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Abstract 
 
 
Calibrating and validating a traffic simulation model for use on a transportation network 

is a process that depends on field data that is often limited, but essential for determining 

inputs to the model and for assessing its reliability. A quantification and systemization of 

the calibration/validation process exposes statistical issues inherent in the use of such 

data. Our purpose is to elucidate these issues and describe a methodology to address 

them. 

 

The formalization of the calibration/validation process leads naturally to the use of 

Bayesian methodology for assessing uncertainties in model predictions arising from a 

multiplicity of sources (randomness in the simulator, statistical variability in estimating 

and calibrating input parameters, inaccurate data and model discrepancy).  We exhibit the 

methods and the approach on an urban street network, using the micro-simulator 
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CORSIM, while calibrating the demand and turning movement parameters.  We also 

indicate how the process can be extended to deal with other model parameters as well as 

with the possible misspecification of the model.  While the methods are described in a 

specific context they can be used generally, inhibited at times by computational burdens 

that must be overcome, often by developing approximations to the simulator.  

 

 

Key words and phrases: Bayesian Analysis; Posterior Distribution; Stochastic Model 

Approximation; Traffic Simulation; Model Validation; Calibration; CORSIM 
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0. Introduction 

 

Calibrating and validating traffic simulation models for use on a transportation network is 

inherently a complex process that is commonly treated informally and through a mix of 

ad hoc methodologies. Explicit ingredients of the process are field data that are often 

limited and expensive to acquire but essential for determining inputs to the simulation 

model and for assessing the reliability of the model. A quantification and systemization 

of the calibration/validation process exposes statistical issues inherent in the use of such 

data for assessing the validity of a model. Our purpose here is to elucidate these issues 

and describe methodology to address them. 

 

A clear statement of what “validation” means is rarely set forward. Usually, the question 

is put as “does the model faithfully represent reality?”  But, the answer to this question is 

simple: no, models are not perfect. But models can make useful, reliable predictions in 

particular settings; they may be useful for some purposes, useless for others. We can state 

this more formally as  

 Pr "reality" simulation prediction δ α − < >  , 

where we must specify δ = tolerable difference (how close) and α = level of assurance 

(how certain),  say what is meant by “reality” and what is needed to make sense of Pr and 

how to compute the probabilities involved. 

 

What we mean by “reality” is, operationally, a feasible measure of actual performance of 

a particular network. For example, it may be a system queue time measure in an urban 
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traffic network under a current signal plan or, perhaps, under a proposed timing plan.  To 

compare actual performance with simulation prediction will require access to field data 

and simulation output that relate to a performance measure. A review of the literature 

indicates that little attention has been paid to the characterization of the uncertainty in 

simulation model inputs. Rather the focus appears to be on the analysis of the stochastic 

outputs of the performance measures derived from various models (see for example 

Benekohal and Abu Lebdeh (1994); Tian et al. (2002)).   

 

A general framework for treating validation is set forth in Bayarri et al. (2002).  The 

framework calls for  

• description of the inputs to the simulation model and knowledge about them 

• a specification of performance measures (also called evaluation functions) to be 

used as described in the last paragraph 

• data collection: both field data and simulator output  

• analyses, including calibration that account for a multiplicity of uncertainties.  

 

Accomplishing the last while making sense of (Pr) is the primary focus of this paper.  In 

doing so we begin with examining more closely the nature of inputs to the model. Our 

comments and methods are general but we will freely utilize as a test bed, the simulation 

model, CORSIM, (Federal Highway administration, 1997) and its use on a traffic 

network in Chicago.  The network is described succinctly in Section 1, especially Figure 

1; a detailed account of the network, the data and their use in a signal study is in Sacks et 

al. (2002).  
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Inputs to simulators, such as CORSIM, come in various forms. Some, such as geometric 

inputs (lane widths, bus stops, etc.) are readily supplied by accurate measurement or 

through documented sources. Others can be obtained by calibration that is, through the 

use of field data. These latter can be classified as  

(1) parameters that can be directly estimated, albeit with error, from field data (vehicle 

mix, arrival rates, turning percentages,...)  

(2)  parameters not directly measurable (e.g., degree of driver aggressiveness);  possibly 

by choice (e.g., discharge headway distribution) 

(3)  tuning parameters (e.g., free flow speed, lost time) that are not “real” but are required 

by the model.  

 

Some parameters in (2) and (3) may be set to default values and thus removed from the 

calibration process. The remaining parameters in (2) and (3) are typically treated by 

adjusting them until the model output seems to ‘fit’ the field data, data from the real 

traffic system being modeled. Sometimes the adjustment is informal; sometimes more 

formal by optimizing the parameters, using least squares or other optimization tools to 

minimize the difference between features of the field data and predictions from the 

simulator (see for example Jha et al., 2003, and Hourdakis and Michalopoulos, 2003).  

 

There are two fundamental problems with such approaches to calibration. First, there may 

be an identifiability problem that allows the model to be tuned in many ways and masks 

possible large uncertainties in the tuned parameters with resulting inaccuracies in model 

predictions. Second is “over-tuning” whereby tuning hides model imperfections that may 
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exist and results in models that are potentially highly inaccurate outside the range of the 

observed field data.  

 

Bayesian analysis (described in Sections 2, 3) provides an attractive path to accomplish 

the calibration of the parameters of type (1) and, at the same time, the calibration of the 

parameters of type (2) and (3). Such analysis determines the posterior (or summary) 

distribution of model parameters and inputs, given the observed field data. The resulting 

distribution will then reflect the actual uncertainty in the parameters and inputs, and will 

be considerably more resistant to over-tuning. Moreover, the Bayesian approach can, at 

the same time, deal with the possible presence of model bias and hence be used for 

validation. In Bayarri et al. (2002) this is done in the context of specific deterministic 

simulation codes.  In principle these methods can be used for simulation models such as 

CORSIM.  But, there are complicating features arising from the stochasticity of 

CORSIM, the possibly large number of calibration parameters and, as in the test bed 

example below, a shortage of field data.  However, we shall show how this process can 

be carried out with the calibration of parameters of type (1) and the resulting effect on 

model predictions (Sections 2 and 3). We will also describe a pathway to incorporating 

the calibration of type (2) and (3) parameters and to validation (Section 4).   

 

1.  The Test Bed Model, Network and Data 

 

The simulator we use is CORSIM (US Federal Highway administration, 1997), release 

4.3.2, a computer model of street and highway traffic. (Since the conduct of this research 
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FHWA has released two updates, 5.0 and 5.1). There is intrinsic randomness in CORSIM 

resulting from vehicles arriving at random, turning at intersections with prescribed 

probabilities and movements or processes governed by (other) specified probability 

distributions.  

 

The traffic network we use is a 29-intersection neighborhood in Chicago schematically 

depicted in Figure 1.  The network is a principal area connecting an important freeway (at 

the west end, U and 21 in Figure 1) and major arterials (running north/south through the 

network) with the central business district (east and south of the network). 

[FIGURE 1 GOES HERE]  

Running CORSIM requires a large number of inputs, of which there are three basic 

kinds:  fixed inputs, such as the network geometry, bus routes, speed limits, etc.; 

controllable inputs such as the cycle length, phasing and traffic signals’ offsets; and 

unknown random inputs, such as the distributions of bus inter-arrival and dwell times, 

distributions of the proportion of different types of vehicles (trucks, cars, pedestrians), 

distributions of different types of driver behaviors, turning, and traffic demand 

distributions.  

 

We focus on the two most significant (unknown) inputs to CORSIM: (i) Demand and (ii) 

Turning probabilities.  Demand, D, consists of parameters that determine the numbers of 

vehicles that enter the system from external streets, while the turning probabilities, P, 

refer to the probabilities that a vehicle turns right, turns left, or goes through a given 

intersection. Demand and turning probabilities are street and intersection specific, so that 
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D is actually a vector of 16 numbers (for the studied system), while P is an 84-

dimensional vector of probabilities. These will be determined from observational data, 

consisting of counts, C, made on the real-world traffic network. 

 

1.1   The data and their adjustment 

 

The data, C, is a vector of counts of vehicles. Let Cijk denote the count of vehicles 

arriving at intersection j from intersection i, and proceeding to intersection k. Thus, 

referring to Figure 1, C673 is the count of vehicles arriving at intersection 7 from the 

North, and turning left. It is also convenient to define Cij as the total observed number of 

vehicles coming from intersection i towards intersection j. The counts fall into three 

classes of data: 

 

Demand counts: These are counts, made over a one-hour period, by observers placed on 

the streets entering the traffic neighborhood in Figure 1 (such as I,K,M), and correspond 

to certain of the Cij above. Manual observation is highly imperfect and these counts are 

suspected to be inaccurate. We will denote the vector of all the observed demand counts 

by CD. 

 

Turning counts: These are counts, made by observers over shorter time intervals 

(typically 10 to 20 minutes), of the numbers of right-turn, left-turn, and through vehicles 

at each intersection. Some of the counts are missing and all are subject to error. Denote 

the vector of all observed turning counts by CT. 
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Video counts: At the intersections in Figure 1 that lie within the central dashed rectangle, 

video cameras perched atop nearby buildings were placed that recorded all vehicles 

passing through the intersection over the one-hour period. The recordings were later 

analyzed to determine the numbers of right-turn, left-turn, and through vehicles from 

each direction, at each of the intersections. These counts can be treated as exact. 

 

The demand and manual turning counts, because of human error, may not be consistent 

with the video counts. It will be necessary to take this into account in subsequent 

analyses.  At first, we will employ a commonly used tactic: adjust, by hand, a few counts 

until the observer counts are compatible with each other and with the video counts.  Take 

these as accurate and proceed from there (we do so in the next Section). In Section 3, 

however, we recognize the observer error and treat matters there accordingly and, as we 

shall see, with different results.  

 

2.   Analysis When Vehicle Counts Are Assumed to Be Accurate 

 

In this section we assume that all vehicle counts are accurate, as if the entire network had 

video (or accurate sensor) data.  This section will serve to contrast the effect of not 

accounting for the uncertainty in estimating the CORSIM input parameters (even with 

wholly accurate data the demand and turning parameters cannot be determined exactly) 

as well as contrasting (in Section 3) with the additional accounting for observer error. At 
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the same time, this section provides a simplified, useful context in which to explain the 

Bayesian analysis and how it handles uncertainties.   

 

The basics of Bayesian analysis consist of combining, via Bayes theorem, the data 

density, given the demand parameters D and turning probabilities P, with a prior 

distribution for D and P. The resulting posterior distribution in (2.2) or (2.3), denoted by 

π(D, P|C), is simply the conditional distribution of the parameters D and P, given the 

data. This posterior distribution indicates the uncertainty that is present about D and P 

after the data C are collected. 

 

Uncertainty resulting from simulator predictions can then be assessed by treating 

π(D,P|C) as the ``random input distribution" for the simulator, and making repeated runs 

of the simulator, initialized by draws from this distribution. This is not significantly more 

expensive than running a stochastic simulator, such as CORSIM, for a fixed set of inputs.  

For a stochastic simulator, the distribution of predictions can only be ascertained through 

repeated runs, and starting each run with D and P chosen from π(D,P|C) is virtually as 

cheap as starting each run with a fixed D and P.  

 

2.1   Bayesian Analysis of Turning Probabilities 

 

We first concentrate on the vector of turning probabilities p for a single intersection. For 

example, the vehicles entering intersection 2 from K, can either turn left or go through the 
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intersection. Let pL and pT be the respective probabilities. Since pT =1– pL it suffices to 

consider one of, these, say p = pL (dropping the subscript L for convenience). Let  

c ={ cL , cT } denote (again only in this subsection) the corresponding manual counts, that 

is, the observed number of cars going left and through at intersection 2 when arriving 

from K.  If, as in CORSIM, the cars turn independently of one another and of their 

previous path, then, letting n = cL + cT denote the total number of vehicles entering 

intersection 2 from K, the distribution of c, given n, is given by cL ~ Binomial(n,p), which 

has density 

                                              ( | , ) (1 ) .L Lc n
L

L

n
f c p n p p

c
− 

= − 
 

c                      (2.1)                       

 

The conventional way of dealing with the unknown p is to estimate it by ˆ Lp c n= , the 

maximum likelihood estimate (MLE), and use this estimated turning probability in 

CORSIM, ignoring the uncertainty in the estimate. 

 

Bayesian analysis requires a prior distribution, π(p) for p. This can reflect genuine prior 

information (e.g.,, earlier traffic counts) if available, or it can be chosen in an objective 

fashion. The traditional objective prior for the Binomial model is a special case of a Beta 

distribution (for more details on the Bayesian nomenclature and technical terms used in 

this paper, see Bernardo and Smith, 2001): 

 0.5 0.51( ) ( | 0.5,0.5) (1 )
3.14...

p Beta p p pπ − −= = −  

 11



(It might seem more natural to use the uniform distribution as the objective prior for p, 

but the above prior, called the Jeffreys prior, has superior properties.) Combining the 

prior with the likelihood via Bayes theorem produces the posterior distribution 

 

0.5 0.5
1

0

( ) ( | , ) ( 1)( | , ) (1 ) ,
( 0.5) ( 0.5)( ) ( | , )

Lc n cL
L

L LL

p f c p n np c n p p
c n cp f c p n dp

L
ππ
π

− − −Γ +
= = −

Γ + Γ − +∫
 (2.2) 

where Γ(·) is the gamma function. This posterior density can be recognized as the  

Beta(p | cL + 0.5, n− cL+ 0.5). 

 

The posterior in (2.2) takes into account all the uncertainty about p.  The mean of (2.2) is 

[cL + 0.5] / (n+1) which for moderate n and cL will be very close to p̂ ; indeed, when n is 

large,  (2.2) will be tightly concentrated about p̂  (the variance of the posterior 

distribution is ( 2 10.5)( 0.5)( 1) ( 2)L Lc n c n n− −+ − + + + . However, when n is not large, (2.2) 

will be more dispersed and Bayesian predictions will reflect this uncertainty; the 

traditional approach won’t. To propagate this uncertainty to simulator predictions 

CORSIM is fed with independent generations from π(p| cL, n), instead of the fixed value 

ˆ Lp c n= . 

 

Example 2.1 For the intersection mentioned above (vehicles arriving at 2 from K) in the 

period 09:00−10:00am, a total of n = 375 cars were observed, cL = 50 of which went left 

at the intersection. The posterior density in (2.2) of p, the probability of turning left, is 

then Beta(p| 50.5, 375.5). p̂  = 0.118, the posterior also has mean 0.118 and its standard 

deviation is 0.0156. 
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If 10 runs of CORSIM are required, the traditional approach will use p̂ = 0.118 as the 

value for p in each of the runs, with variability coming only from the stochasticity in 

CORSIM, but not in the inputs. The Bayesian approach will use 10 independent values 

generated from the posterior distribution, for the 10 runs; for instance, random generation 

from the posterior gave {0.142, 0.152, 0.118,0.131, 0.109,0.109, 0.126,0.129, 0.101, 0.153}. 

 

For many intersections, vehicles entering from a specific direction can either turn right, 

turn left, or go through. In this case, the vector p has three components, p = (pR, pL, pT), 

and, given the total number, n, of vehicles entering from the specific direction, the 

respective counts, (cR, cL, cT), follow a multinomial distribution. The standard objective 

prior for p is a Dirichlet (1/2, 1/2, 1/2) distribution, a multidimensional generalization of 

the Beta distribution.  

 

If, as in CORSIM, all turning movements of vehicles are treated independently, the 

analysis for all turning probabilities, P, simply proceeds by performing the analysis given 

above for each intersection, and then multiplying together (because of the independence) 

the resulting posterior distributions. Recalling that CT denotes all turning data, this 

product is the posterior distribution, πT(p| CT) of all turning probabilities, given the data. 

 

2.2   Bayesian Analysis of Entry Demand Parameters 

 

First consider the demand at a single input location of the system for instance, the number 

of cars entering the system at E and going towards intersection 20. Let λ be the rate at 

 13



which cars enter per hour and let c be the observed count of cars entering in a given one-

hour period. Assume the inter-arrival times of such vehicles have an exponential 

distribution, so that probability density of c is Poisson:  

 1( | ) .
!

cf c e
c

λλ λ −=  

The objective prior density for λ in this model is π(λ) = λ−0.5. (Formally, this is called the 

Jeffreys prior. It is not a proper density i.e., does not integrate to 1, but its use has strong 

justification, Bernardo and Smith, 2001.) Formal application of Bayes theorem produces 

the posterior density for λ: 

 
0.5

0.5

0.5

0

1( | ) ,
( 0.5)

c
c

c

ec
ce d

λ

e λ

λ

λ λπ λ λ
λ λ λ

− −
− −

∞ − −
= =

Γ +∫
 (2.3) 

recognizable as the Gamma(λ | c + 0.5, 1) density. The mean (c + 0.5) and mode  

(c −  0.5) of (2.2) are very close to the MLE ˆ cλ = .  The variance is (c+0.5), which can be 

quite appreciable, and the resulting uncertainty should be incorporated into runs of the 

simulator, by simulating demand rates using (2.3), as was done for turning probabilities, 

using (2.2). 

 

Example 2.2 For the demand discussed above (the number of cars entering the system at 

E and going towards intersection 20), the total of cars arriving in the period 

09:00−10:00am was c =540. The resulting Gamma(540.5, 1) posterior density for λ has 

mean 540.5 and standard deviation 540.5 . If 10 runs of the simulator are required, then 

10 Bayesian inputs into CORSIM for λ, arising as random draws from this distribution, 

are 
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{516.41, 534.07, 557.40, 519.52, 506.03, 553.95, 544.05, 532.00, 551.43, 541.51}. The 

traditional approach will, instead, always input as the value for λ. ˆ 540λ =

 

For the full system, let λ denote all the vehicle inter-arrival rates {λij} at the entry points 

of the network. (We earlier denoted the counts by D).  If all demands are assumed to be 

independent, analysis of the full system simply proceeds by replicating the analysis at 

each demand input and multiplying together the resulting posterior distributions to get the 

posterior distribution, π(λ| CD), of all the inter-arrival rates. Later, we will also need to 

refer to fD(λ,CD), the joint density of λ  and CD , which will simply be the product of all 

the Poisson densities for the {Cij} (given λ) times the product of all the prior densities 

 We sample from π(λ| C0.5( )ij ijπ λ λ−= . D) to select λ’s to feed CORSIM. 

 

2.3 Bayesian Analysis of the Full System with Accurate Counts 

 

The demands counts are not independent of the turning counts, but it can be shown (see 

Molina, et. al., 2003) that the posterior distribution of all turning probabilities P and inter-

arrival rates λ can be found by multiplying together the posterior densities for P and λ. 

The joint posterior distribution of all unknowns is then  

 ( , | , ) ( | ) ( | )D T D D TP C C C P CTπ π π=  

The effect of incorporating such uncertainty into CORSIM is indicated in Figure 2.  

[FIGURE 2 GOES HERE] 

The objective here is the prediction of system queue time (SQT). The bold curve (H1) is 

the histogram of SQT obtained from the output of 200 independent CORSIM runs with 
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input parameters “plugged-in” as the MLE estimates of P and λ after informal tuning of 

the data to make the observed counts compatible.  The thinner curve (H2) is also the 

result of 200 independent CORSIM runs but based on the Bayesian analysis just 

described where the P, λ inputs for each CORSIM run are randomly drawn from the 

posterior distribution ( , | , )D TP C Cπ . The uncertainty in the input parameters leads to a 

more widely spread SQT distribution, as expected.  Increased variability could have 

strong implications when the calibrated model is used for prediction purposes. Note that 

the dashed curve results from the analysis (H3) are described in Section 3. 

 

3. Methodology Addressing Errors in the Data 

 

The simple analysis of the previous section is valid when there are no errors in the counts 

(and no missing counts), an unlikely situation when data are manually collected. Also, the 

power of the Bayesian methodology is not fully realized in the context of Section 2 − we 

could have used the distribution of the MLE’s of P and λ, or an approximation to that 

distribution, to generate random inputs to feed to the simulator and achieve similar 

results.   However, we need to introduce a more sophisticated analysis to handle observer 

error and the Bayesian approach adapts itself immediately to that end albeit with 

complications in computation but neither in interpretation nor principle. While the 

methodology is basically the same the introduction of models for observer error results in 

complexity that prevents writing simple closed form expressions for the needed posterior 

distributions. Consequently, posterior probabilities must be obtained by numerical 

methods or by simulation. The most commonly used Bayesian computational technique is 
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called Markov Chain Monte Carlo (MCMC); see Robert and Casella (1999) for a 

thorough description. 

 

We first address the modeling of measurement error in the manual counts. An additional 

ingredient,  (exact) video data, introduces constraints that complicate the analyses and we 

treat that in 3.2 along with an approximation that makes computations feasible; the 

resulting posterior distribution is described in 3.3 

 

3.1 Modeling the Error in Manual Counts 

 

To model errors in the counts, we introduce notation for the real, unobserved counts. Let 

Nijk denote the true number of vehicles going from intersection i to j to k, and let Nij 

denote the true (demand) count of vehicles entering the network at j from i. Such true, but 

unobserved, variables are often called `latent counts.' The latent counts are related to the 

observed counts as follows: 

 

Demand counts: Assume that the observed demand count Cij (entering j from i) is Poisson 

distributed with mean bij Nij , where bij > 0 and bij − 1  is the unknown bias of the 

observer doing the counting. The resulting Poisson density is  

 
( )

!

ij ij ijC b N
ij ij

ij

b N e
C

−

 

If different observers are utilized at different input intersections (as in the Chicago study) 

then we assume independence of the count measurement errors. The joint density of all 

observed demand counts CD is found by multiplying together all the Poisson densities 
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from the various intersections. Denote this joint density f(CD | ND, b) where ND is the 

vector of true latent demand counts and b is the vector of observer biases. 

 

We specify a prior distribution for the unknown b by taking the bij as independent 

identically distributed (i.i.d) with a Gamma(α,β) distribution, where α and β are positive 

but unknown and will also be given a prior distribution. Assuming the observer biases are 

i.i.d. from some population is reasonable, and choosing a Gamma distribution for positive 

variables is natural. Let π(b|α,β) denote the product of these Gamma densities. 

 

We take as prior distribution for α,β a constant density on the region α < 2β. This 

constraint implies that the prior mean bias (which is α/(α+β) for the Gamma distribution) 

is restricted to be less than 100%, a rather mild restriction. Write this prior density as  

1α<2β. Putting everything together and using the rules of probability, the joint distribution 

of the observed counts, the biases and the parameters α,β given the latent counts is 

 2( , , , | ) ( | , ) ( | , )1M D D D Df C N f C N .α βα β π <α β=  (3.1) 

 

Modeling the Latent Demand Counts: Since Nij, at an input intersection, is the actual 

number of vehicles arriving with exponential inter-arrival rate λij, it has a Poisson 

distribution with mean λij . Thus we can use the same model and prior as in Section 2.2 

where the Cij were assumed accurate. Then, the joint density of the latent counts and 

inter-arrival rates is a product of Poisson densities and prior densities of the {λij} and is 

of the form fD(λ, ND), as in Section 2.2.  
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Modeling the Latent Turning Counts:  While we could follow a similar path for turning 

counts as for demand counts we choose to simplify the analysis and accept CT as exact.  

Fuller discussion and justification can be found in Molina et al. (2003);   the rationale for 

the simplification lies in the comparatively diffuse (so-termed, vague) posterior 

distributions that result for the turning probabilities, making the introduction of additional 

measurement error less compelling. (The simplification, of course, is accurate on the 

inner network where the video data gives exact turning counts.) The turning counts are 

then modeled exactly as was done in subsection 2.2, leading to the same posterior density 

for P as given there, namely 

                            ( | ).T TP Cπ                                                 (3.2) 

We will keep track of true latent counts but we will use (3.2) for the posterior distribution 

needed later. 

 

3.2 Video Counts and a Probabilistic Network Approximation 

 

The implementation of the analysis outlined above requires counts other than entry 

demand counts (such as internal link or exit counts). For the test bed problem we have 

video counts on the inner network outlined in Figure 1, which we treat as exact. Let NI 

denote the vector of video counts of vehicles that enter and leave the inner network. As 

before, we denote individual counts by Nij, the number of vehicles going from 

intersection i to intersection j.   
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Our goal is to produce the posterior probability distribution for all the parameters λ, P, α, 

β, b, ND, NT given the data CD, CT, and taking into account the video data. Actually we 

only need the posterior distribution for λ and P to then feed values to the simulator, but it 

is convenient to carry all the parameters along in a Bayesian analysis and pick out what is 

needed at the end.  If we could run the simulator hundreds of thousands of times we could 

use the simulator to produce a density fsim(N|λ, P) for the joint distribution of all the latent 

counts on the network, put video count values in and get a ‘likelihood’ for the parameters 

λ, P.  This likelihood can then be used to complete a Bayesian analysis.   However, this 

approach is infeasible: a CORSIM run for the Chicago network takes 1-3 minutes and 

would lead to months or more of computation.  

 

The path we follow instead is to approximate the simulator (in this case, CORSIM) by 

developing a probabilistic network that approximates the needed key features of the 

simulator.  (See Tebaldi and West, 1997, and Tebaldi et al., 2002, for a description of 

such networks for traffic modeling.) This network has the same intersections, inputs, 

turning moves, etc., but treats vehicles as passing instantaneously through the network. 

Many simulator features are omitted (e.g., vehicle waiting times), but the approximation 

is, arguably, accurate in terms of its representation of the number of vehicles passing 

through links, as long as the system is viewed to be in steady state. The steady state 

assumption is inappropriate during times of changing traffic demand, but is reasonable 

for the one-hour period during rush hour in our test bed study. 

 

In the probabilistic network we get, exactly as in Section 2 the density ( | )T Tf N P  
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of all true turning counts, the product of multinomial probabilities. For the demand 

parameters we have the density fD (λ, ND) for the true latent demand counts ND and the 

demand parameters λ, just as in Section 2 (a product of Poisson densities and Gamma 

priors).   

 

It is important to note that there are numerous constraints on the Nijk and Nij. For instance, 

the total number of vehicles entering an intersection must equal the number leaving the 

intersection. Furthermore (and of crucial effect), the video counts lead to known values of 

some of the Nij, and these known values induce other constraints. Let Ν denote the region 

implied by all the constraints, and 1Ν be the indicator function on this region. 

 

Put all together, we get the density, given P, for the true latent counts and the demand 

parameters λ  

 ( | ) ( , )T T D D .f N P f N IN  (3.3) 

 

3.3 The Posterior Distribution 

The overall posterior distribution of all parameters given the data can be shown (see 

Molina et al., 2003) to be proportional to the product of terms developed in Sections 3.1 

and 3.2: 

 
( , , , , , | , )

        ( , , , | ) ( | ) ( | ) ( , ) .
D T D T

M D D T T T T D D

P N N C C
f C N P C f N P f N I

π α β
α β π

∝

N

 (3.4)  
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Dealing with a complicated posterior distribution, as in (3.4), is done with Markov Chain 

Monte Carlo (MCMC) analysis (see Chen et al., 2000, and Robert and Casella, 1999) 

adapted in Molina et al. (2003) to account for the constraints induced by the relationships 

between vehicles entering and leaving an intersection. To use in the simulator, simply 

record the collection of λ, P values and use these values as inputs to the simulator, one 

sample value for each run.  In practice, only a few hundred values of the (λ, P) vectors 

will be utilized in a prediction, whereas the MCMC run will typically result in, say, 

100,000 (dependent) realizations of (λ, P). Hence, one need only save, say, every 500th 

realization of the (λ, P)’s from the MCMC run.  The resulting 200 realizations will also 

be much less dependent and be adequate for use as inputs to CORSIM. 

 

4.   Results, Discussion and Extensions 

 

4.1 Results of the Bayesian analyses 

 

In Figure 3 we see the effect of observer error on the estimate of demand counts. The 

observed demand counts CE20 , CF15 at two adjacent intersections were incompatible with 

video data. An ad hoc adjustment was made to change the observer count CF15 from 145 

to 82 and leave the observer count CE20 at 540 (“untuned”). The histogram in 3a is the 

posterior density of the true count, NE20; the histogram in 3b is that of NF15. 

[FIGURE 3 GOES HERE] 

The histograms exhibit the uncertainties in the values of NE20 and NF15 with reductions to 

both of the incompatible counts.  
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The effect on estimates of turning percentages can be seen in Figure 4. The histogram on 

the left depicts the posterior distribution for the probability of going through from 

intersection E to 20, the one on the right is for the left turn probability. The vertical line 

shows the MLE estimates for each. The indication is that through traffic is well described 

by the MLE estimate, while the left turn shows considerable bias.   

[FIGURE 4 GOES HERE] 

 

The combination of ingredients of the type just described leads to histogram H3 in Figure 

2, formed from the SQT output of 200 runs of CORSIM using inputs drawn from the 

posterior density of (3.4).  The extra variability over H2 is a measure of the effect of 

observer error. Perhaps more to the point is that the comparison of the two Bayesian 

histograms (H2 and H3) reveals the value of high-quality data: H3incorporates observer 

error and is substantially more variable than H2 which assumes all entry demand data are 

accurate (as if video were available everywhere). It provides an interesting representation 

of the “benefit” of collecting accurate data in terms of decreased uncertainty in the model 

outcome.  

 

For many individual links there will be substantial differences (as implied by Figure 2) 

between the ad hoc tuned and “full” Bayesian results. For others there may be only a 

small, even opposite effect.  The Bayesian analysis can also produce posterior 

distributions of other unknowns of interest. For instance, Figure 5 presents histograms of 

the posterior distributions of several observer biases. These were estimated for entry 
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counts taken at E, 20  (top left); M, 4 (top right); R, 24 (bottom left); and H, 5 (bottom 

right). Not surprisingly, bias (= b−1) can be considerably greater than 0 for some 

observers and considerably negative for others.  

[FIGURE 5 GOES HERE] 

4.2 Missing Counts 

 

The complete Bayesian analysis can readily handle missing counts in the data (whether or 

not measurement errors are present).  Details are in Molina et al. (2003). The traditional 

solution of inputting guesses for the missing counts, totally ignoring the uncertainty in 

such guesses, results in underestimation of the variability of the outputs. The Bayesian 

approach assures the incorporation of the inherent uncertainty. 

 

 

4.3 Calibration of Other Parameters  

 

Calibration or tuning of other model parameters for example, saturation flow rate or lane 

changing behavior distributions can be pursued following a similar line of attack. Such 

parameters would be given a prior distribution and then incorporated into the Bayesian 

framework. However, a serious complication will be encountered. In order to engage 

these parameters we will necessarily require many runs of the simulator. In Section 3 in 

order to deal with demand counts, we circumvented matters by replacing the simulator 

with a probabilistic network approximation, but these new model parameters are intrinsic 

to the simulator and not manageable by such a device.  A different type of approximation 
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to the simulator must be found that will allow rapid evaluations of output when values of 

these new input parameters are varied (varying the values of free-flow speed would not 

affect outputs in the probabilistic network approximation of Section 3.3).  This is an open 

question. The possibility of employing the approximation methods used in Bayarri et al., 

(2002) remains to be explored. Once such an approximation is deployed the Bayesian 

approach can produce the needed uncertainty assessments and predictions. 

 

For simulators that employ route-choice algorithms the key input of an O-D table is 

subject to considerable uncertainty stemming in large part from incomplete data and 

uncertainties in survey data.  The Bayesian approach can feasibly treat the uncertainty in 

the O-D table provided the O-D variability can be parameterized with a few parameters 

rather than a whole table of parameters. 

 

4.4 Validation 

 

Validation in the presence of calibration and data uncertainties brings yet another layer of 

complexity. In particular, a validation process must introduce the possibility of model 

discrepancy or model bias that is, the difference between what the model predicts and 

reality. Accounting for this potential bias, which is intertwined with calibration/ tuning 

parameters, adds a level of uncertainty that must be treated.  To see how the Bayesian 

approach can respond to these issues we refer to Bayarri et al. (2002) where the methods 

are applied to deterministic simulators. Extending this approach to stochastic simulators 
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like CORSIM is, in principle, doable, subject to finding reasonable approximations that 

make computations feasible.    
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List of Figures 

 

Figure 1.  The Chicago traffic network. Letters indicate locations of traffic flows at the 

boundary but not in the network (some locate only inputs to the network, some locate 

only output flows, and some do both); numbers locate the 29 intersections of the network. 

The dashed lines locate the region where video information was collected. 

 

Figure 2. System Queue Time (SQT) Comparisons.  The bold curve indicates SQT 

distribution assuming plugged in MLE for P and λ ; the thinner curve is the result of 

Bayesian analysis assuming accurate data ; the dashed curve results from introducing 

observer errors into the Bayesian analysis.  

 

Figure 3. Posterior distribution of demand counts. Raw counts (vertical line), tuned 

counts (triangle) and histograms for two entry links F15 and E20. 

 

Figure 4. Posterior distribution of turning proportions. Raw counts (vertical line) and 

histograms of the posterior distributions for through (left side) and left turn (right side) 

probabilities  

 

Figure 5. Posterior distribution of observer bias. Estimated at E,20 (top left) ; M,4 (top 

right); R,24 (bottom left) ; and H,5 (bottom right) 
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