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Abstract

An asymptotic expansion is developed for the joint density of the sum and maximum of an
i.i.d. sequence when the parent distribution is in the domain of extreme value attraction of the
Gumbel distribution. Previous results by Chow and Teugels, extended by Anderson and Turk-
man, show that in this situation, the normalized sum and normalized maximum of the sample
converge to independent normal and Gumbel distributions, but they have not characterized the
rate of convergence. The present development proceeds via three technical propositions. The
first extends previous results by Cohen and by Smith to derive the rate of convergence of the
density of the sample maximum to a limiting Gumbel density. The second technical proposition
is a conditional Edgeworth expansion for the sum given the maximum. The third concerns the
expansion of conditional means and variances. By combining these propositions, a leading-term
expansion is developed for the dependence between the sum and the maximum, and uniform
convergence is proved over an expanding sequence of subsets of the plane. Simulations allow us
to assess the practical applicability of the results. They show that for moderate sample sizes, the
sum and the maximum are far from being independent, but that the leading-term asymptotic
expansion is a substantial improvement over independence of the two random variables.

1 Introduction

This work extends the research into the relationship between the sum and maximum, specifically,

the work of Chow and Teugels(1978) with the iid case – followed by Anderson and Turkman(1991)

with the stationary case – who established that, under certain conditions on the domains of attrac-

tion, the sum and the maximum are asymptotically independent. They showed under appropriate

conditions that the joint distribution function of the normalized sum and the normalized maximum

converges to the product of their appropriate asymptotic distributions: a stable law for the sum
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multiplied by one of the three extreme value distributions for the maximum. A chief theoretical

question that remains is what is the rate of convergence to this asymptotic independence. The

associated statistical methodology question is, for moderate sample size, how does one model the

dependence structure between the sum and the maximum. Given the importance of both the rate

of convergence and the statistical modelling questions, an important development in this area is a

higher order expansion for the joint density of the sum and the maximum.

The primary goal of this paper is to establish a higher order term for this joint density when the

maximum lies in the Gumbel domain of attraction. Here the focus is on the density, as opposed

to the distribution function, for direct applications into likelihood functions. The other domains of

attraction for the maximum, the Fréchet and the Weibull, are covered in Grady and Smith (2003).

Statistical applications in climatology will be developed elsewhere.

1.1 Notation

Let X1, . . . , Xn be an iid sequence of random variables with common distribution function F which

has density f and characteristic function ϕ where the support of F lies on (xl, xo) where −∞ ≤ xl,

xo ≤ ∞. We assume the existence of the third moment µ3 from which follows the existence of the

mean µ, variance σ2, and third cumulant K3.

Define Sn =
∑n

i=1 Xi with the normalized version as

S∗n =
Sn − nµ√

nσ2
, where µ real and σ > 0 (1)

and Mn = max1≤i≤n Xi with the normalized version as

M∗
n =

Mn − bn

an
, where an > 0, bn real. (2)

We define the distribution function of S∗n as FS∗n with density fS∗n(w) = dFS∗n(w)/dw. We also define

the distribution function of M∗
n as FM∗

n
(v) = Fn(anv + bn) with density fM∗

n
(v) = dFM∗

n
(v)/dv =

nFn−1(anv + bn)f(anv + bn)an. To simplify let un = anv + bn. Finally, we denote the joint density

of S∗n and M∗
n as fS∗n,M∗

n
(w, v).

1.2 Main Result

We use three sets of conditions – one set for deriving the expansion of the density of the maximum,

another set for deriving the expansion of the conditional density of sum given the maximum, and

one extra condition necessary for deriving the expansions of the appropriate moments. Under these

conditions, defining

rn =

{
bn√
nσ2 , xo = ∞

xo−µ√
nσ2 xo < ∞
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we have

|fS∗n,M∗
n
(w, v)− fS∗n(w)fM∗

n
(v){1− rn(e−v − 1)w}| = o(rn)

uniformly ∀w and ∀|v| ≤ en where en is given explicitly in Proposition 1 and tends to ∞ as n →∞.

In particular, the rate of convergence to asymptotic independence is of the order O( bn√
n
) for xo = ∞

and O( 1√
n
) for xo < ∞.

We derive two corollaries under the same set of conditions as in the main theorem. In the first of

these corollaries, we substitute in the appropriate asymptotic densities for fM∗
n

and fS∗n – namely,

the Gumbel density and the normal density, respectively. We conclude that the leading order

expansion terms in this case not only include the term in the main result which models a first order

approximation to the dependence between the sum and the maximum but also, depending on the

underlying distribution, could incorporate the expansion terms associated with the density of the

maximum and/or Edgeworth expansion terms associated with the density of the sum. A second

corollary to the main theorem establishes a higher order expansion for the joint density for the

penultimate approximation case. In this case, the resulting higher order terms are identical to those

in the previous results.

Our approach in solving this higher order expansion for the joint density is to rewrite fS∗n,M∗
n
(w, v) =

fS∗n|M∗
n
(w|v) × fM∗

n
(v) where fS∗n|M∗

n
(w|v) is the conditional density of S∗n given M∗

n. Then we need

to establish three key expansions. These expansions form three main propositions of this paper which

in turn are central to establishing the main result. In the first of these proposition (Proposition 1)

we derive the expansion for fM∗
n
. In the second (Proposition 3), we establish the expansion for a

transformation of fS∗n|M∗
n
. Finally in the third (Proposition 4), we derive the expansions for the

appropriate conditional moments.

1.3 Proposition 1: The expansion of the density of the maximum

We assume that F lies in the Gumbel domain of attraction. We let Λ denote the Gumbel distribution

function and Λ′ denote its density where

Λ(x) = e−e−x

, −∞ < x < ∞.

Following Smith (1987), we assume F has the representation

− log F (x) = c(x) exp
{
−

∫ x

−∞

dt

φ(t)

}
∀x < xo (3)

where φ is a positive twice differentiable function, φ′(x) → 0 and c(x) → 1 as x → xo, and

xo = sup {x : 1 − F (x) > 0}. This representation, originally due to Balkema and de Haan (1972),

is an adaptation of a Karamata representation for F ∈ D(Λ).

The normalizing constants in (2) are defined by
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bn = inf {x : − log F (x) > 1/n} (4)

and

an = φ(bn). (5)

For this paper, we also assume that c(x) ≡ 1 in (3). This is equivalent to the twice differentiable

domain of attraction of Pickands (1986) for the Gumbel case which is equivalent to the von Mises

condition for the Gumbel case [ see Leadbetter et al. (1983), Theorem 1.6.1] which are the classic

sufficient conditions for the local domain problem. Most well-behaved distributions in the Gumbel

domain of attraction which have differentiable densities also satisfy the von Mises condition so in

this case the assumption c(x) ≡ 1 is justifiable.

Finally, we also assume conditions on the function φ in (3). This function φ describes how smooth

the tail of the underlying distribution is. Conditions placed on this function and its derivatives play

a central role not only in the local domain problem; but also in establishing convergence rates for

the distribution and density limits and higher order terms.

Rates of convergence to the Gumbel distribution for sample maxima were established by Anderson

(1971) under general conditions but without uniformity results, and in specific cases by Hall and

Wellner (1979), Hall (1979,1980), and Cohen (1982b). Cohen (1982a) establishes a general result,

with uniformity, for two classes of distribution that he labelled N and E. Smith (1987) used a

variation on class N defined by (3) with specific restrictions on φ. Under conditions similar to

Proposition 9.2 of Smith (1987) and one other technical condition, Proposition 1 shows that
∣∣∣∣fM∗

n
(v)− Λ′(v){1 + (

v2

2
− v − v2e−v

2
)φ′(bn)

∣∣∣∣ = o(φ′(bn)) ∀v.

Although this higher order term does not contribute to the form the main result takes, this term does

contribute to the main result’s first corollary. In fact, we substitute Λ′(v){1+( v2

2 −v− v2e−v

2 )}φ′(bn)

for fM∗
n
(v) into the main result to help establish its first corollary. More specifically, our complete

result in Proposition 1 provides – uniformly over the entire range – not only an expansion with first

and second order terms for the density of the maximum but also an explicit form of this rate of

convergence.

1.4 Proposition 3: The expansion of the conditional density of the sum
given the maximum

The derivation we establish for the expansion of the conditional density for the sum given the

maximum is patterned after the unconditional Edgeworth expansion found in Feller (1971), Chapter

XVI, Section 2, Theorem 1 which gives the uniform expansion of the density of S∗n. We make use

not only of this theorem but also its supporting lemmas, modifying them for the conditional case.

4



In the development of the higher order expansion for the joint density, it will also be necessary to

bound the density of the sum multiplied by a polynomial in order to establish the uniformity of the

results. Under the same conditions of Feller (1971), Chapter XVI, Section 2, Theorem 1, Petrov

(1975) gives the needed result.

Theorem 17 of Petrov (1975) for “k=3”: Let {Xn} be a sequence of independent random variables

having a common distribution with zero mean, non-zero variance, and E|X|3 < ∞. Let the random

variable 1√
nσ2 Sn have for some n > N a bounded density fn(x). Then

(1 + |x|3)
{

fn(x)−N ′(x)− µ3

6σ3
√

n
(x3 − 3x)N ′(x)

}
= o(1/

√
n)

uniformly in x.

In our derivation, we begin by conditioning Sn on Mn = un where un = anv + bn with an and bn

defined in (5) and (4) and with v fixed. This conditional distribution may be written in the form

P [Sn ≤ x|Mn = un] = P

[
(
n−1∑

i=1

X∗
i + un) ≤ x|Mn = un

]

where X∗
i s are iid conditional random variables with

P [X∗
i ≤ x] = P [X ≤ x|X ≤ un].

Henceforth we write X∗ for the random variable with the distribution F (x)/F (un), ∀x ≤ un and

denote its density as fun and its characteristic function as ϕun . Then we write Sn = X∗
i +un where

X∗
1 , . . . , X∗

n−1 are iid with the same distribution as X∗. The dependence on a given sequence {un}
– actually, sequences {an} and {bn} – is implicit in the notation. Thus the conditional distribution

of Sn given Mn = un is the same as the unconditional distribution of Sn, and we shall use this

equivalence in the following discussion.

We may write

E(Sn) = (n− 1)µ(un) + un

where µ(un) = E(X∗) = E(X|X ≤ un) and

V ar(Sn) = (n− 1)σ2(un)

where σ2(un) = V ar(X∗) = V ar(X|X ≤ un). Let κ3(un) denote the third cumulant of X∗.

Expansions for µ(un) and σ2(un) are developed in Proposition 4.

Let S̃n = {Sn − E(Sn)}/
√

var(Sn) denote the normalized version of Sn. Then

P [S̃n ≤ x] = P

[
Sn − {(n− 1)µ(un) + un}√

(n− 1)σ2(un)
≤ x

]

5



= P

[
Sn − {(n− 1)µ(un) + un}√

(n− 1)σ2(un)
≤ x|Mn = un

]

= P

[
Sn − {(n− 1)µ(un) + un}√

(n− 1)σ2(un)
≤ x|M∗

n = v

]

= P

[
S∗n
√

nσ2 + nµ− {(n− 1)µ(un) + un}√
(n− 1)σ2(un)

≤ x|M∗
n = v

]
(6)

where the last step comes from substituting (1) into the formula. Thus (6) gives the form of the

transformation necessary when changing the variable S∗n|M∗
n to S̃n. The Jacobian of this transfor-

mation is
√

nσ2√
(n−1)σ2(un)

. In establishing the main result we actually use fS∗n,M∗
n

= fS∗n|M∗
n
fM∗

n
=

fS̃n
fM∗

n

√
nσ2√

(n−1)σ2(un)
.

Specifically, Proposition 3 derives a higher order expansion for the density of the sum normalized

with respect to the conditional moments under a set of conditions similar to those in Feller (1971),

Chapter XVI, Section 2, Theorem 1. These conditions are modified to deal with the conditioning on

the maximum as defined in (6). In Proposition 3 we show that the conditional Edgeworth expansion

of fS̃n
is

fS̃n
(x)−N ′(x)− K3(un)

6σ3(un)
√

n
(x3 − 3x)N ′(x) = o(

1√
n

) uniformly in x and v

where the dependence on v is through the definition of un. These Edgeworth terms do not contribute

to the form of the main result. They are important in the corollaries, particularly when xo < ∞
where the leading order Edgeworth term and the leading order term in the main result are both

O(1/
√

n).

1.5 Proposition 4: The expansions of the conditional moments

The last proposition establishes the expansion terms for the difference between the unconditional

and conditional means, µ − µ(un), and the unconditional and conditional variances, σ2 − σ2(un).

Thus Proposition 4 provides a correction term for these moments when incorporating the information

on whether the values are at or below the value un. This correction term for the first moments is

particularly important because it directly contributes to the higher order term obtained in the main

result and hence to the term developed for statistical modelling.

The first step in deriving these correction terms involves a law of total probability which introduces

the conditional moments: those at or below un [µ(un)andσ2(un)] and those above un, an exceedance.

Here, we let Y to be an exceedance of un, i.e. Y = (X−un)|X > un, with mean m(un) and variance

s2(un). In doing so we make use of the relationship between the maxima and exceedances – in

particular, Pickands (1975) shows that the distribution of the maximum converges to an extreme
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value distribution under the same conditions that the distribution of an (associated) exceedance

converges to a generalized Pareto distribution. In particular, each of the necessary expansions of the

terms in the low of total probability rely on the Balkema and de Haan representation (3) and Cohen’s

(1987b) class N conditions on φ – (17) and (18) – where Cohen’s conditions hold on the interval

|v| ≤ en. Thus using the conditions of Proposition 1 [a variant on Section 9.2 of Smith(1987)], we

obtain the necessary expansions for those components of µ− µ(un) and σ − σ(un) on that interval.

Then we introduce an additional technical condition when xo = ∞ so as to guarantee that un

bn
→ 1

uniformly on |v| ≤ en. On this interval, we can replace bn for un when xo = ∞. Finally, after

comparing the terms of the expansions we have obtained, Proposition 4 provides ∀|v| ≤ en

µ− µ(un) ∼
{

bne−v

n xo = ∞
(xo−µ)e−v

n xo < ∞ (7)

and

σ2 − σ2(un) ∼
{

b2ne−v

n xo = ∞
{(xo − µ)2 − σ2} e−v

n xo < ∞.
(8)

1.6 Heuristic development of main result

Here we outline a heuristic development of the main result – the higher order expansion of the joint

density of the sum and the maximum – when xo = ∞, in order to give an appreciation for where

the individual components in the higher order term originate and how they interact.

We begin by writing

fS∗n,M∗
n
(w, v) = fS∗n|M∗

n
(w|v)fM∗

n
(v).

By using the transformation defined in (6),

fS∗n,M∗
n
(w, v) = fS̃n

(z)

√
nσ2

(n− 1)σ2(un)
fM∗

n
(v) (9)

where

z =

√
nσ2w + nµ− (n− 1)µ(un)− un√

(n− 1)σ2(un)
. (10)

To establish the correct form of this expansion, we multiply and divide (9) by fS∗n ,

fS∗n,M∗
n
(w, v) = fS∗n(w)fM∗

n
(v)

fS̃n(z)

fS∗n(w)

√
nσ2

(n− 1)σ2(un)
. (11)

Focusing on the ratio in the third term, we can express both the numerator and denominator using

their appropriate Edgeworth expansions:

fS∗n(w) = N ′(w)
{

1 +
κ3

6σ3
√

n
(w3 − 3w)

}
+ o(1/

√
n)
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uniformly ∀w by the standard Edgeworth expansion theory – see Feller (1971), Chapter XVI, Section

2, Theorem 1 – and

fS̃n
(z) = N ′(z)

{
1 +

κ3(un)
6σ3(un)

√
n

(z3 − 3z)
}

+ o(1/
√

n)

uniformly ∀z by the conditional Edgeworth expansion derived in this paper in Proposition 3.

To simplify the N ′(z)
N ′(w) term in the ratio, we use a Taylor’s expansion of N ′(z) about N ′(w):

N ′(z) ≈ N ′(w) + (z − w)N ′′(w).

Substituting in the identity N ′′(w) = −wN ′(w),

N ′(z)
N ′(w)

≈ 1− (z − w)w. (12)

Substituting (12) and the ratio of the remain Edgeworth expansion terms back into (11) yields:

fS∗n,M∗
n
(w, v) ≈ fS∗n(w)fM∗

n
(v){1− (z − w)w} × {

1 + κ3(un)

6σ3(un)
√

n
(z3 − 3z)

1 + κ3
6σ3√n

(w3 − 3w)
}
s

nσ2

(n− 1)σ2(un)
. (13)

Using the definition of z in (10),

z − w =
n(µ− µ(un))√
(n− 1)σ2(un)

+

{√
nσ2

(n− 1)σ2(un)
− 1

}
w

+
µ(un)√

(n− 1)σ2(un)
− un√

(n− 1)σ2(un)
. (14)

Note (8) implies √
nσ2

(n− 1)σ2(un)
− 1 ∼ b2

ne−v

nσ2
.

Then Proposition 4 leads to

z − w ∼ bne−v

√
nσ2

+
b2
ne−v

nσ2
w +

bne−v√
n
− µ

√
nσ2

− (anv + bn)√
nσ2

≈ bn(e−v − 1)√
nσ2

. (15)

In the above approximation, we use the result an

bn
→ 0 to go to the second step. This result – a

version of (126) of Lemma 16 – derives from the Balkema and de Haan representation (3).

Thus the higher order term of the joint density is bn(e−v−1)√
nσ2 w and we conclude by substituting (15)

into (13)

fS∗n,M∗
n
(w, v) ≈ fS∗n(w)fM∗

n
(v) {1− bn(e−v − 1)√

nσ2
w}.

which confirms our main result when xo = ∞. Note that in (13) the ratio of Edgeworth expansion

and the Jacobian term have second and third moment terms thus neither contribute to the higher

order expansion of the joint density.
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1.7 Outline of paper

To develop the main theorem this paper is divided into six more parts. Section 2 presents Proposition

1 and its proof for the expansion for the density of the maximum under the Gumbel domain of

attraction. Section 3 contains Proposition 3 and its proof which derives the expansion for the

conditional density of the sum given the maximum. Section 4 is Proposition 4 and its proof for

the expansions for the difference between the unconditional and conditional mean and variances.

Finally, Section 5 presents the main theorem for the expansion of the joint density, Theorem 5, and

give its proof along with two corollaries and their proofs. Section 6 presents a simulation project.

Concluding remarks are in Section 7.

2 Expansion of the Density of the Maximum

Proposition 1 derives a higher order expansion for the density of M∗
n, the maximum of an iid

sequence, when the underlying distribution of the observations, F , lies in the domain of attraction

of the Gumbel distribution, Λ. Appendix A contains the lemmas that support this proposition.

Proposition 1 Suppose F ∈ D(Λ) such that the representation in (3) holds with the definitions of

an and bn from (5) and (4). Assume for a constant K > 2,

anv + bn → xo uniformly in |v| ≤ en = −K log |φ′(bn)| as n →∞. (16)

φ′′(anv + bn)/φ′′(bn) → 1 uniformly in |v| ≤ en = −K log |φ′(bn)| as n →∞. (17)

φ(bn)φ′′(bn) log |φ′(bn)|/φ′(bn) → 0 as n →∞. (18)

Suppose also that for any v∗ < xo

inf
v≤v∗

f ′(v)F (v)
f2(v)

> −∞. (19)

Then for each δ > 0 there exists an n∗ and a function εn∗ tending to 0 as n →∞ such that ∀n > n∗

and ∀v

|fM∗
n
(v)− Λ′(v){1 + (

v2

2
− v − v2e−v

2
)φ′(bn)

+(
v2

2
+

v3

6
[e−v − 1])(2φ′(bn)2 − φ(bn)φ′′(bn))

+(
v3

2
[e−v − 2] +

1
8
v4[e−2v − 3e−v + 1])φ′(bn)2}|

< εn∗ [φ′(bn)2 + |φ(bn)φ′′(bn)|min(1, |v|−δ)]. (20)
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Remark Condition (16) is part of the definition of Cohen’s (1982a) class N , see equation (1.24)

of Cohen (1982a). Conditions (17) and (18) are equations (1.59) and (1.60) in Theorem 9 of Co-

hen(1982a) which list sufficient conditions for his class N . In that paper, he lists in Table 1 many

distributions which belong to class N , for example, the normal and lognormal. In other words, there

exists a deep pool of distributions satisfying the conditions in Proposition 1.

Proof: Given F is continuous, there exists a bn such that − log F (bn) = 1/n, so

FM∗
n
(v) = Fn(anv + bn) = exp

{
−− log F (anv + bn)

− log F (bn)

}
.

Using (3) with c(v) = 1,

FM∗
n
(v) = exp

{
− exp

(
−

∫ anv+bn

bn

dt

φ(t)

)}

= exp
{
− exp

(
−

∫ v

0

φ(bn)
φ(ant + bn)

dt

)}

∀ anv + bn < xo where an is defined in (5) and bn is defined above.

Thus

fM∗
n
(v) =

dFM∗
n
(v)

dv

= exp
{
− exp

(
−

∫ v

0

φ(bn)
φ(ant + bn)

dt

)}
× exp

{
−

∫ v

0

φ(bn)
φ(ant + bn)

dt

}
× φ(bn)

φ(anv + bn)

or, say,

fM∗
n
(v) = f1(v)× f2(v)× f3(v) ∀v < xo.

First, we restrict our attention to the interval |v| ≤ en = −K log |φ′(bn)|.

The expansion of f2 Since f2(v) = exp { − ∫ v

0
φ(bn)

φ(ant+bn)dt}, by a similar argument that led to equa-

tion (9.20) of Smith (1987),

f2(v) = exp
{
−

∫ v

0

φ(bn)
φ(ant + bn)

dt

}

= e−v

{
1 +

v2

2
φ′(bn)− v3

6
{2φ′(bn)2 − φ(bn)φ′′(bn)}+

v4

8
φ′(bn)2

+o((1 + v4)R(bn))
}

(21)

where R(bn) = {φ′(bn)}2 + |φ(bn)φ′′(bn)|, uniformly on 0 < v < −K log |φ′(bn)|.

Note that the argument in Smith (1987) primarily relies on a Taylor expansion of φ(ant + bn). Al-

though here the derivation is based on the Balkema and de Haan (1972) representation for − log F (x)

as opposed to 1−F (x), the Taylor expansion argument is the same; that is, the exact form of φ may

be different but not the form of the Taylor expansion. Now all the steps of Smith’s (1987) derivation
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of equation (9.20) apply also in the case K log |ϕ′(bn)| < v < 0 under the stronger assumptions (16)

- (17). So (21) holds uniformly for |v| < −K log |φ′(bn)|.

The expansion of f3 Since f3(v) = φ(bn)
φ(anv+bn) is embedded into the expansion of f2, the expansion of

f3 falls from the condition (17) which implies

φ′(anv + bn)/φ′(bn) → 1 and (22)

φ(anv + bn)/φ(bn) → 1 as n →∞, (23)

each uniformly over |v| ≤ en = −K log |φ′(bn)|.

In fact, using (16),(17), (22), and (23), and completing the Taylor’s expansion

f3(v) =
φ(bn)

φ(anv + bn)

= 1− vφ′(bn) +
v2

2
{2φ′(bn)2 − φ(bn)φ′′(bn)} − v3

2
φ′(bn)2 + o((1 + v4)R(bn))

uniformly over |v| ≤ en = −K log |φ′(bn)|.

The expansion of f1 For f1(v) = exp {− exp ( − ∫ v

0
φ(bn)

φ(ant+bn)dt)}, we first use (17), (22), and (23)

in the argument which led to the Smith (1987) equation above equation (9.19),
∫ v

0

φ(bn)
φ(ant + bn)

dt = v − v2

2
φ′(bn) +

v3

6
{2φ′(bn)2 − φ(bn)φ′′(bn)}+ o((1 + |v|3)R(bn)))

uniformly over |v| ≤ en = −K log |φ′(bn)|.

Now write, ∫ v

0

φ(bn)
φ(ant + bn)

dt = v + Tn

where

Tn = Tn(v) = −v2

2
φ′(bn) +

v3

6
{2φ′(bn)2 − φ(bn)φ′′(bn)}+ o((1 + |v|3)R(bn)).

Then f1(v) = exp({− exp{−(v + Tn)}}.

Expanding f1 about v,

f1(v) = e−e−v

+ Tne−ve−e−v

+
T 2

n

2
e−e−v

(e−2v − e−v)

+
T 3

n

6
(1 + o(1))e−e−v

(e−3v − 3e−2v + e−v)

= e−e−v

{
1− e−v v2

2
φ′(bn) +

v3e−v

6
[2φ′(bn)2 − φ(bn)φ′′(bn)]

+
v4(e−2v − e−v)

8
φ′(bn)2 + o((1 + e−2v)(1 + v4)R(bn))

}

∀|v| ≤ −K log |φ′(bn)|.
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Together fM∗
n
(v) = f1 × f2 × f3 Thus multiplying across and collecting terms gives ∀|v| ≤ en

fM∗
n
(v) = e−ve−e−v

{
1 + (

v2

2
− v − v2e−v

2
)φ′(bn) + {v2

2
+

v3

6
[e−v − 1]}{(2φ′(bn)2 − φ(bn)φ′′(bn)}

+{v3

2
[e−v − 2] +

v4

8
[e−2v − 3e−v + 1]}φ′(bn)2 + o((1 + e−2v)(1 + v4)R(bn))

}
. (24)

Reconfiguring equation (24) into the form of equation (20) involves Lemma 9 with m = 3. Specifi-

cally, the constants that arise from equation (107) of Lemma 9 in the Appendix are absorbed into

the ε∗n function of equation (20). Thus the expansion in equation (20) holds ∀|v| ≤ −K log |φ(bn)|.

To extend this expansion to the intervals |v| ≥ −K log |φ(bn)|, the idea is to show that all the terms

in (20) are o(|v|−δφ′(bn)2) for |v| ≥ en where en = −K log |φ(bn)|.

Note it is sufficient to show the two terms fM∗(v) and Λ′(v) are o(|v|−δφ′(bn)2), |v| ≥ en since the

higher order terms associated with Λ′(v) in (20) are of smaller order.

First look at Λ′. On the interval |v| ≥ en, Λ′(v) is maximized for sufficiently large n at −en and en

and hence the focus is on these two endpoints.

First, for v = en, since K > 2 it is possible to fix K ′ such that 1 < K ′ < K/2. Thus (for v > 0)

|Λ′(v)| ≤ e−v = e−
v

K′ e−v(1− 1
K′ ).

But since exponential rates dominate polynomial,

e−v(1− 1
K′ ) ≤ κ1|v|−δ for some constant κ1. (25)

Now substitute in v = en = −K log |φ′(bn)|,

e−
v

K′ ≤ e
K
K′ log |φ′(bn)| = |φ′(bn)| K

K′ < |φ′(bn)|2 since K
K′ > 2. (26)

Combining equations (25) and (26), |Λ′(v)| = o(|v|−δφ′(bn)) for v = en.

Second, for v = −en, again define K ′ as before

|Λ′(v)| < κ2

e−v
= κ2(e−v)−

1
K′ (e−v)−1+ 1

K′ for some constant κ2.

Note in this case v < 0. Using the same argument in (25) and (26),

|Λ′(v)| = o(|v|−δφ′(bn)) for v = −en and hence for the entire interval |v| ≥ en. (27)

Now (24) and (27) imply that fM∗
n
(v) = o(|v|−δφ(bn)) for v = ±en. Thus to prove (20) for |v| ≥ en

it suffices to show that

12



(a.) fMn(x) is increasing for x ≤ −anen + bn,

(b.) fMn
(x) is decreasing for x ≥ anen + bn.

Taking the derivative of

fMn(x) = nf(x)Fn−1(x).

gives
d

dx
fMn

(x) = nFn−2(x){f ′(x)F (x) + (n− 1)f2(x)}. (28)

Solving the algebra,

(28)

{
≥ 0 if f ′(x)F (x)

f2(x) ≥ −(n− 1)

≤ 0 if f ′(x)F (x)
f2(x) ≤ −(n− 1).

(29)

Since (29) ⇒ (20), we look at (29) .

Using (3) with c(x) ≡ 1

F (x) = exp
{
− exp{−

∫ x

−∞

dt

φ(t)
}
}

,

f(x) = exp
{
− exp{−

∫ x

−∞

dt

φ(t)
}
}

exp
{
−

∫ x

−∞

dt

φ(t)

}
1

φ(x)
,

f ′(x) =
1

φ2(x)
exp

{
− exp{−

∫ x

−∞

dt

φ(t)
}
}

exp
{
−

∫ x

−∞

dt

φ(t)

}
×

[
exp

{
−

∫ x

−∞

dt

φ(t)

}
+ 1 + φ′(x)

]
.

Thus
−f ′(x)F (x)

f2(x)
= 1 + {1 + φ′(x)} 1

− log F (x)
.

Using (3), φ′(x) → 0 as x → xo, so

−f ′(x)F (x)
f2(x)

∼ 1
− log F (x)

, x → xo.

Hence, there exists some x∗ such that, ∀x ≥ x∗,

1
2

1
− log F (x)

<
−f ′(x)F (x)

f2(x)
<

2
− log F (x)

. (30)

Now, by condition (16), anen + bn ≥ x∗ for all sufficiently large n, say n ≥ n1.

By condition (19), there exists a n2 such that, whenever n ≥ n2

inf
x≤x∗

f ′(x)F (x)
f2(x)

> −(n− 1). (31)

Let n∗ = max(n1, n2). For n ≥ n∗, x∗ ≤ x ≤ −anen + bn,

−f ′(x)F (x)
f2(x)

<
2

− log F (−anen + bn)
∼ 2ne−en < n− 1. (32)

13



Note to simplify the denominator of (32)

− log F (−anen + bn) = − log F (bn)
{− log F (−anen + bn)

− log F (bn)

}
∼ 1

n
een

seen by substituting −en in for v in (103) and use the definition of bn – namely, − log F (bn) = 1
n .

To continue, putting (31) and (32) together, f ′(x)F (x)
f2(x) > −(n− 1) for the range x ≤ −anen + bn.

For x ≥ anen + bn,

−f ′(x)F (x)
f2(x)

>
1
2

1
− log F (anen + bn)

∼ 2neen > n− 1.

Thus for sufficiently large n,

−f ′(x)F (x)
f2(x)

{ ≤ n− 1 if x ≤ −anen + bn

≥ n− 1 if x ≥ anen + bn.

This is equivalent to (29). Thus the result (20) holds. 2

Corollary 2 Given the notation and conditions in Proposition 1, then for each δ > 0 there exists an

n∗ and a function εn∗ tending to 0 as n∗ →∞ such that ∀n > n∗ and ∀|v| ≤ en = −K log |φ′(bn)|,
and constant j > 0 finite,

∣∣∣∣e−jvfM∗
n
(v)− e−jvΛ′(v)

{
1 + (

v2

2
− v − v2e−v

2
)φ′(bn)

+(
v2

2
+

v3

6
[e−v − 1])(2φ′(bn)2 − φ(bn)φ′′(bn))

(v2 +
5
6
v3[e−v − 1] +

1
8
v4[e−2v − 3e−v + 1])φ′(bn)2

}∣∣∣∣
< εn∗ [φ′(bn)2 + |φ(bn)φ′′(bn)|min(1, |v|−δ)]. (33)

Proof: This follows immediately from the proof of Proposition 1. For the interval |v| ≤ en, the

proof is the same as in Proposition 1 except that f2(v) is replaced by e−jvf2(v) to absorb the extra

e−jv. The changes are in (21) where

e−jvf2(v) = e−(j+1)v

{
1 +

v2

2
φ′(bn)− v3

6
{2φ′(bn)2 − φ(bn)φ′′(bn)}+

v4

8
φ′(bn)2

+o((1 + e−2v)(1 + v4)R(bn))
}

.

The only effect this would have on the rate of convergence would be in (107) of Lemma 9 where m

would now be (j + 3) but again this would be absorbed into the εn∗ function.

Remark This gives us that e−jvfM∗
n
(v) is uniformly bounded on |v| ≤ en for any j > 0 finite. 2
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3 Expansion for the conditional density of the sum given the
maximum

Proposition 3 derives a higher order expansion for the conditional density of the sum given the

maximum, specifically an expansion for the density of fS̃n
, the sum normalized with respect to the

conditional moments. Appendix B contains for lemmas and their corollaries used in deriving this

proposition.

Proposition 3 Assume f ′ is integrable, µ3 exists, ϕ′′′ exists and is continuous in a neighborhood

of 0, and |ϕun(t)|n is integrable for some n ≥ n∗ > 1. Then fS̃n
exists for n ≥ n∗ and as n →∞

fS̃n
(x)−N ′(x)− K3(un)

6σ3(un)
√

n
(x3 − 3x)N ′(x) = o(

1√
n

) uniformly in x and v (34)

where the dependence on v is through the definition of un.

Proof: By Corollary 13 in Appendix B, the left hand side of (34) exists for n ≥ n∗ and has Fourier

norm

Nn =
1
2π

∫ ∞

−∞

∣∣∣∣exp
(
− itµ(un)

√
n− 1

σ(un)

)
ϕun

(
t√

n− 1σ(un)

)n−1

− exp(− t2

2
)− K3(un)

6σ3(un)
√

n− 1
(it)3 exp(− t2

2
)
∣∣∣∣dt.

Define NL as Nn where the integral is restricted to the interval |t| ≤ δσ(un)
√

n− 1 and NG as Nn

where the integral is restricted to the intervals |t| > δσ(un)
√

n− 1.

Now, choose δ > 0 arbitrary but fixed. Substituting t by t√
n−1σ(un)

in equation (110) of Lemma 14,

there exists a number qδ < 1 and a n∗∗ such that

|ϕun(
t√

n− 1σ(un)
)| < qδ ∀|t| > δσ(un)

√
n− 1 and ∀n ≥ n∗∗.

Thus ∀n ≥ n′ = max(n∗, n∗∗), NG is less than

qn−1−n′
δ

∫ ∞

−∞

∣∣∣∣ϕun(
t√

n− 1σ(un)
)
∣∣∣∣
n′

dt +
∫

|t|>δσ(un)
√

n−1

e−
t2
2 ×

{
1 +

∣∣∣∣
K3(un)t3

6σ3(un)
√

n− 1

∣∣∣∣
}

dt. (35)

Since |ϕun(t)| is integrable for all n ≥ n′ = max(n∗, n∗∗) and qδ does not depend on n, the first term

of (35) tends to zero more rapidly than any power of 1/n. The same holds for the second term and

can be seen by substituting into the inequality infn σ(un) for σ(un). Note since un is a threshold,

σ(un) > 0. Thus NG = o(1/
√

n) uniformly in n.

Substituting ψun from Lemma 15 into NL,

NL =
1
2π

∫

|t|<δσ(un)
√

n−1

e−
t2
2

∣∣∣∣exp[(n− 1)ψun(
t√

n− 1σ(un)
)]− 1− K3(un)

6σ3(un)
√

n− 1
(it)3

∣∣∣∣dt
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where ψun
(t) = log ϕun

(t)− itµ(un) + t2

2 σ2(un).

The integral will be evaluated using the following inequality from equation (2.9) of Feller (1971), p.

534,

|eα − 1− β| ≤ (|α− β|+ 1
2
β2)eγ where γ = max(|α|, |β|).

Here

α = (n− 1)ψun(
t√

n− 1σ(un)
)

and

β =
K3(un)

6σ3(un)
√

n− 1
(it)3 = (n− 1)

K3(un)
6σ3(un)(

√
n− 1)3

(it)3.

Thus

NL ≤ 1
2π

∫

|t|<δσ(un)
√

n−1

e−t2/2|eγ(
∣∣∣∣α− β|+ β2

2
)
∣∣∣∣ dt. (36)

Substituting t√
n−1σ(un)

for t in equation (116) of Lemma 15,

|α− β| = (n− 1)|ψun(
t√

n− 1σ(un)
)− 1

6
K3(un)(

it

σ(un)(
√

n− 1)
)3|

≤ (n− 1)| t

σ(un)
√

n− 1
|3ε

≤ ε|t|3√
n− 1σ(un)

. (37)

For the 1
2β2 term, algebraic simplification yields

1
2
β2 =

t6

72(n− 1)
K2

3(un)
σ6(un)

. (38)

Note ψun(t) → ψ(t) as n → ∞ uniformly in t by a series of dominated convergence theorem

arguments. The moments κ3(un), σ(un), and µ(un) are all uniformly bounded in n. Thus as t → 0,

both |α| and |β| tend to 0 uniformly in n. In fact, it is possible to bound |α| and |β|. In particular,

letting K1 be a constant, we have

|β| ≤ K1|t|3√
n− 1σ3(un)

≤ K1|t|2√
n− 1σ3(un)

δσ(un)
√

n− 1

≤ K1δ|t|2
σ2(un)

<
|t|2
4

if we choose δ so that K1δ
σ(un) < 1

4 ∀n > n∗. (39)
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Similarly using the triangular inequality argument of Lemma 15 and defining K2 as another constant,

|α| < K2(n− 1)| t√
n− 1σ(un)

|3 ≤ K2t
2

√
n− 1σ3(un)

δσ(un)
√

n− 1

≤ K2δ|t|2
σ2(un)

<
|t|2
4

if we choose δ so that K2δ
σ(un) < 1

4 ∀n > n∗. (40)

Using (39) and (40),

γ <
t2

4
. (41)

Using (37), (38), and (41), the integrand in (36) is less than

e
−t2
4 [ε

|t|3√
n− 1σ(un)

+
t6

72(n− 1)
K2

3(un)
σ6(un)

].

Since ε is arbitrary and independent of x, σ2(un) → σ2 and K3(un) → K3 where σ2 and K3 are

assumed finite, and
∫∞
−∞ t6e−t2dt < ∞, NL = o(1/

√
n) uniformly in n. Thus (34) holds. 2

4 Expansion of the Conditional Moments

Proposition 4 derives the expansions for the difference between the means and variances of X and X∗

where the latter (conditional) random variable was defined in Section 1.4. The lemmas supporting

this proposition are found in the Appendix C.

Proposition 4 Under conditions of Proposition 1:

µ− µ(un) ∼
{

une−v

n xo = ∞
(xo−µ)e−v

n xo < ∞ (42)

and

σ2 − σ2(un) ∼
{

u2
ne−v

n xo = ∞
{(xo − µ)2 − σ2} e−v

n xo < ∞ (43)

uniformly on |v| ≤ en = −K log |φ′(bn)|.

If xo = ∞ and

φ′(t) log |φ′(t)|
t

→ 0, as t →∞, (44)

then

µ− µ(un) ∼ bne−v

n
(45)

σ2 − σ2(un) ∼ b2
ne−v

n
(46)

uniformly in |v| ≤ en = −K log |φ′(bn)|.
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Proof Recall

E(X|X < un) = µ(un), E(X|X ≥ un) = un + m(un),

V ar(X|X < un) = σ2(un), V ar(X|X ≥ un) = s2(un).

For the proof of (42), rearranging a law of total probability yields

µ− µ(un) = {1− F (un)
F (un)

}{un + m(un)− µ}. (47)

To determine (42), we expand and compare the terms in the RHS of (47), in particular, the terms

F (un), m(un), and 1 − F (un). First, F (un) → 1 as n → ∞ and hence has no influence on the

results.

Second, under conditions similar to Proposition 1, Section 9.2 of Smith(1987) establishes the expan-

sion for the mean of the exceedance:

E[X − un|X > un] = m(un) = φ(un) + φ(un)φ′(un) + o(|φ(un)φ′(un)|) ∀|v| ≤ en. (48)

where en = −K log |φ′(bn)|.

To see that this term does not contribute to (42), we look at two cases:

When xo < ∞: Using (127) of Lemma 16 shows that φ(un) → 0 as n → ∞ and thus does not

contribute.

When xo = ∞: From(126) of Lemma 16, we have that φ(un)
un

→ 0 as n →∞. Thus in (47) the term

un contributes while m(un) ∼ φ(un) does not.

Finally, rewriting F (un) and taking a Taylor expansion of ex yields

1− F (un) = 1− elog F (un)

= 1− {1 + log F (un) + (1/2 + o(1)) log2 F (un)}
= − log F (un){1 + (1/2 + o(1)) log F (un)}. (49)

From (103) of Lemma 8 and using the definition of bn in (4)

− log F (un) =
e−v

n
[1 + O(v2|φ′(bn)|)], uniformly on |v| ≤ en. (50)

Putting (49) and (50) together

1− F (un) =
e−v

n
(1 + o(1)), uniformly on |v| ≤ en. (51)

This term does contribute to the higher order term in (42) which is obtained by multiplying (51) to

the term un in (47).
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A similar derivation exists for (43): the difference between the unconditional and conditional vari-

ance. Rearranging the law of total probability in this case gives

σ2 − σ2(u) = σ2 + µ2(u)− {µ2 + σ2

F (u)
}+ { 1

F (u)
− 1}{(u + m(u))2 + s2(u)}

= µ2(u)− µ2 + {1− F (u)
F (u)

}{(u + m(u))2 + s2(u)− µ2 − σ2}. (52)

Again concluding (43) involves comparing the expansions for the terms of the RHS of (52). For the

first two terms, the expansion needed is obtained by squaring (42) and retaining the leading terms:

µ2 − µ2(un) ∼
{

2µun
e−v

n xo = ∞
2(xo − µ)µ e−v

n xo < ∞, ∀|v| ≤ en.
(53)

The only remaining term in (52) to expand is s2(un). Under conditions similar to Proposition 1,

Section 9.2 of Smith (1987) establishes

E{Y 2|X > un} = 2φ2(un) + 6φ2(un)φ′(un) + o(φ2(un)(φ′(un))2), forall|v| ≤ en.

from which we obtained with (48), forall|v| ≤ en,

s2(un) = E{Y 2|X > un} − E2{Y |X > un} = φ2(un) + 4φ2(un)φ′(un) + o(φ2(un)φ′(un)). (54)

Using the relationship in (126) and (127) of Lemma 16 and substituting the expansions (48), (54),

(53), and (51) into (52), the higher order terms fall from the 1 − F (un) and the {un + m(un)}2

terms. Specifically the comparison of the terms yields (43).

Remark (1.) We note the following differences between the conditions in Proposition 1 and Propo-

sition 9.2 of Smith (1987). First, Smith (1987) assumes the Balkema and de Haan (1972) represen-

tation for 1 − F (x) as opposed to − log F (x) which used in Proposition 1. In this application, the

difference between − log F and 1 − F is o( 1
n ) which is of smaller order than the leading terms in

these expansions. Thus this difference does not impact the results. Second, Smith(1987) assumes

c(u) − 1 ∼ s{(φ′(u))2 + |φ(u)φ′′(u)|} → 0 as u → xo for finite s. Here the assumption is c(x) ≡ 1.

Again the remainder term for c in Smith(1987) is of smaller order than the leading terms obtained

here and therefore assuming c(x) ≡ 1 does not impact the validity of the above formula for this

application.

Remark (2.) Now to establish the case when xo = ∞, the added assumption (44) is necessary

to guarantee that we can replace un by bn [ i.e. un

bn
→ 1] uniformly on |v| ≤ en. This condition

results from the following assumptions in Lemma 1 of Cohen(1982a): [A] Either (1) φ′(u) > 0 for

all sufficiently large u or (2) φ′(u) < 0 for all sufficiently large u and [B] φ′(u) is regularly varying

for u →∞.
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Given [A] and [B], then (44) falls from formula (a) at the bottom of page 846 of Cohen(1982a).

Specifically assumption (44) allows the following on the interval |v| ≤ en = −K log |φ(bn)| (recall

φ(bn) = an)

un

bn
=

anv + bn

bn
≤ φ(bn){−K log |φ′(bn)|}+ bn

bn

= 1 +−K
φ(bn) log |φ′(bn)|

bn

→ 1 as n →∞, uniformly in |v| ≤ en.

Thus un = bn(1 + o(1)), |v| ≤ en and allows un to be replaced by bn in (42) and (43) without

changing the results leading to (45) and (46).

Remark (3.) Finally, in establishing (45) and (46) it is necessary that b2n
n → 0. To see this, rewrite

b2
n

n
= b2

n{− log F (bn)} = b2
n{1− F (bn) + o(

1
n

)}.

Now

b2
n{1− F (bn)} ≤

∫ xo

bn

x2dF (x) =
∫ ∞

−∞
1(bn,xo)x

2dF (x).

Since variance is assumed to be finite, then by dominated convergence theorem

b2
n{1− F (bn)} → 0 as n →∞.

Thus
b2
n

n
→ 0 as n →∞, ∀|v| ≤ en. (55)

2

5 Expansion of the Joint Density

This section presents the main result and its corollaries with their respective proofs. Specifically,

Theorem 5 provides the main result: an expansion for the joint density of the sum and the maximum.

Corollary 6 is model oriented in that it substitutes the limiting densities for fM∗
n

and fS∗n into

Theorem 5. Finally, corollary 7 is the penultimate version of Theorem 5.

Theorem 5 Let X1, . . . , Xn be an iid sequence of random variables with distribution function F ,

density function f , characteristic function ϕ, mean µ, and variance σ2. Let un be a threshold level

and ϕun be the characteristic function of the random variable X|X < un.

We make the following two sets of assumptions:

Set A: Assume f ′ is integrable, µ3 exists, ϕ′′′ exists and is continuous in a neighborhood of 0, and

|ϕun(t)|n is integrable for n ≥ some n∗ > 1.
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Set B: Assume F is in the domain of attraction of Λ so that the representation in (3) holds. Use

the same form of an and bn as defined in (5) and (4). Also assume that for a constant K > 2,

anv + bn → xo uniformly in |v| ≤ −K log |φ′(bn)| as n →∞ (56)

φ′′(anv + bn)/φ′′(bn) → 1 uniformly in |v| ≤ en = −K log |φ′(bn)| as n →∞ (57)

φ(bn)φ′′(bn) log |φ′(bn)|/φ′(bn) → 0 as n →∞. (58)

In addition, we assume that for any v∗ < xo

inf
v≤v∗

f ′(v)F (v)
f2(v)

> −∞ (59)

and when xo = ∞,
φ′(t) log |φ′(t)|

t
→ 0, as t →∞, (60)

Define

rn =

{
bn√
nσ2 , xo = ∞,

xo−µ√
nσ2 xo < ∞.

(61)

Then

|fS∗n,M∗
n
(w, v)− fS∗n(w)fM∗

n
(v){1− rn(e−v − 1)w}| = o(rn) (62)

uniformly ∀w and ∀|v| ≤ −K log |φ′(bn)|.

Corollary 6 Given the conditions in Theorem 5, if xo = ∞
∣∣∣∣fS∗n,M∗

n
(w, v)−N ′(w)Λ′(v){1 + (

v2

2
− v − v2e−v

2
)φ′(bn)}{1− rn(e−v − 1)w}

∣∣∣∣
= o{max(rn, |φ′(bn)|)} (63)

and if xo < ∞
∣∣∣∣fS∗n,M∗

n
(w, v)−N ′(w)Λ′(v){1 +

κ3

6σ3
√

n
(w3 − 3w)}

×{1 + (
v2

2
− v − v2e−v

2
)φ′(bn)}{1− rn(e−v − 1)w}

∣∣∣∣
= o{max(rn, |φ′(bn)|)} (64)

uniformly ∀w and |v| ≤ −K log |φ′(bn)|.
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Corollary 7 Given the conditions in Theorem 5 and defining

H(x; η, ψ, k) = exp
[
−{1− k(x− η)

ψ
}1/k
+

]
,

let kn = −φ′(bn) and replace

Λ′(v){1 + (
v2

2
− v − v2e−v

2
)φ′(bn)} (65)

in (63) and (64) by

H ′(v; 0, 1, kn) where H ′(x; η, ψ, k) =
d

dx
H(x; η, ψ, k),

then we obtain the same result as Theorem 5.

Proof of Theorem 5

The joint density of S∗n and M∗
n can be written as

fS∗n,M∗
n
(w, v) = fM∗

n
(v)fS∗n|M∗

n
(w|v)

= fM∗
n
(v)

√
nσ2

(n− 1)σ2(un)
fS̃n

(z)

where

z =
nµ +

√
nσ2w − (n− 1)µ(un)− un√

(n− 1)σ2(un)
. (66)

.

Here un = anv + bn. To enable the uniformity results v, w and hence z are allowed to be dependent

on n. In general, this dependence on n is suppressed so as to make the notation easier to read. Note

the transformation from S∗n to S̃n and the form of (66) comes from (6).

To establishing (62) the first step is to break its LHS up as follows

fM∗
n
(v)

√
nσ2

(n− 1)σ2(un)
fS̃n

(z)−fS∗n(w)fM∗
n
(v){1−rn(e−v−1)w} = E1+E2+E3+E4+E5+E6 (67)

where

E1 = fM∗
n
(v)fS̃n

(z)

[√
nσ2

(n− 1)σ2(un)
− 1

]
(68)

E2 = fM∗
n
(v)

[
fS̃n

(z)−N ′(z){1 +
κ3(un)

6σ3(un)
√

n
(z3 − 3z)}

]
(69)

E3 = fM∗
n
(v)

[N ′(z)−N ′(w){1− rn(e−v − 1)w}] (70)

E4 = fM∗
n
(v)

[
N ′(w){1 +

κ3

6σ3
√

n
(w3 − 3w)} − fS∗n(w)

]
{1− rn(e−v − 1)w} (71)

E5 = fM∗
n
(v)

[N ′(z)κ3(un)
6σ3(un)

√
n

(z3 − 3z)− N ′(w)κ3

6σ3
√

n
(w3 − 3w)

]
(72)

E6 = fM∗
n
(v)N ′(w)

κ3

6σ3
√

n
(w3 − 3w)[rn(e−v − 1)w]. (73)
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To prove (62), it suffices to prove that for j = 1, 2, ..., 6 that Ej = o(rn) uniformly ∀ v ≤ en and ∀w.

Proof for E1. The form of the higher order term in E1 – (68) – falls from its third term.

Using (43),

σ2(un)
σ2

=

{
1− b2ne−v

n + o( b2ne−v

n ) xo = ∞
1− {(xo − µ)2 − σ2} e−v

n + o[{(xo − µ)2 − σ2} e−v

n ] xo < ∞.

Inverting the above formula yields

σ2

σ2(un)
=

{
1 + b2ne−v

n + o( b2ne−v

n ) xo = ∞
1 + {(xo − µ)2 − σ2} e−v

n + o[{(xo − µ)2 − σ2} e−v

n ] xo < ∞.
(74)

This inversion holds as long as b2ne−v

n → 0 uniformly on |v| ≤ en which is true by (55).

Given
√

n
n−1 = 1 + O( 1

n ) and σ2

σ2(un) ≥ 1 and bounded,

∣∣∣∣∣

√
nσ2

(n− 1)σ2(un)
− 1

∣∣∣∣∣ ≤
{

σ2

σ2(un)
− 1

}
+ O(

1
n

). (75)

Substituting (74) into (75), for some κ
∣∣∣∣∣

√
nσ2

(n− 1)σ2(un)
− 1

∣∣∣∣∣ ≤
{

κ( b2ne−v

n + 1
n ) xo = ∞

κ( e−v

n + 1
n ) xo < ∞.

(76)

Using the rn notation defined in (61) in (76),

E1 = O(e−vfM∗
n
(v)fS̃n

(z)r2
n).

Proposition 3 gives fS̃n
(z) is bounded ∀z. Corollary 2 gives e−vfM∗

n
(v) on |v| ≤ en. Therefore

E1 = o(rn) for |v| ≤ en and ∀w. (77)

Proof for E2. In (69),
[
fS̃n

(z)−N ′(z){1 + κ3(un)
6σ3(un)

√
n
(z3 − 3z)}

]
= o( 1√

n
) uniformly in z by

Proposition 3 and fM∗
n
(v) is bounded ∀v by Proposition 1. Hence

E2 = o(
1√
n

) = o(rn), ∀w, ∀v. (78)

Proof for E3. Although more involved, the key to resolving E3 in (70) is first to take a Taylor’s

expansion of N ′(z) about N ′(w). Once we substituting the result of the Taylor’s expansion back

into E3, the argument then focuses on the difference between z and w. At that point – Step 4 – we

consider two cases where the dependence on n for z, w, and v need to be explicitly expressed: Case

(a) where |zn − wn| is bounded above and Case (b) where |zn − wn| is bounded away from 0.

Step 1 : Rearranging (66) provides an explicit form of the difference between z and w:

z − w =
n(µ− µ(un))√
(n− 1)σ2(un)

+

{√
nσ2

(n− 1)σ2(un)
− 1

}
w +

µ(un)− un√
(n− 1)σ2(un)

.
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For xo = ∞, use (45), (46), and (76) and simplify to

z − w =
bne−v

√
nσ2

{1 + o(1)}+ O(we−v(
bn√
nσ2

)2)− bn√
nσ2

{1 + o(1)}. (79)

For xo < ∞, use (42), (43), and (76) and simplify to

z − w =
(xo − µ)e−v

√
nσ2

{1 + o(1)}+ O(w(1 + e−v)(
bn√
nσ2

)2) +
(µ− xo)(1 + o(1))√

nσ2
. (80)

Using the definition of rn from (61), combine (79) and (80)

z − w = rn(e−v − 1) + o{rn(e−v + 1)}+ O(w(e−v + 1)r2
n). (81)

Step 2 : Take a Taylor expansion for N ′(z) about N ′(w).

Using z = w + tn where tn is seen in (81), write

N ′(z) = N ′(w + tn) = N ′(w) + tnN ′′(z∗) where z∗ between w and z.

Using the identity N ′′(x) = −xN ′(x),

N ′(z) = N ′(w)− tnz∗N ′(z∗) = N ′(w)− (z − w)N ′(z∗)

for z∗ between w and z.

Substituting this into E3 and adding and subtracting a fM∗
n
(v)(z − w)w term

E3 = fM∗
n
(v)(z − w) [wN ′(w)− z∗N ′(z∗)] + fM∗

n
(v)N ′(w)rn(e−v − 1)w

−fM∗
n
(v)(z − w)wN ′(w)

= fM∗
n
(v)(z − w) [wN ′(w)− z∗N ′(z∗)] + o(rn(e−v + 1)wN ′(w)fM∗

n
(v))

+O(w(e−v + 1)r2
nwN ′(w)fM∗

n
(v))

= E7 + E8 + E9.

Step 3 : Standard properties of the normal density shows w2N ′(w) is bounded. By Corollary 2,

(1 + e−v)fM∗
n
(v) is bounded. Thus

E8 = o(rn) uniformly ∀w and |v| ≤ en (82)

and

E9 = O(r2
n) uniformly ∀w and |v| ≤ en. (83)

Step 4 : Now we focus on E7. The important details in this formula concern z − w since the other

terms are bounded. Recall v, w, z, and z∗ actually depend on n. So fix the notation by writing

v = vn, z = zn, w = wn, and z∗ = z∗n so the dependence on n is explicit.
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Substituting (81) into E7 and adding and subtracting a z∗2n N ′(z∗n) term yields

E7 = fM∗
n
(vn)rn(e−vn − 1)[wnN ′(wn)− z∗nN ′(z∗n)]

+o{fM∗
n
(vn)rn(e−vn + 1)[wnN ′(wn)− z∗nN ′(z∗n)]}

+O(fM∗
n
(vn)rne−vn [w∗2n N ′(wn)− z∗2n N ′(z∗n)])

+O(fM∗
n
(vn)e−vnr2

n(wn − z∗n)z∗nN ′(z∗n))

= E10 + E11 + E12 + E13.

At this point, it is necessary to separate the argument into the two cases.

Case (a). By uniform continuity of wk
nN ′(wn) for k = 0, 1, 2 given ε > 0 there exists a δ > 0 such

that

|zn − wn| < δ ⇒ |z∗n − wn| < δ ⇒ |z∗kn N ′(zn)− wk
nN ′(wn)| < ε

C

for k = 0, 1, 2 and any given constant C > 0.

Now since (e−vn + 1)fM∗
n
(vn) is bounded on |vn| ≤ en, each E10, E11, and E12 is bounded by some

constant× |z∗kn N ′(z∗n)− wk
nN ′(wn)|

for k = 0, 1, 2.

In other words, it is possible to choose a δ so that ∀wn and ∀|vn| ≤ en

|zn − wn| < δ ⇒ E10 = E11 = E12 = o(rn). (84)

As for E13, fM∗
n
(vn)e−v is bounded on |v| ≤ en, z∗nN ′(z∗n) is bounded by standard normal density

properties, and here (z∗n − wn) ≤ δ, thus

E13 = O(r2
n) = o(rn),∀v ≤ en. (85)

Together (82), (83),(84) and (85) show that

E3 = o(rn) uniformly |vn| ≤ en and ∀wn (86)

when |zn − wn| ≤ δ. This establishes Case (a).

Case (b). The premise behind Case (b) is that if |zn − wn| > τ – for any τ > 0 – then the entire

left-hand side of (67) is o(rn). Once that is established the necessary result falls immediately since

if the above result hold for any τ than it holds for the δ in Case (a).

Part 1 Suppose |zn − wn| > τ and rne−vn < τ2.
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If rne−vn < τ , then a consequence of (81) is that |wnrn| > some τ1 > 0 for all sufficiently large n.

In other words, |wn| > τ1
rn

. Also from (81),

zn = wn + rn(e−vn − 1) + o(rn(e−vn + 1)) + O(wn(e−vn + 1)r2
n)

= wn + o(1) + o(1) + O(wno(1))

= wn(1 + o(1))

>
τ1

2rn
, say,

for all sufficiently large n.

This relationship zn > τ1
2rn

[ with (76)] implies

1. |fS̃n
(zn)| = o(rn) by Proposition 3 and

2. |wn|k|fS∗n(wn)| = o(rn) for k=0,1 by Theorem 17 of Petrov(1975).

3. Note again by Proposition 1 and Corollary 2, |(e−vn + 1)fM∗
n
(vn)| is bounded on |vn| ≤ en.

Hence the left-hand side of (67) is o(rn), ∀|vn| ≤ en and ∀wn when |zn −wn| > τ and rne−vn < τ2.

Part 2 Suppose |zn − wn| > τ and rne−v ≥ τ2. Corollary 2 says that for any finite m′ > 2,

e−m′vne−vnfM∗
n
(vn) is uniformly bounded on |vn| ≤ en. This gives e−vnfM∗

n
(vn) = O(e(m′−1)vn) but

if rne−vn ≥ τ2 > 0 then rne−vn 6→ 0 so |vn| < log rn for sufficiently large n. Thus

e−vnfM∗
n
(vn) = O(e(m′−1)vn) ≤ O(r(m′−1)

n ) = o(rn) since m′ can be taken > 2. (87)

Now looking at the parts of (67), first fS̃n
(zn) is bounded – see Proposition 3 – and second wnfS∗n(wn)

is bounded – again, see Theorem 17 of Petrov (1975). Finally from (87) e−vfM∗
n
(vn) = o(rn) which

also gives fM∗
n
(vn) = o(rn). This establishes Case (b).

Taking Part 1 and Part 2 together, the left-hand side of (67) is o(rn) when |zn −wn| > τ , including

τ = δ.

Thus for E3 either

E3 = o(rn) (88)

or the entire left-hand side of (67) is o(rn), uniformly on |v| ≤ en and ∀w.

Proof of E4: In (71), again fM∗
n
(v) is bounded and also by the unconditional Edgeworth expansion

theorem – Feller (1971), Chapter XVI, Section 2, Theorem 1 – the term inside [N ′(w){1+ κ3
6σ3

√
n
(w3−

3w)} − fS∗n(w)] is o( 1√
n
) uniformly in w.

Steps (a) – (c) show how to deal with multiplying by the term rn(e−v − 1)wn:

(a) Corollary 2 gives that supv(e−v − 1)fM∗
n
(v) is bounded on |v| ≤ en.
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(b) Theorem 17 of Petrov (1975) central limit theorem [which hold under the same assumptions as

Proposition 3] gives supw |w{N ′(w)− fS∗n(w)}| → 0 as n →∞.

(c) Standard properties of the normal density imply w4N ′(w) is bounded so N ′(w) κ3
6σ3

√
n
(w3 −

3w)w → 0 uniformly in w.

Thus

|E4| = o(rn) for |v| ≤ en and ∀w. (89)

Proof of E5: In (72), again, fM∗
n
(v) is uniformly bounded on |vn| ≤ en. Also the functionN ′(z){z3−

3z} is uniformly continuous so by similar argument to proof of E3, particularly Step 3,

E5 = o(rn) ∀|vn| ≤ en, ∀w. (90)

Proof of E6: Now, (73) falls immediately since,

(a) supv(e−v − 1)fM∗
n
(v) is bounded on |v| ≤ en by Corollary 2.

(b) w4N ′(w) is bounded uniformly in w so N ′(w) κ3
6σ3 (w3 − 3w)w is bounded uniformly in w by

properties of the normal density.

Thus

E6 = O(
rn√
n

) = o(rn) for |v| ≤ en and ∀w. (91)

In conclusion, (77),(78), (88), (89), (90), and (91) shows that Ej = o(rn), for j = 1, 2, 3, 4, 5, 6

uniformly ∀w and |v| ≤ en = −K log |φ′(bn)|. 2

Proof of Corollary 6

First we prove (64) under the assumption xo < ∞.

Substituting the result of Theorem 5, equation (62), into (64) the form of the result to be proven is
∣∣∣∣
[
fS∗n(w)fM∗

n
(v)−N ′(w){1 +

κ3

6σ3
√

n
(w3 − 3w)}Λ′(v)

×{1 + (
v2

2
− v − v2e−v

2
)φ′(bn)}

]
{1− rn(e−v − 1)w}

∣∣∣∣
= o(max{rn, |φ′(bn)|}) (92)

for ∀w and ∀|v| ≤ en = −K log |φ′(bn)|.

First we show (92) without the rn(e−v − 1)w term.

Let

An = fS∗n(w),

A′n = N ′(w){1 +
κ3

6σ3
√

n
(w3 − 3w)},
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Bn = fM∗
n
(v),

and

B′
n = Λ′(v){1 + (

v2

2
− v − v2e−v

2
)φ′(bn)}.

Then the left-hand side of (92) without the rn(e−v − 1)w term can be written as

|AnBn −A′nB′
n| = |AnBn −AnB′

n + AnB′
n −A′nB′

n|
≤ |An| |Bn −B′

n|+ |B′
n| |An −A′n|. (93)

Now |An| is bounded ∀w by Theorem 17 of Petrov (1975) and |Bn − B′
n| = o(|φ′(bn)|) ∀v by

Proposition 1. Thus the first term on the right-hand side of the inequality in (93) is o(|φ′(bn)|), ∀v
and ∀w. For the second term in the inequality in (93), |B′

n| is bounded ∀v by Proposition 1 and

|An − A′n| = o(rn) by Feller (1971), Chapter XVI, Section 2, Theorem 1 uniformly in w. Thus this

second term is o(rn), ∀v and ∀w. Thus the right-hand side of (93) is o(max{rn, |φ′(bn)|}), ∀v and

∀w.

The result also holds when the rn(e−v − 1)w term – now on the interval |v| ≤ en, ∀w – is included

since

(a) |wAn| is bounded ∀w by Theorem 17 of Petrov(1975).

(b) |e−v + 1| |Bn −B′
n| = o(|φ′(bn)|) by Corollary 2, note now on |v| ≤ −K log |φ′(bn)|.

(c) |e−v + 1| |B′
n| is bounded by Corollary 2, note now on |v| ≤ −K log |φ′(bn)|.

(d) |w| |An −A′n| = o(rn) again ∀w by Theorem 17 of Petrov(1975).

Hence, the result (64) for |v| ≤ −K log |φ′(bn)| and ∀w.

For the case when xo = ∞, the term κ3
6σ3

√
n
(w3 − 3w) need not be included with the higher order

terms. The reason is that this term is o(rn) by the definition of rn when xo = ∞, see (61). Therefore,

(63) holds.

2

Proof of Corollary 7: By definition H(v; 0, 1, k) = exp[−(1− kv)1/k] so that

H ′(v; 0, 1, k) = −(1− kv)(1/k−1) exp[−(1− kv)1/k].

Looking at − log H ′,

− log H ′(v) =
(

1− 1
k

)
log(1− kv) + (1− kv)1/k. (94)
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Expanding (1 − kv)1/k by e−v(1 − kv2

2 ) + O(k2) and (1 − 1
k ) log(1 − kv) by v − kv + kv2

2 + O(k2),

the equation (94) is equal to

v + e−v + k(
v2

2
− v − e−vv2

2
) + O(k2). (95)

Looking at the log of equation (65),

− log
[
Λ′(v){1 + (

v2

2
− v − v2e−v

2
)φ′(bn)}

]
= v + e−v − (

v2

2
− v− e−vv2

2
)φ′(bn) + O(φ(bn)2). (96)

With the definition kn = −φ′(bn), (95) and (96) match up to O(φ′(bn)2). 2

6 Simulation project

The main results of this paper have been concerned with limiting forms of the joint density of the

sample sum and maximum, but there are many other quantities of interest in connection with this

problem. In particular, we might be interested in the conditional mean, E{Mn|Sn}. In this section,

we give both theoretical and simulation results for this.

The theoretical results are to some extent heuristic, since we do not have a rigorous proof that our

asymptotics for joint densities extend to the calculation of conditional means. Nevertheless, it is

natural to conjecture the result by simply integrating out the approximate conditional density of

sample maximum given the sample sum that follows from our main results. Here we perform this

calculation, and illustrate the result by simulation.

For the marginal distribution of sample maxima, it is natural to assume the penultimate approxima-

tion (Cohen 1982b, Gomes 1984), since many theoretical and practical results have shown that it is

a better approximation in practice than the Gumbel approximation. Under the first-order approxi-

mation that the sample mean and the sample sum are independent, E{Mn|Sn} is of course the same

as the unconditional mean E{Mn}, and may be approximated by the mean of the approximating

penultimate distribution. Here we improve this by calculating the O(rn) correction.

Proposition 7 implies the approximation

fS∗n,M∗
n
(w, v) = N ′(w)(1− knv)1/kn−1 exp{−(1− knv)1/kn}[1− rn(e−v − 1)w + o{max(rn, |φ′(bn)|)}]

where kn = −φ′(bn). Since fS∗n(w) ≈ N ′(w) with error O(n−1/2), this leads to

fM∗
n|S∗n(v|w) = (1− knv)1/kn−1 exp{−(1− knv)1/kn}[1− rn(e−v − 1)w + o{max(rn, |φ′(bn)|)}]. (97)

Formally integrating (97),

E{M∗
n|S∗n = w} =

∫
v(1−knv)1/kn−1 exp{−(1−knv)1/kn}[1−rn(e−v−1)w+o{max(rn, |φ′(bn)|)}]dv

(98)

where the integral is over {v : 1− knv > 0}.

29



Unfortunately (98) is not analytically integrable as it stands. However, we may replace e−v by

(1− knv)1/kn with error of O(kn), so (98) may be rewritten

E{M∗
n|S∗n = w} =

∫
v(1− knv)1/kn−1 exp{−(1− knv)1/kn}[1− rn{(1− knv)1/kn − 1}wdv]

+o[max{rn, |φ′(bn)|}] (99)

where we are assuming (without rigorous proof) that the interchange of limit and integration in (99)

is valid.

The integral in (99) may be evaluated analytically as

E{M∗
n|S∗n = w} ≈ {1− Γ(1 + kn)}

kn
+ rnwΓ(1 + kn)

or equivalently

E{Mn|Sn} ≈ bn + an
{1− Γ(1 + kn)}

kn
+ anrn

Sn − nµ√
nσ2

Γ(1 + kn). (100)

If we ignore the higher-order term, then we derive the simpler approximation

E{Mn|Sn} ≈ bn + an
{1− Γ(1 + kn)}

kn
. (101)

We fit (100) and (101) to the following simulated data. We simulated 10,000 samples of size n =

30, 75, 120, 360 from two distributions in the domain of attraction of the Gumbel domain which have

at least a twice (here, infinitely) differentiable densities: the standard Normal(µ = 0, σ2 = 1) and

Lognormal with mean, µ = e1/8, and variance, σ2 = e1/4(e1/4−1). In each graph, we plot sum versus

maximum. We draw a smooth curve through the scatterplot using the S-PLUS ‘loess’ function. We

include 95% confidence bands to the data. Thus the “data” line estimates the “average” maximum

along the possible sum values. We substituted in the following variables into (100) and (101):

Dist Density Inverse bn an kn rn

Normal N N ′ N−1 N−1(1− 1/n) 1
n×N ′(bn) 1− an × bn

bn√
n

Lognorm L L′ L−1 L−1(1− 1/n) 1
n×L′(bn) 1− an

bn
× {1 + log(bn)−µ

(σ)2 } bn√
nσ2

Note that the calculations for bn in the simulation are based on 1−F as opposed to the theoretical

result which is based on its asymptotic equivalence − log F . The difference between 1 − F and

− log F is smaller than the higher order term that is being studied.

From the graphs (see Figure 1), first we see that the approximation performs better in the lognormal

case than in the normal case. However, this is to be expected because papers about penultimate

approximations show that the rate of convergence is better for the lognormal distribution than

for the normal distribution. Second even when n = 30, the fit for higher order expansion term

(the linear fit) is a substantial improvement over the asymptotic independence result (the constant).

Nevertheless, we note that the approximation does not lie within the 95% confidence bounds. Third,

in the neighborhood of n = 75, the higher order term expansion provides a good fit to the data for
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a. Normal, n=30
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Figure 1: Simulation plots of sum versus maximum: Solid line is simulated data (loess fit with
95% confidence bands); Long dashed straight line is asymptotic Gumbel expected value E[Mn],
approximated in (101); Dotted line is expected value of E[Mn|Sn] based on the approximation in
(100) which uses the higher order term.

a substantial range of the data. The most prominent range of noncompliance is in the upper tail

of the graph. This is more pronounced when n = 120. Fourth, even at a sample size equivalent to

modelling “annual” data (n = 360) the asymptotic independence result still has not been realized.

The Gumbel limit still does not lie within the confidence bands of the simulated data. Again, the

higher order expansion does everywhere except the very upper tail.

A final comment relates to the systematic deviations with respect to the expansion’s linear fit. In

each case, the expansion fits better (lies more within the confidence bands) in the lower part of the

graphs. In other words, the relationship between the sum and the maximum is approximately linear

in the lower two-thirds of the graph but not in the upper tail. An interpretation of this is that the

maxima are more compact for smaller sums. In other words, when the sum increases in the upper

tail the maximum increases more rapidly than a linear relationship, implying for larger sums there

is a higher probability of getting a very large maximum.

In conclusion, even at the annual sample level (n = 360) the asymptotic independence is not realized;

that is, for moderate to moderately large samples the sum and the maximum are not independent.

In fact, the simulation illustrates that the higher order expansion not only provides a substantial

improvement over the asymptotic result but also that the fit for the expansion is within the 95%

confidence bands for a large range of the data for moderate sample size. Thus the higher order

expansion should provide a better model not only with the conditional case but in modelling the
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joint density as well. Finally, in the upper tails we have seen that the relationship between the sum

and the maximum is not well approximated with this linear fit. An interesting extension to this

work would be calculating a second higher order term to study if this second term would compensate

for this nonlinear behavior in the upper tail.

7 Concluding Remarks

For moderate sample sizes, the higher order expansion term for the joint density of the sum and the

maximum appears to model this dependence between the sum and maximum well for a large range

of values. This should be a beneficial tool for modelers who either need to model this dependence or

who are trying to model the maximum and have information on the sum. With respect to the upper

tails where this linear approximation between the sum and the maximum does not appear to be a

good fit, further research should include investigating how much benefit would there be in deriving

the second higher order term in modelling the dependence between the sum and the maximum.

The present paper has not discussed possible applications of the results, but there are a number

of contexts in which the joint distribution of sums and maxima could be useful in statistics. One

particular context is climatology, where there is by now much research on trends in both the mean

and the extremes of temperature and precipitation series. It is natural to model the means and

extremes jointly, in order to test hypotheses such as whether there is a common trend that applies

to both the means and the extremes. However, assuming that the annual mean and the annual

maximum of a climatological series are statistically independent does not seem realistic for this

kind of application. In preliminary work, approximations based on the results of this paper have

performed much better in statistical work. Full details will be presented in a future publication.

Appendix

A Lemmas for Proposition 1

Lemma 8 Let F be in the domain of attraction of Λ so that the representation in (3) holds with

c(x) = 1. Recall an and bn are the appropriate normalizing constants for the Gumbel distribution

defined in (5) and (4). Here un = anv + bn. Also assume that

φ′(anv + bn)
φ′(bn)

→ 1, uniformly on |v| ≤ en = −K log |φ′(bn)| (102)

then
− log F (un)
− log F (bn)

= e−v[1 + O(v2|φ′(bn)|], uniformly on |v| ≤ en. (103)
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Remark The conditions of Proposition 1 are stronger and thus the results for Lemma 8 follow

immediately under Proposition 1.

Proof: Here the argument is similar to that in the proof for Proposition 9.2 of Smith (1987).

From (3),
− log F (un)
− log F (bn)

= exp
{
−

∫ v

0

φ(bn)
φ(ant + bn)

dt

}
. (104)

A Taylor expansion for the denominator of the integrand gives
∫ v

0

φ(bn)
φ(ant + bn)

dt =
∫ v

0

φ(bn)
φ(bn) + antθ

dt

where θ = φ′(ans + bn) for some s between 0 and v. Recall that φ(bn) = an. Thus (104) is equal to

exp{−1
θ

log(1 + θv)}. (105)

Using a Taylor’s expansion of log(1 + x), (105) is equal to

exp{−(v + O(v2θ)}. (106)

Equation (102) allows the substitution of φ′(bn) for θ in (106). Now using e−v+r = e−ver and a

Taylor expansion for er = 1 + r + o(r) when r → 0,

− log F (un)
− log F (bn)

= e−v[1 + O(v2|φ′(bn)|)], uniformly on |v| ≤ en.

2

Lemma 9 Let m ≥ 1 be a finite constant, δ > 0 be an arbitrary finite constant, and κ be a finite

constant. The function h(v) = e−e−v

e−mv is uniformly bounded ∀v. In fact,

h(v) ≤ min(e−mmm, κ|v|−δ), ∀v. (107)

Proof: The result falls from standard calculus calculations. Since the function h(v) is a continuous

on −∞ < v < ∞, it is straightforward to show that h(v) has a finite sup and finite inflection points

for any finite m. To resolve the exact form of the bound, divide the domain of h into two parts:

|v| ≤ its inflection points and than |v| > the inflection points. On the first interval, the maximum

is e−mmm. On the other two ends, it is possible to bound the tails by a polynomial tail.
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B Lemmas for Proposition 3

Lemma 10 Let f be any integrable density, then |ϕun
(t)| → 0 uniformly in n as |t| → ∞.

Remark: The difference between Lemma 10 and Feller(1971), Section XV.4, Lemma 3 is that here

the characteristic function is based on the conditional density.

Proof: In the conditional version,

|ϕun
(t)| <

∣∣∣∣
1

F (un)

∫ un

xl

cos(tx)f(x)dx

∣∣∣∣ +
∣∣∣∣

1
F (un)

∫ un

xl

sin(tx)f(x)dx

∣∣∣∣ . (108)

The modifications due to the conditional density in equation (108) is the 1
F (un) term and the upper

limit of integration. Since un is a threshold ( i.e. un > xl + δ,∀n and for some δ > 0 ), supn
1

F (un) <

∞. Hence 1
F (un) does not impact the uniformity results. As for the limits of integration, only positive

functions are integrated in the proof. Thus if the result holds uniformly for the entire domain as in

Feller (1971), then it holds when the integration extends just to un.

2

Lemma 11 Let f ′ exist and be integrable, then

lim sup
n→∞

sup
t
|t| |ϕun(t)| < ∞.

Proof: This is an extension of Lemma 10. Again we modify the unconditional version – in this

case, Feller (1971), Section XV.5, Lemma 4. The modifications include the 1
F (un) term and the

upper limit of integration which we have seen from Lemma 10 does not affect the results. Also, we

need the result only for lim supn→∞, a weaker result.

2

Corollary 12 Given

lim sup
n→∞

sup
t
|t| |ϕun(t)| < ∞ (109)

then there exists an n∗ such that |ϕun(t)|n is integrable for n ≥ n∗ > 1.

Proof: Clearly if (109) holds, then there exists an n∗ and a constant c < ∞ such that for all

n ≥ n∗,

sup
t
|t| |ϕun(t)| ≤ c < ∞.

This implies ∀n ≥ n∗
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|ϕun
(t)| ≤

{ c
|t| if |t| ≥ c,

1 if |t| ≤ c.

Note the last line follows since ϕun
(t) is a characteristic function. Therefore

∫ ∞

−∞
|ϕun

(t)|ndt ≤ 2c + 2cn

∫ ∞

c

dt

tn
= 2c +

2c

n− 1
< ∞ ∀n ≥ n∗.

2

Corollary 13 If |ϕun
(t)|n is integrable for some n ≥ n∗ > 1, then fS̃n

exists and ∀n ≥ n∗ > 1 has

Fourier norm

Nn =
1
2π

∫ ∞

−∞

∣∣∣∣∣ϕ
n−1
un

(
t√

(n− 1)σ2(un)
) exp(− itµ(un)

√
n− 1

σ(un)
)

∣∣∣∣∣ dt.

where n∗ is defined in Corollary 12.

Proof: This falls from an application of the Fourier inversion formula of Feller (1971), Chapter

XV, Section 3, Theorem 3.

The characteristic function of S̃n is

ϕS̃n
(t) = E exp

(
it

[∑n−1
i=1 X∗

i − (n− 1)µ(un)√
(n− 1)σ2(un)

])

= exp(− itµ(un)
√

n− 1
σ(un)

) ϕun(
t√

(n− 1)σ2(un)
)n−1

where X∗ has the same distribution X|X ≤ un.

Corollary 12 shows that this is integrable thus the Fourier inversion theorem holds. 2

Lemma 14 For a continuous underlying distribution, given a δ > 0 there exists a number qδ < 1

such that

|ϕun(t)| < qδ ∀|t| > δ and ∀n ≥ n∗. (110)

Proof: Using the same arguments as in the proofs of Lemma 10 and 11 to deal with 1
F (un) and the

limits of integration in the definition of ϕun(t), it is straightforward to show

lim
n→∞

|ϕun(t)− ϕ(t)| = 0, uniformly in t. (111)

By standard properties of characteristic functions, see Feller(1971), Chapter XV, Section 1,

|ϕ(t)| < 1 whenever |t| 6= 0 (112)
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and

ϕ(t) is continuous. (113)

From the Riemann-Lebesgue Theorem, see Feller (1971), Chapter XV, Section 4, Lemma 3,

∃ δ∗ such that |ϕ(t)| < 1
2
∀|t| > δ∗. (114)

Now fix δ > 0. Using (112) and (113),

∃ qδ∗ ∈ (
1
2
, 1) such that |ϕ(t)| < qδ∗ on δ ≤ |t| ≤ δ∗. (115)

Using (114) and (115),

|ϕ(t)| < q∗δ |t| ≥ δ.

Now, let qδ = (q∗δ + 1)/2. Then by (111), choose n∗ sufficiently large so that

|ϕun(t)− ϕ(t)| ≤ qδ − q∗δ ∀t, ∀n ≥ n∗.

Using a triangular inequality argument,

|ϕun(t)| < qδ ∀|t| ≥ δ, ∀n ≥ n∗.

2

Recall the notation

ψ(t) = log ϕ(t)− itµ +
t2

2
σ2, ψun(t) = log ϕun(t)− itµ(un) +

t2

2
σ2(un)

K3 = µ3 − 3E(X2)µ + 2µ3, K3(un) = µ3(un)− 3E(X2|X < un)µ(un) + 2µ(un)3

Lemma 15 Assume µ3 exists, there exists a δ > 0 such that ϕ′′′ exists and is continuous for some

|t| < δ, and |ϕun(t)|n∗ is integrable for some n∗ > 1, then

|ψun(t)− (it)3K3(un)
6

| < ε|t|3, ∀|t| < δ,∀n ≥ n∗. (116)

Proof: The inequality in equation (116) is solved by looking at the three term Taylor expansion

of ψun and putting a bound on the remainder term. To do so, identifying the coefficients in the

Taylor’s expansion involves the following moments and characteristic functions.

Given the existence of µ3, clearly the lower moments and the corresponding conditional moments

exist. In fact, by dominated convergence theorem,
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µ3(un) → µ3, E(X2|X < un) → E(X2), µ(un) → µ and K3(un) → K3.

Also by a similar argument since ϕ′′′ exists and is continuous, then ϕ′′ and ϕ′ exist and are continuous

as are the corresponding conditional versions. In fact,

ϕun

′′′ → ϕ′′′, ϕun

′′ → ϕ′′, and ϕun

′ → ϕ′.

By usual characteristic function properties,

ϕun
(0) = 1, ϕun

′(0) = iµ(un), ϕun

′′(0) = i2E(X2|X < un), ϕun

′′′(0) = i3E(X3|X < un).

Using the definition of ψun

ψun

′′′(t) =
ϕun

′′′(t)
ϕun(t)

− 3
ϕun

′′(t)ϕun
′(t)

ϕun
2(t)

+ 2(
ϕun

′(t)
ϕun(t)

)3. (117)

When t = 0,

ψun(0) = ψun

′(0) = ψun

′′(0) = 0 with ψun

′′′(0) = i3K3(un). (118)

Taking the Cauchy form of Taylor’s expansion (see Johnson and Kotz (1982), Vol. 9, p. 187) of

ψun(t) about 0 and substituting in the coefficients found in (118),

∣∣∣∣ψun(t)− (it)3K3(un)
6

∣∣∣∣ =
∣∣∣∣
t3

6
{ψun

′′′(θ)− ψun

′′′(0)}
∣∣∣∣ (119)

for some θ ∈ (0, 1).

To put the appropriate bound on the RHS of equation (119), the form of ψun
in (117) yields that it

is sufficient to show for each m = 0, 1, 2, 3 that given ε > 0 there exists a δ > 0 (and n∗ > 1) such

that

|ϕun

(m)(t)− ϕun

(m)(0)| < ε ∀|t| < δ and ∀n ≥ n∗. (120)

In fact, the LHS of (120) can be divided into the following three parts:

|ϕun

(m)(t)−ϕun

(m)(0)| ≤ |ϕun

(m)(t)−ϕ(m)(t)|+ |ϕ(m)(t)−ϕ(m)(0)|+ |ϕun

(m)(0)−ϕ(m)(0)|. (121)

For the first term in the RHS of (121),
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∣∣∣ϕun

(m)(t)− ϕ(m)(t)
∣∣∣ ≤

∣∣∣ϕ(m)(t)
∣∣∣
(

1− F (un)
F (un)

)
+

1
F (un)

∣∣∣∣
∫ ∞

un

(ix)meitxf(x)dx

∣∣∣∣ . (122)

Clearly the first term of the RHS of (122) tends to 0 as n → ∞ since 1−F (un)
F (un) → 0 and |ϕ(m)(t)|

is bounded for m = 0, 1, 2, 3. The second term also tends to 0, by dominated convergence theorem.

Thus there exists a n∗ such that ∀n ≥ n∗

|ϕun

(m)(t)− ϕ(m)(t)| < ε/3 ∀t. (123)

For the second term in (121), due to the continuity of ϕ(m) in a neighborhood of 0, for each m, given

an ε > 0 there exists a δ > 0 such that

|ϕ(m)(t)− ϕ(m)(0)| < ε/3 ∀|t| < δ. (124)

Finally, for the third term in (121), recall ϕun
(m)(0) → ϕ(m)(0) as n →∞ by dominated convergence

theorem. Thus for each m, there exists a n∗ such that

|ϕun

(m)(0)− ϕ(m)(0)| < ε/3 ∀n ≥ n∗ ∀t. (125)

Putting (123), (124), and (125) together, define δ as smallest necessary in (124) and n∗ as large as

necessary in (123) and (125). Then (121) holds. 2

C Lemmas for Proposition 4

Lemma 16 Let F be in the domain of attraction of Λ so that representation in (3) holds with

c(x) = 1, then as u → xo

φ(u)/u → 0, xo = ∞ (126)

or

φ(u) → 0, xo < ∞. (127)

Proof: If xo < ∞, then − log F (xo) = 0 so in the Balkema and de Haan (1972) representation [(3)

with c(x) = 1 ],

exp
{
−

∫ xo

0

dt

φ(t)

}
= 0.
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Assume φ(t) 6→ 0 as t → xo. Since φ is continuous, if φ(xo) 6= 0, then there exists a constant c 6= 0

such that given an ε > 0 there exists a tc such that for some t > tc

c− ε < |φ(t)| < c + ε.

The implication is

exp
{
−

∫ xo

0

dt

φ(t)

}
> exp

{
−

∫ tc

0

dt

φ(t)

}
+ exp

{
−

∫ xo

tc

dt

c− ε

}
> exp

{
−xo − tc

c− ε

}
.

This last term is a constant greater than 0 and thus a contradiction. Therefore

φ(u) → 0, xo < ∞.

For the case when xo = ∞: The definition of the Balkema and de Haan (1972) representation (3)

with c(x) = 1 includes φ′(u) → 0 as u →∞. This implies that given a δ > 0 there exists a uδ such

that

|φ′(u)| < δ

2
, ∀u > uδ. (128)

Now assume φ(u)
u 6→ 0. This implies that exists an infinite sequence of u such that along this

sequence

φ(u) > κ1u for some κ1 > 0. (129)

By the Fundamental Theorem of Calculus and using (128)

φ(u) = φ(uδ) +
∫ u

uδ

φ′(t)dt

< φ(uδ) +
δ

2
{u− uδ}

≤ κ2 +
δ

2
u. (130)

In the last line we are using that both uδ and φ(uδ) are some finite constants.

Combining (129) and (130),

u <
κ2

κ1 − δ
2

= κ3

where κ3 is some finite constant. But u → xo = ∞. Given this contradiction, the conclusion is

φ(u)
u

→ 0, xo = ∞.

2
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