(wdL() — JK(5%)dL(u)’
we define
Fi(t) = [ wi()F(0)dL(2). (3.6)

3.1 Asymptotic Distribution of F(t)

In order to study the asymptotic properties of F}(¢) we decompose F}(t) — F,(t) into two
parts as follows

A

Fot) = Fuo(t) = (Falt) = Fie, (1)) + (Fic, () = Fu(2)), (3.7)

and study the asymptotic properties of each of the two terms.



We wish to extend the result in Groeneboom and Wellner (1992) on the asymptotic
distribution of F' to the first term on the right in (3.7). As we now have an effective
sample size of n, and are sampling from F,, heuristically extending the result for fixed
h as n — oo, we have

1 N
2)® (Fp(t) — Fr, (t

{$F. (1 = Fi, ) fre, () /9() }

where fr, (t) = d(Fk,(t))/dt, and g(t) is the density of T. We assume that fx, (), g(t)
are positive, Y|X = z and T are independently distributed, and the probability measure

induced by F) is absolutely continuous with respect to the probability measure induced
by G (the distribution function of T'). Further, assuming that (3.8) holds for all 4 in a
small neighborhood around 0!, it also holds as n — oo and h — 0.

Let us represent the denominator of the left hand side of (3.8) by D, (h), i.e.,

Du() = {5Fie (01 ~ Fi. () fr (9)/9(0)}

and let )
3

D, = { R0 - B@)L0/0)} (3.9)
As h — 0, Fk,(t) — Fy(t), thus Dy(h) — D,. Combining this with (3.8) and using
Slutsky’s theorem gives
(n2)° (B (t) = Fi, (1))
[LF(0(1 — F(0)£(1)/9(0))

25 ov. (3.10)

o=

3.1.1 Approximation to F,_(t) — F,(t)

We now consider the asymptotics on

(no)® (Fk, (t) — Fa(t))
{3F0)(1 - Fo() fa(t)/9(1) }

the appropriately scaled version of the second term in (3.7). For simplicity we only

o=

I

o=

consider those points x for which a full kernel neighborhood is possible, i.e., we will not
deal with points at the edges with incomplete neighborhoods.

Consider the following assumptions:

!Showing that this holds requires an appropriate modification of results in Groeneboom and Well-
ner (1992), which is not shown here.



A;y: The distribution L(z) has a density [(z)dz in the neighborhood of x, and there exists
hy > 0 such that, for |6| < hy,
821" (z)
2!

Iz +6) =I(z) +6l'(z) + +0(6%) (3.11)

Ag: There exists hy > 0 such that, for each § with |§| < hg, there exists a 2; in the interval
adjoining x and x + ¢, such that

OF,(1)| S PFE(1)| & PF®)

52
= Fm(t)-f—égl(t,x)—i—Egg(t,ac)-l—O(é?’), (3.12)
where g¢i(t,z) = OF:(1)| and go(t,x) = PEG) - We are assuming here that
0z 'z 0z lz

03F,(t) /0% is uniformly bounded in the neighborhood of x and can be ignored.
Let ho= min(hq, hg) so both (3.11) and (3.12) hold for |z — x| < hy.

As: The kernel has compact support. Hence we can choose N, ; such that Ny, C Ny p,

and the kernel “vanishes” outside IV, ;. That is,

K(x - z) —0, forall z € N2, (3.13)

For the derivations below, the case of the uniform kernel is considered first as the
results and derivations for this case are more intuitive. Generalization of these results to
the case of bounded kernels follows naturally and is outlined later.

When K represents the uniform kernel, using (3.12) and ignoring terms of order (z—x)3

and higher we can write

Fe) = F(0) = [ F(ui(z)dL(z) — Fu(1)

Q

/Nm {(z —z)gi(t, x) + (z — :r)292(t, x)} dL,(z).  (3.14)

2

For the uniform kernel w,(z) = 1/2h for z € (z — h,z + h). The conditional density of

the covariate, given that the covariate value lies in the neighborhood NV, 4, is given by

_ we(z)dL(z) 5 1(2)dz _U2)dz
ALa(2) = Jwe(2)dL(z) — L [* Uz + u)du ~ 2hi(z)

for z € (x — h,z + h)

Using the above and (3.11), and ignoring terms that are O(h?®) and smaller, it is easy to
show that B2 ()
T

— 2)dLy(2) ~ , 3.15

[, = ahLa(e) = s (3.15)

9



and

/N (z o) dLa() = h; (3.16)
Substituting from (3.15) and (3.16) into (3.14) we get
h2l'(z) h? go(t, x)
_ (gl(t, o)l () + 2 ‘;)l(”’)) 31}293)' (3.17)
Hence,
nd(Fi, ()~ Folt) nil?

e (gl(t, o)l (z) + M) (3.18)
RO - B@)L@/g0) @D 2
where D, is as defined in (3.9).

As we are using the uniform kernel, for sufficiently small 4 the number of points n,
contained in the neighborhood N, can be approximated by n, = 2nhl(z), where n is the

total number of observations. Thus, the right hand side of the approximation in (3.18)

reduces to
(2nhl(z))s h? ) g2(t,2)l(z)\ _ (2nh7)3 ) 92(t, x)l(x)
31(z) D, (l(t’x)l @)+ == )_31(3;)%Dw<gl(t’x)l (@) +== )
UEOBO)__ o By D) g

BRO0-FRO)LO/0) 3@ D
If nh” — M, as n — oo, and h — 0, then the above expression converges to a constant
CL(t), defined as

2M,)3 g2(t, z)l(x)
= B (i BN
0= ot (962 + 20

Combining the results in (3.10) and (3.19) we have, if nh” — M; as n — oo, and
h — 0,

nd (Ey(t) — Fu(t))
(3R (1) (1 = Fa(t) fo(t) /9 (1)}

The above result also holds when we have non-uniform kernels satisfying assumption

Ly ov +CL1). (3.20)

-1
As. In this case we define n, = (Z? wf) , and as shown in the Appendix, the following

1
approximation to F, (t) — F;(t) can be obtained when (Ef wf) "h3C, — M

go (t, ﬂf)l(l‘)) IK,Qh/'g

FKm(t)—Fm(t)z(gl(t,ac)l'(:c)—i- . o

(3.21)

10



where

Cp = / K& ; “VAL(2), (3.22)
Iks = /uQK(u)du, (3.23)
and D, is as defined in (3.9). Thus,
Pt Ry (T - EO)
(3R = F(0))f:(8)/9(8)} D,
Srw?) Nl
~ ( chh (91(75, z)l'(z) + gt D)l(z) 2)1( )>

(3.24)

o=

Hence, for kernels satisfying the assumptions A;, A, and As, if (Zf wZ?)_ h3/Cy — M,

we have?
(rw?) (P ) - B®)
r — Cult), (3.25)
BEO0 - F@)L0)/90)}
where
C,(t) = M;j? (gl (t,2)l'(z) + M) (3.26)

Combining the results in (3.10) and (3.25) we have the following asymptotic distribu-

tion for the appropriately scaled version of F;E(t) for kernels satisfying assumptions Aj,

_1
Ay, and A with (zy w§> W, — M

W=

(zru?) "B - F)

P 2V 4+ G, 3.27
ORO0-EOLOpoE 2 Tew (3.27)

3.2 Asymptotic Approximations to the Bias and Variance of
Fi(t)

In order to obtain an explicit expression for the asymptotically optimal bandwidth hgps 4,
the bandwidth that minimizes the mean square error (MSE) in terms of the underlying
distributions, we consider an approximation to the MSE of lf’z(t) We use the bias and

variance of the asymptotic distribution in order to approximate the MSE.

2For the uniform kernel (37 w?)f%h3/0h ~ (2nh7)3 [1(z)3.

(3 K3

11



The random variable V' in the limiting distribution above has 0 mean and finite vari-
ance (see, for example, Groeneboom and Wellner (2001)). Let us denote Var(2V') by v.
Hence from (3.27) we have the following approximation to the bias of the asymptotic
distribution of ﬁ’w:

A

Biasan (F4(1)) ~ Cy(t) Dyna?, (3.28)

where the subscript AD refers to the asymptotic distribution of F}(t) obtained in (3.27).
Recall Cy = [ K(%;%)dL(z). For standard (symmetric, bounded) kernels with compact
support (i.e., the Uniform, Epanechnikov, Biweight and triangular kernels), ignoring terms
that are O(h®) and smaller, Cj, ~ c;h, where c; is a constant with respect to h and n.
In particular, ¢; = [(x) for the uniform kernel under assumption A;. Reverting to the

expression given by the approximation in (3.24) and using C}, = ¢ h, we have
Biasap (EL(1)) ~ (gl(t, )l + 22 ;)l (””)) IZ“ h? (3.29)

1

Note that for the uniform kernel n, = 2nhi(z), for the other standard kernels n, =

-1
(E? wf) ~ cynh, where ¢y does not depend on h or n. Thus, using (3.27) and

Var(2V) = v, an approximation for the variance of the asymptotic distribution of F}(t)
can be given by
Varap(Fy(t)) ~ D,’v(ng)”3
D,’
~ 22 ()3, (3.30)
(c2)®
Using (3.29) and (3.30) we can obtain an approximate expression for the asymptotic
MSE (AMSE) of F,(t).

AMSE(Fw(t)) ~ BiasiD(Fm(t))+VarAD(Fm(t))
~ Kih* + Ko(nh) 3, (3.31)

2 2
where K1 = ((g1(t 2)l'(z) + ga(t, 2)(x)/2)"%2)" and K, = D, v/ (c2)3.

Differentiating the expression for AMSE with respect to h and setting the derivative
to 0, we obtain the following value for the asymptotically optimal bandwidth hgp , at ¢

Ky \1 1
hopt,m(t) = (6—1(%1) n

Rleo

2D,

3 2
6c3 I3, (91 (t, 7)1 (z) + 2022(2))

(3.32)

I
N
=

Thus, the asymptotically optimal bandwidth in this case is of the order of n’%, and the
above expression allows its computation when some quantities based on the underlying

distributions and the kernel are available.
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4 Computation of the Estimate

In the previous sections an estimator for the conditional distribution function was intro-
duced and a heuristic approximation for the optimal bandwidth was established. However,
it is not apparent how one would carry out the maximization in (2.4) and compute the
estimate of F,. Recall that, in the absence of covariates, Groeneboom (1992) established
that the NPMLE of F' can be characterized as the solution to an isotonic regression
problem. Applying Theorem 1.5.1 of Robertson et al (1988) to the convex function with
®(s) = slog(s)+(1—s)log(1—s) above, we see that the maximizer of n(F}) defined in (2.4)
is given by the solution to the weighted isotonic regression problem, i.e., of minimizing
S, wi(x)(6;—u;)? with respect to (ug, ug, . . ., uy), subject to u; < ug < -+ < uy,. (An al-
ternative proof of the above is also possible from modifications of results in Brunk (1955).)

Thus the Pool Adjacent Violators (PAV) Algorithm, a widely used method for the
computation of the isotonic regression, can be used to compute F,. The PAV algorithm
is explained in greater detail in Barlow et al (1972, Ch. 1, pp. 13-18) and Robertson et
al (1988, Ch. 1, pp. 8-10).

Clearly, before the PAV algorithm can be implemented the neighborhood size must be
chosen and the weights for each point in the neighborhood must be computed. Obtaining
a value for hopt ;(t) is a non-trivial problem in itself. One way of obtaining a value for
hopt,z(t) is by fitting a simple parametric model to the data, and using the distribution-
based constants from this fit in (3.32). This strategy is implemented in the example given

in the following subsection.

4.1 Illustration on a Simulated Sample

In this subsection we describe the computation of the plug-in bandwidth, and its use
to estimate F,(t), for a randomly generated sample. Besides kernel-based constants and
sample size, the expression for hqpy () in (3.32) involves quantities based on the distribu-
tions of T, X, and that of Y given X = x. The distribution of 7' can be specified by the
investigator, and when a designed experiment is possible, so is the distribution of X. In
any case, the X and T are completely observable, and their densities may be (parametri-
cally) estimated. However, the form of the conditional distribution of ¥ given X cannot
be assumed to be known. We overcome this problem by (mis-)specifying a parametric
form for the conditional distribution of Y (we use an exponential, the true distribution
is a gamma), using the sample values to obtain estimates of its parameters, and using
quantities obtained from this approximation to obtain plug-in values for hgp (). We

have found that the use of the plug-in value gives good results, in spite of the model
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Table 4.1: Values of Fy(t) and |E,(t) — Fy(t)| (in parentheses) for simulated data set.

hopt,z was obtained using the exponential distribution approrimation.

X\T 0.106  0.347  0.660 1.154 2.203

0.105 0 0042 0252 0364 0870
(0.006) (0.015) (0.086) (0.001) (0.171)
0.310 0 0042 0293 0459  0.889
(0.009) (0.035) (0.079) (0.013) (0.106)
0.484 0 0042 0293 0475  0.867
(0.011) (0.053) (0.036) (0.036) ( 0.029)
0.701 0 0042 0293 0500 0971

(0.014)  (0.077) (0.016) (0.084)  (0.083)
0.893 0 0042 0293 0514 0967
(0.018) (0.099) (0.062) (0.128)  (0.047)

mis-specification (see below). For comparison, the estimate Fj(t) is also obtained when
the expression for the optimal bandwidth is obtained using the constants calculated from
the true distribution of Y| .X.

In the simulated data set of size 1000 used in the illustration below, weights are ob-
tained from a uniform kernel, the covariate X ~ U(0,1), T ~ Exp(A = 1.0) (mean=1/}),
and Y|X =z ~ Gamma(a = 2, = 1+1z) (mean=a/3). We note here that the choice of
distribution for T is a critical component of the estimation procedure. It is obvious, for
instance, that for a choice that gives 6 = 0 (or 6 = 1) for all observations, there is very
little information on Y. An appropriate choice would produce a scatter of 0’s and 1’s for

values of § over the range of values of X in the sample.
The conditional distribution of Y given X = x is approximated by an exponential

distribution with a parameter that is linear in the covariate. The linear predictor Gy + 51z
is related to the conditional mean of Y given X = x by the reciprocal function. Thus g
and (; in the distribution function F,(y) = 1 — exp(— (8o + S12)y) must be estimated.
The sample observations are used to find the optimal estimates of the parameters 5, and
f£1 by maximizing the current status likelihood for the exponential distribution, i.e., by
maximizing

n

5(60’ 51) = H (1 — e_(ﬂ0+/311‘i)ti)(5i(6_(,30+,31$i)ti)1—(5i' (4'33)

=1

with respect to By and ;. This maximization is carried out by using the Splus function

A

ms(). The ms() function generated 30 = 0.3784, 5, = 0.5635 for the sample used.
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Table 4.2: Values of Fy(t) and |E,(t) — Fy(t)| (in parentheses) for simulated data set.

hopt,z was obtained using the gamma distribution constants.

X\T 0.106 0.347  0.660 1.154 2.203

0.105 0 0.043 0257 0378 0.833
(0.006) (0.014) (0.091) (0.013) (0.134)
0.310 0 0033 0255 0387 0.842
(0.009) (0.044) (0.041) (0.059) (0.059)
0.484 0 0045 0271 0471  0.870
(0.011) (0.049) (0.014) (0.040) (0.032)
0.701 0 0061 0322 0521  0.969

(0.014) (0.058) (0.013) (0.063) (0.081)
0.893 0 0080 0317 0.682 0.964
(0.018) (0.061) (0.038) (0.040) (0.044)

These estimates of 3y and 3; were used in conjuction with other information to compute
optimal bandwidths. Under the simulation conditions, {(z) is the uniform density on
[0,1], s0 U(z) = 0, Dy = (By + prz)(1 — e~ Pothinte=2Bothzlt) /(24(t)), and g,(t, z) =
—(Byt)2ePoth12)t . The uniform kernel was used to generate the neighborhood weights.
For the uniform kernel, ¢; = 1,1k = £, and ¢, = 2. The value v = 1.05423856 was used
for Var(2V') (see Groeneboom and Wellner (2001)).

The estimate F, was computed for all combinations of z and ¢ values corresponding
to the (10%",20%, ... 90%") sample percentiles of the observed X and T values. For any
value z the PAV algorithm actually computes estimates of F, only for values of ¢ which
correspond to observed 7; associated with the X; values in the neighborhood of . Some
of the ¢ values may not belong to the neighborhood grid, hence no estimate is computed
for these values. In such cases we either use linear interpolation (if the ¢ value for which
the estimation is required is between two values on the T} grid), set F} to be 0 (if the
corresponding ¢ value is less than the smallest 7; value in the neighborhood grid), or
set F, to be 1 (if the corresponding ¢ value is greater than the largest 7; value in the
neighborhood grid).

Table 4.1 gives the results for the above simulation when the asymptotically optimal
bandwidth was estimated using the exponential model. The table presents the value of
Fm, and the absolute difference between Fz and F,, for five of the X and five of the T’

percentiles, i.e., the (10%, 30% 50% 70" and 90™). For the same sample used above,
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the asymptotically optimal bandwidths were also calculated using quantities computed
from the true gamma distribution — all other conditions remained the same. Table 4.2
presents these results. The estimates of Fw(t) using each of these bandwidths and true
values of F(t) are graphed in Figure 4.1.

From the tables and graphs we note that the estimates appear to do reasonably well
overall. There is no obvious systematic difference between the estimates obtained using
the plug-in bandwidth via the exponential approximation, and those obtained using the

true underlying distribution.

5 Concluding Remarks

We have proposed a completely nonparametric estimator, F,, for the conditional dis-
tribution function for current status data, in the presence of a single continuous-valued
covariate. The asymptotically optimal bandwidth, derived using heuristic weak conver-
gence results for E, (), depends on values of both z and ¢, and is shown to be proportional
to n~Y7. We showed that the estimator Fx(t) can be obtained as a solution to an isotonic
regression problem, and is easily computed. A method for obtaining a plug-in estimate of
the bandwidth was suggested, and an example where this plug-in choice was contrasted
with the optimal bandwidth obtained by using constants from the true distribution was
presented. The plug-in choice is seen to perform favorably on the sample used.

Only Nadaraya-Watson weights based on kernel methods have been considered here.
The estimation scheme can be extended to incorporate other weighting methods. In
principle, one could also extend the methodology to situations with multiple covariates.
However, the “curse of dimensionality” is likely to cause a problem for large dimensions
of the covariate vector. Study of the multiple covariate situation is planned for future
work.

The unusual n~Y/7 rate of the optimal bandwidth is particularly notable. This rate
has also been obtained by Groeneboom (1998) for the bandwidth in the deconvolution
problem, and used by Roy Choudhury (1998) in the problem of deblurring images that
are blurred by Poisson noise.

For current status data in the absence of covariates, Groeneboom and Wellner (1992)

have shown that F(t) converges at an n'/3

rate, whereas the mean of F' converges at
the n'/? rate. This is unlike uncensored data, in that the same n'/? rate is attained
for estimation of the distribution function and the mean under similar assumptions. A
conjecture that warrants additional investigation is that a better rate can be obtained for

the nonparametric estimation of the (conditional) mean in the presence of a covariate too.

16



F(YIX)

F(YIX)

F(YIX)

Figure 1: Graph of F, (triangle), E, when hopt was obtained from estimated distribution
of Y|X (unfilled square), and Fy, when hep, was obtained from true distribution Y| X (filled

square).
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Appendix: Approximation for Fx (t) — F,(t)

We show here that (3.25) holds for a kernel that satisfies assumptions A;, A, and
Az for all points = for which a full kernel neighborhood is possible. D,, C}, Ik, and

C,(t) are as defined in (3.9), (3.22), (3.23), and (3.26) respectively, g (¢, z) = 20

22 oz ‘w’
F,(t
gZ(ta 31‘) = T()Lv

Using (3.12) and the three assumptions in Section 3, when we have symmetric proba-

and

bility kernels, we have the following
Fi () = [ wi(2)F(0)dL(2)

- /z v UF)AL(:) + wy(2) F,(t)dL(z)

ZENG

Q

[ whF(DAL(:)

+ wy(2)(z — ) (¢, x)dL(2)

zENw,h

+ w(2)(z — )2 ga(t, 2)dL(2). (A1)

ZENm,h

The first term in (A.1) can be simplified as follows using Ajs:

/N w(E) Ea()dL(2) = Fa(t) / w(2)dL(z) = Fy(t). (A.2)

N:c,h

Using (3.11) we can simplify the second term in (A.1) as follows:

/Nm wi(2)(z ~ D)t 2)dL() = gu(t,2) /m w3 (z) (= ~ )dL()

= gq(t,2) /N » (2 %I:(%)dL(z)

_ gl(cf;x) / e D)5 (1) + (2~ 2)0'@) + Oz — )7 ) d

.=, and denoting the support of the kernel by U, we get

T

Transforming v =

/NM wi(2)(z — x)g1(t, z)dL(z) =~ %ﬁj)m{—/{]ul{(u)l(@du—i—/Uhu21’(x)K(u)du}
= gl(t, 33)[’(33)]}(,22—:;. (A3)
Finally,
[, we S paane - 282D [ i~ L)

gt ) T —z )
ol /N K - o)L

(A.4)
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r—

Transforming v = *3%, and denoting the support of the kernel by U, we get

go(t, T)h?

/N () (Z;‘”)ZgQ(t,x)dL(z) ~ W{ /U V2K (u)l () du — /U hu3K(u)l'(x)du}
Go(t, )l (x) Ik 2 h,_3

= . G (A.5)
Substituting for (A.2), (A.3) and (A.5) in (A.1) we get
Fie(t) = Fat) (g0, 0)0/(a) + 2lgted) e, (A6

and this establishes (3.25).
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