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Abstract

Given the public’s ever-increasing concerns about data confidentiality, in the near future statisti-
cal agencies may be unable or unwilling, or even may not be legally allowed, to release any genuine
microdata—data on individual units, such as individuals or establishments. In such a world, an alterna-
tive dissemination strategy is remote access analysis servers, to which users submit requests for output
from statistical models fit using the data, but are not allowed access to the data themselves. Analysis
servers, however, are not free from the risk of disclosure, especially in the face of multiple, interacting
queries. We describe these risks and propose quantifiable measures of risk and data utility that can be
used to specify which queries can be answered, and with what output. The risk-utility framework is
illustrated for regression models.

Key words: Data confidentiality, data utility, disclosure risk, microdata, regression server, remote
access server, statistical disclosure limitation

1 Introduction

When disseminating microdata—on individual units, such as people or establishments—to the public, to
researchers or to other agencies, national statistical agencies face conflicting missions. They seek to release
microdata that support a wide range of statistical analyses, yet they also must safeguard the confidentiality
of respondents’ identities and attribute values. Agencies that fail to protect confidentiality may face serious
consequences. They, or their employees, may be be subject to legal actions. They may lose the trust of the
public, so that respondents are less willing to participate in studies or to provide accurate data.

Even when identifiers such as names and addresses or social security numbers are removed before re-
leasing data, there remain serious risks of disclosure. For example, ill-intentioned users (“intruders”) may
be able to link released records to external databases, which are proliferating at all levels of government as
well as in the private sector. For example, many towns and cities sell or make available on-line databases
containing voter registrations, and Sweeney (1997) showed that 97% of the records in a medical database for
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Cambridge, MA could be identified by birth date and 9-digit ZIP code by linking them to a voter registration
list.

To reduce disclosure risks, agencies typically alter the original data before release, for example by
perturbing, coarsening or swapping data values (Willenborg and de Waal, 2001). Of course, such statistical
disclosure limitation (SDL) techniques also reduce the usefulness of the released data.

As more external databases become available and record linkage technologies improve, it becomes virtu-
ally mandatory to contemplate a world in which useful microdata releases are no longer feasible. In a world
without microdata, three approaches to dissemination remain viable. The first and simplest is to release only
data summaries such as low-dimensional tables, graphs and maps. Such summaries are less useful in some
contexts than complex analyses, and there remain disclosure risks. For example, cell counts in a table can
be bounded, possibly very accurately, from released marginal totals (Dobra et al., 2002, 2003).

The second approach is to release synthetic—that is, simulated—microdata (Rubin, 1993). Synthetic
databases can have low disclosure risks, since some or all of the released values are not genuine, but this
also decreases utility of the data. Both risk and utility depend strongly on the model used for synthesis. See
Little (1993), Fienberg et al. (1996, 1998), Raghunathan et al. (2003), and Reiter (2002, 2003a, 2004) for
further discussion.

The third approach, which is the subject of this paper, is to release the results of statistical analyses of
the data, such as estimated model parameters and standard errors, without releasing any microdata. This
approach can be implemented using remote access analysis servers, to which users submit requests for anal-
yses and, in return, receive some form of output (Keller-McNulty and Unger, 1998; Duncan and Mukherjee,
2000; Schouten and Cigrang, 2003). In a world without microdata, the analysis dissemination approach has
advantages over the other two approaches. It permits a wider range of analyses than does releasing only
data summaries, and it provides results based on actual rather than simulated microdata. Several statisti-
cal agencies are developing or already use servers as part of their data dissemination strategies, including
the Australian Bureau of Statistics, Statistics Canada, Statistics Denmark, Statistics Netherlands, Statistics
Sweden, the US Census Bureau, the US National Agricultural Statistics Service, the US National Center for
Education Statistics, and the US National Center for Health Statistics (Rowland, 2003).

Even though they prevent direct access to the data, analysis servers do not preclude disclosures. It may
be possible for intruders to learn identities or attribute values by means of “targeted” queries. Furthermore,
queries that are innocuous individually may produce disclosures collectively. Because of these possibilities,
we believe it is necessary to formulate a risk-utility framework (Duncan et al., 2002), based on quantified
measures of disclosure risk and data utility, for deciding in a principled way which queries can be answered
by analysis servers. In this paper, we present such a framework, with an initial, specific application to servers
that disseminate the results of linear regression analyses.

The remainder of the paper is organized as follows. §2 contains background on disclosure risk and SDL
techniques. §3 describes the statistical components of analysis servers. §4 suggests how users successfully
can perpetrate disclosure attacks on servers, as well as methods for limiting the success of these attacks.
§5 presents quantitative measures of risk and utility for servers, illustrating their use with simulations of
regression modeling. §6 concludes with an agenda for future research.

2 Background on SDL

This section is a primer on statistical disclosure limitation. See Duncan and Lambert (1986), Federal Com-
mittee on Statistical Methodology (1994), Paass (1988), Willenborg and de Waal (1996) and Willenborg and
de Waal (2001) for further information.
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There are three principal forms of disclosure for microdata (Lambert, 1993). Identity disclosure occurs
when a record in the database can be associated with the individual unit it describes. Attribute disclosure
occurs when the value of a sensitive attribute, such as income or health status, is disclosed directly.

Inferential disclosure, the principal risk addressed in this paper, occurs when units are threatened not by
their records but by statistical characteristics of the entire database. For example, suppose that automobile
operating expenditures, which seem innocuous, are a good predictor of medical expenditures, which are not
innocuous. In some locales, such as rural areas that entail significant travel to reach medical centers and
where there is no public transportation, this is at least plausible. If this relationship were knownand known
to be a good relationship, an intruder with access to travel expenditures could predict medical expenditures.
Another example (Palley and Simonoff, 1987) occurs for business data. Organizations may want relation-
ships between salaries and non-confidential variables to be protected, because otherwise, some employee
could fit a model that reveals his or her salary is less than predicted.

For inferential disclosure, the mere existence of some relationship may threaten confidentiality, but more
often the threat is in the quantitative details and the strength of the relationship. For example, it is obvious
that household income, a natural attribute to protect, is positively correlated with home value, which in most
jurisdictions is public information. No one can be prevented from “knowing” that the relationship exists,
but the values of either regression coefficients (the quantitative details) or the correlation (the strength of the
relationship) may be suppressed in the name of SDL.

To protect data confidentiality and meet users’ demands for microdata, agencies and researchers have
developed an array of SDL strategies (Duncan et al., 1993). At the highest level, SDL divides into strategies
based on restricted access and those based on restricted data. Mechanisms for restricted access include data
centers, licensing, and vetting of researchers and their research plans. Restricted access SDL strategies allow
users to perform analyses directly on the underlying data, although specific analyses may be suppressed,
eithera priori, if the analysis is known to threaten confidentiality, ora posteriori, the output reveals a threat.
These centers rely on the honesty of researchers to protect confidentiality, and can be expensive for agencies
and inconvenient for researchers.

Restricted data SDL strategies alter the data in ways that limit potential for disclosure. For example,
the first step in preventing identity disclosures is to remove explicit identifiers such as name, address and
social security number, as well as implicit identifiers, such as “Occupation = Mayor of New York.” Almost
always, however, this is not enough. Again a broad bifurcation occurs: restricted data strategies either
produce information releases, such as tabular summaries and statistical analyses of the data, or data-like
releases. Analysis servers are an example of a restricted data, information release SDL strategy. Restricted
data, data-like SDL strategies include aggregating or coarsening the underlying microdata. For example, to
protect units with high incomes, income is frequently “top-coded,” so that one category is “More than $X.”
They also include perturbing original values, such as by swapping data (Dalenius and Reiss, 1982; Gomatam
et al., 2003) or adding random noise to units’ values (Fuller, 1993).

Restricted data SDL strategies can be applied with varying intensity. The amount of information released
can be limited to subsets of varying sizes; aggregation may be relatively fine or very coarse; relatively few or
rather many data values may be swapped or perturbed. Generally, the higher the SDL intensity, the greater
the protection against disclosure risk, but the less the utility of the released data.

At least implicitly, agencies choose SDL strategies by balancing confidentiality protection and utility
of the released information. We advocate use of explicit risk-utility frameworks to choose SDL strategies,
as proposed by Duncan et al. (2002). The general idea is to quantify the disclosure risk and data utility of
possible SDL strategies, and then select strategies that give the highest utility for acceptable confidentiality
protection. Explicit approaches have been applied successfully in a variety of settings (Dobra et al., 2002,
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2003; Domingo-Ferrer et al., May, 2001; Gomatam et al., 2003; Yancey et al., 2002).
Entirely different sets of issues and strategies arise when analyses involve distributed databases that

cannot actually be integrated (Karr et al., 2004b,a; Sanil et al., 2004b,a).

3 Description of Analysis Servers

Explicit risk and utility measures have not been developed for analysis servers. To begin our development
of such measures, we define the statistical components of analysis servers.

3.1 Conceptual Framework

Let D be the microdata collected by the agency, either through a survey or census. Aserveris a software
system that releases functions of the data,F(D). These functions might include visualizations, estimates
and summaries of distributions of variables, or estimates of functional relationships among variables using
complex statistical models. The server receives from the user a queryQ for someF(D), and it responds
either by providingF(D) or refusing to do so because of confidentiality or utility considerations. A more
complex response strategy would be to provide an alternative analysis rather than a refusal.

In addition toD , the components of the server include:

• Query space, the setQ of queries that the server can process. For example, some servers can handle
requests for tabular data analyses but not regression analyses, whereas others do the opposite. The
server responds to anyQ ∈ Q with either the requestedF(D) or a refusal to provideF(D).

• Answer space: This is the setA ⊆ Q of queries that the server answers with statistical output. We
assume that the query forF(D) = D is never answered.

• Disclosure risk measure, a real-valued function such thatR(Q1, . . . , Qm) is the disclosure risk of
providing F(D) for the set of queries{Q1, . . . , Qm}.

• Data utility measure, a real-valued function such thatU (Q1, . . . , Qm) is the data utility of providing
F(D) for the set of queries{Q1, . . . , Qm}.

The risk and utility measures are the components of aquery mediation mechanismthat determinesA.
The query mediation mechanism must address the problem of interaction among queries: answering several
queries may allow users to piece together enough information to achieve disclosures. This issue has been
recognized by several authors (Palley and Simonoff, 1987; Duncan and Mukherjee, 2000; Dobra et al.,
2002), and is discussed further in §4.

Servers may be either static or dynamic. In a static server,A is pre-computed. The underlying query
mediation mechanism is typically based on either (i) optimization ofU (A) subject to an upper bound con-
straint onR(A); or (ii) selection ofA from a frontier of undominated candidate spacesAc, i.e., those for
which no other candidate release has both lower disclosure risk and higher data utility. Both of these query
mediation mechanisms are illustrated in §5.

Dynamic servers accept queries in real time and respond expeditiously if not immediately;A is deter-
mined by the queries that the server elects to answer. Ultimately, a dynamic server reaches a terminal state in
which no remaining unanswered queries are answerable. The disclosure risk and data utility associated with
responding to a query must take into account those queries that have been answered previously. Dynamic
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servers present challenges at multiple levels. Practical issues include scalable computational implemen-
tations. Conceptual issues include abstractions such as accounting for the fact that each answered query
makes others unanswerable. There are policy issues as well, notably user equity, to prevent a single user or
group of users from exerting undue influence on the trajectory of the system. Whether dynamic servers are
possible remains an open question.

One relatively well understood class of servers istable servers(Dobra et al., 2003, 2002; Karr et al.,
2003). In this case,D is a large contingency table containing counts or sums,Q is a partially ordered set of
marginal sub-tables ofD , and responses are either the requested sub-table or refusal. Even in this relatively
simple case, computational and policy issues are challenging.

We assume that the metadata associated withD are available to users, either directly from the server or
through other sources. These metadata include attribute definitions, sample sizes, survey frames, response
rates, representations of missing values and similar information.

3.2 Model Servers

In the remainder of this paper, we focus on servers for which the query spaceQ consists of requests for
relevant output from statistical models involving a response and one or more predictor variables inD . We
term thesemodel servers. Responses, when not refusals, consist minimally of point estimates of the model
coefficients, the estimated covariance matrix of the coefficients, and some global goodness-of-fit measures,
such as coefficients of determinationR2, dispersion parameters and deviances. We also assume that the
means and standard deviations of all variables inD are available.

These assumptions are not without import. In particular, we believe strongly that a model should never
be released without at least global measures of fit, and in most cases, as we discuss in the next paragraph,
local measures of fit. Moreover, in most cases, utility considerations would militate against release of a “bad”
model. Therefore, a released model can be, in the hands of an intruder, a significant threat to confidentiality.

Ideally, the response from the server should include some way for users to check the fit of models.
Obviously, releasing the usual, unit-specific diagnostic statistics can disclose data values. For example,
when actual residuals and predicted values are released for a submitted linear regression model, the user can
obtain the values of the response by simply adding the residuals to the predicted values.

For diagnosing some types of assumption violations, however, the exact values of the residuals and
independent variables are not needed. Rather, the relationships among the residuals and independent vari-
ables are examined for patterns in hopes of identifying model mis-specifications. Thus, for remote servers
it may be adequate to mimic patterns in the real-data diagnostics without releasing real-data values (Reiter,
2003b; Reiter and Kohnen, 2004). For linear regression diagnostics, the basic idea is to release values of
residuals and independent variables simulated from distributions that approximate the relationships between
the real-data residuals and independent variables. Users then can treat these synthetic values like ordinary
diagnostics quantities, examining scatter plots of the synthetic residuals versus the synthetic independent
variables.

4 Disclosures in Model Servers

Our discussion of disclosures is primarily in the context of linear regression modeling, although much of it
applies to other models as well. §4.1 describes potential identity and attribute disclosures, and §4.2 describes
potential inferential disclosures.
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4.1 Identity and Attribute Disclosures for Linear Regressions

By not releasing microdata, and not releasing real-data diagnostics such as residuals, many threats to at-
tribute and identity disclosure are eliminated. However, other threats remain.

In particular, denial of access to microdata does prevent identity and attribute disclosures effected by
transformations of variables. Transformation attacks can be used to attempt attribute disclosures when the
outcome is a sensitive variable, and to attempt identity disclosures when outcome is a key identifier. The
success of these attacks depends on the user’s knowledge that certain units with unique values of predictors
are in the database, and knowledge of these values. For some databases, such detailed knowledge will not
be available, so that disclosures of individuals from transformations may not be likely. However, given the
proliferation of publicly available data, it is prudent to assume such knowledge is in the hands of intruders.

Because few operating model servers exist, and those that do exist to our knowledge do not permit
transformations, transformation attacks are primarily hypothetical at this point, but they could be simulated
on a prototype server, although this would require modeling of intruder knowledge and behavior (Fienberg
et al., 1997).

To illustrate, units with unusual values of predictor variables—leverage points—can have a strong effect
on the estimated regression, often resulting in small residuals for these units. An intruder who knows that
a certain unit is in the database may be able, through transformations, to create artificially extreme leverage
points, and thereby learn the outcome variable for that unit from the predicted value of the fitted regression.
As an example, supposeX0 is a sensitive variable unknown to the intruder who also knows that a certain
unit m in the database has an unusual valueXm = x. The intruder could fit the regression ofX0 on a
simple transformation ofXm to increase unitm’s leverage, for example by using 1/(|Xm − x| + ε) or
log(|Xm − x| + ε), whereε is a small positive constant, or by usingeXm whenx is large. Transformation of
X0 (e.g., fitting a regression witheX0 as the outcome variable) can further increase the influence of leverage
points.

Units need not be leverage points to be subject to transformation attacks. “Dummy variables” can isolate
points with unique predictor values. For instance, an intruder who knows a unique predictor valuex exactly
can learn the associated response by including the predictorI (Xm = x) (or by fitting two regressions, one
with I (Xm ≤ x) and the other withI (Xm ≤ x − δ) whereδ is a small constant).

For categorical predictors, disclosures can occur when there are insufficient numbers of data cases in
the categories. For example, an intruder could fit interactions among several categorical variables, such
that some cross-classifications describe only one unit. For those cross-classifications, the outcomes can be
learned exactly from the fitted values of the regression.

To mitigate the effects of transformation attacks, agencies can limit the space of transformations and
types of models that users can submit as queries, but this also reduces data utility. Their effective limita-
tions on transformations should have minimal impact on analyses of interest while satisfactorily controlling
disclosure risk. It is also desirable to specify limitations that can be enforced automatically by the server;
performing manual checks of every proposed analysis can be time-consuming and expensive.

Next we propose some simple ways whereby agencies can build limitations into model servers. Not all
may be useful in any particular context, but they may help prevent classes of transformation attacks with
potentially acceptable reductions in data utility. First, key identifiers, such as age, race, and sex, can be
prohibited as outcome variables but permitted as predictors. This strategy eliminates identity disclosure
attacks that use keys as outcomes. The reduction in data utility can be small, since typically identifiers
are not of interest as outcomes. Second, SDL strategies for tabular data can be applied to categorical data
in model servers. For example, agencies can prohibit indicator variables from being predictors unless at
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least three units with non-identical outcome values satisfy the conditions described by the indicator. The
reduction in utility may be small in many data sets, since usually few strong conclusions can be made
for units in very sparsely populated categories. Third, transformations that split continuous variables into
categories can be disallowed, thereby eliminating attacks that rely on such splits. For servers that permit
generalized additive modeling or other methods of curve fitting, this may not substantially sacrifice data
utility. Fourth, for anyXi , transformations of the formg(Xi − h(Xi )) can be disallowed for allh(Xi )

excepth(Xi ) = 0. This prohibits transformations designed to give individual values high leverages. Many
transformations for analytical purposes, such asg(Xi ) = log(Xi ) or g(Xi ) =

√
Xi do useh(Xi ) = 0,

and so remain permissible. Agencies might allow certainh(Xi ), in particularh(Xi ) = X̄i , when they are
innocuous. Finally, transformations can be disallowed when they increase the leverage values of units, or
the values of theXi , beyond administrator-defined cutoffs. The cutoffs should be set to permit common
transformations while preventing outlandish ones whose main purpose is transformation attacks.

Agencies can inform users about the limitations imposed on the answer space, although it may be wise
not to disclose cutoff values. Some limitations, like those in the first four points above, can be enforced by
the server before submitted models are even fit. Other limitations, like the fifth one above, may have to be
enforced dynamically by the server.

4.2 Inferential Disclosures for Linear Regressions

For some databases, agencies may seek to prevent users from fitting particular regressions. For example, an
agency may not want to release the output from regressions that have small root mean squared errors and
sensitive dependent variables. Or, an agency may want to protect a certain relationship in the data. In this
section, we discuss ways that intruders can learn about unreleased regressions through released regressions,
and thereby attempt inferential disclosures.

To fix ideas, we define notation used throughout the remainder of the paper. LetX = (X0, X1, . . . , Xd)

be the(d + 1) variables in the databaseD . For any subsetB = {i, j, . . . } of variable indices, letXB =

{Xi , X j , . . . }. We write the linear regression ofXa on the predictors whose indices are inB asXa|XB. For
example, the regressionX0 on (X1, X2, X3) is written asX0|X{1,2,3}. We use the notationXaB to denote the
collection of variables inXa ∪ XB.

Let X denote then × (d + 1) matrix constituting the data for the variablesX (n is the number of data
cases). For simplicity, we assume thatX has been centered: we useX i − X̄ i for each variablei . Then for
any Xa|XB, the vector of least squares estimates of coefficients is

ba|B = (Xt
BXB)−1Xt

BXa.

Any ba|B, as well as its estimated covariance matrix and the coefficient of determinationR2
a|B, can be com-

puted from the sample cross-product matrix

SaB = (Xa, XB)t(Xa, XB).

Hence, a user who obtainsSaB completely from a set of released regressions learns all possible linear
regressions involvingXaB.

Suppose the server seeks to prevent intruders from learning the coefficients of some sensitive regression,
sayXa|XB. A naive approach is to deny (only) responses to queries forXa|XB. However, this rule alone will
not prevent intruders from reconstructing the unreleased regression from other, releasable regressions. For
example, suppose that the server provides regression coefficients for any query involving simple regressions
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with XaB. For Xi , X j ∈ XaB, an intruder can solve for the cross-productSaB[i, j ] by using the variance of
the predictor, sayX j , and the released coefficientbi | j of X j in the regression ofXi on X j :

SaB[i, j ] = bi | j SaB[ j, j ]. (1)

By fitting simple regressions for all pairs of variables, all terms inSaB are determined, so that an intruder
can reconstructXa|XB exactly.

More generally, anym unknown off-diagonal elements ofSaB can be reproduced exactly as long as the
collection of released coefficients contains a system ofm independent equations in these unknowns. Clearly,
the coefficients for all simple regressions involvingXaB constitute such a collection. Other examples include
coefficients for the set of all regressions of sizek for any k (all ba|C whereC ⊂ B and |C| = k) and
coefficients for the set of sequential regressions,{ba|i , ba|i, j , . . . , ba|B}, whereB = {i, j, . . . }. Thus, servers
that release any regression as long as it has at leastk predictors, or servers that release only one regression
for each predictor size, do not protectSaB.

Reconstruction of some unreleasedXa|XB is not possible when at least one of the cross-products in
SaB cannot be determined from released information. To prevent some cross-productSaB[i, j ] from being
reproduced exactly, the server must deny responses to queries involvingXi andX j simultaneously. That is,
the server cannot provide output for any query involving one of these variables as the outcome and the other
as a predictor, or any query where both variables are predictors.

Although limiting the releases can prevent exact reconstruction ofSaB, it still may be possible to bound
closely the unknown elements ofSaB. We next describe a procedure for finding upper and lower bounds for
the unknown elements by exploiting the fact thatSaB is positive definite (denoted bySaB � 0).

Let K = {(i, j ) : SaB[i, j ] is known} be the set of indices of the known elements ofSaB. For each
(i, j ) ∈ K, let si j denote the the value of its correspondingSaB[i, j ]. For any(l , m) 6∈ K, we can find the
upper bound forSaB[l , m] by solving the following optimization problem:

maxSaB[l , m]

s.t.

{
SaB[i, j ] = si j for all (i, j ) ∈ K

SaB � 0.

(2)

DefineFpq, a matrix with the same dimensions asSaB, as follows. If p = q, thenFpq[i, j ] = 1 for
[i, j ] = [ p, q](= [q, p]) and is zero otherwise. Ifp 6= q, thenFpq[i, j ] = 1/2 for [i, j ] = [ p, q] and
[i, j ] = [q, p] and is zero otherwise. Then we can reformulate the optimization problem (2) as:

max Tr(FlmSaB)

s.t.

{
Tr(Fi j SaB) = si j for all (i, j ) ∈ K

SaB � 0,

(3)

which is a Semidefinite Programming (SDP) problem expressed in standard form (Todd, 2001). Efficient
algorithms and software implementations for SDP problems are available (Vandenberghe and Boyd, 1996;
Todd, 2001). The lower bound forSaB[l , m] is also obtained by solving the corresponding minimization
problem.

These bounds provide the feasible range of values that each individual unknown element can take. When
more than one element inSaB is unknown, the individual feasible ranges determine a bounding box for the
joint feasible region. It is possible to sample values ofSaB from the joint feasible region by sampling
uniformly from the bounding box and then accepting or rejecting the sample point depending on whether
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the resultingSaB is positive definite. These values ofSaB in turn provide draws of feasible values ofba|B.
When an intruder can obtain sufficiently tight bounds onba|B, or on particular sensitive components ofba|B,
inferential disclosures may occur.

Variants of this approach to obtaining bounds for unreleased coefficients can be applied to obtain approx-
imate bounds in other models. Ordered categorical and dichotomous outcomes can be treated as continuous
for purposes of using (2) and (3). Nominal variables with more than two categories can be split into a series
of dichotomous indicator variables, which are then used in (2) and (3). Obtaining more precise bounds for
other models is a subject for future research.

5 Disclosure Risk and Utility Measures for Model Servers

As for other SDL strategies, in the model server context it is essential to use quantitative measures of risk
and utility to decide what is ultimately released. This section describes such measures generally and, as an
entry point to a much larger research effort, presents specific instances for a linear regression setting.

In both cases, as well as in other settings such as table servers (Dobra et al., 2003, 2002), the distinction
between risk and utility can be obscure. This is the heart of the risk-utility tradeoff problem: legitimate users
and intruders may want the same, or nearly the same, things from the data.

5.1 General Measures

As suggested in §4, identity disclosure risk can be reduced by refusing to provide output for queries in-
volving suspicious transformations. Hence for analysis servers we focus on measures of disclosure risk that
reflect intruders’ capability to predict accurately such values of individual units’ attributes or relationships
among sensitive attributes. We propose two broad classes of such risks.In-sample prediction riskrefers
to intruders’ ability to predict accurately sensitive information for units in the database. An example is
predicting an outcome for an atypical unit whose residual is small in some released or unreleased regres-
sion. Out-of-sample prediction risk, by contrast, refers to intruders’ capability to predict closely sensitive
information for units not in the database. An example is learning, either exactly or with little uncertainty,
the values of the coefficients of a regression for a sensitive outcome, which can then be used to predict that
sensitive variable for units not in the database.

Measures of utility quantify the amount of information contained in the answer spaceA relative to
the information when no restrictions are made on the answer space. We propose two classes.Volume
refers to the size ofA, for example the number of regression models inA. Statistical usefulnessrefers to
the extent to which the released information is useful for statistical inference. An example is the predictive
accuracy of the models inA. High statistical usefulness is not necessarily equivalent to large volume: a small
answer space may well contain higher quality models than some larger one. Utility also can incorporate
domain knowledge: for instance, to satisfy users’ needs, agencies may decide particular relationships must
be released.

These classes of risk and utility measures are related to the predictive accuracy of the models inA. Risk
and utility do have a distinction in our formulation: utility is always calculated using the information in
released models, whereas risk can be calculated using what is inferred about unreleased models.
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5.2 Risk and Utility Measures for a Linear Regression Setting

Risk and utility measures obviously depend on the types of models in the query spaceQ. To make the
ideas concrete and to illustrate the general notions of risk and utility, suppose thatQ corresponds to linear
regressions, and that the databaseD contains a single sensitive variable that the agency does not want
intruders to be able to predict too accurately from released regressions on the other variables inD .

Using the notation of §4.2, letX0 be the sensitive variable, and letX1, . . . , Xd be the other variables. We
assume the agency is using a static model server, and thus seeks to determine an optimal answer space that
results in high data utility with acceptable disclosure risk. For simplicity, we assume that no transformations
of the Xi are allowed.

For thisQ, there are 2d queries involvingX0 as the dependent variable, corresponding to 22d
possible

choices forA. Calculating the risk and utility of all these is infeasible even for small values ofd. Therefore,
we restrictA to a more manageable subset, which we callAsupp (“supp” denotes suppressed variables),
defined as follows.

Suppose thatXsupp ⊆ {X1, X2, . . . , Xd} and Xfree = {X1, X2, . . . , Xd} \ Xsupp, and letAsupp be the
answer space containing all regressionsexceptthose withX0 as the response and at least one of the variables
in Xsuppas a predictor, or vice versa. In this case, any user, legitimate or not, can determine exactly all cross-
products betweenX0 and the variables ofXfree, between the variables ofXsuppand those ofXfree, and among
the variables ofXfree.

Intruders may attempt to useAsupp to reproduce any of the cross-products involvingX0 and elements of
Xsupp, and hence any of the associated regression coefficients. Note that the strategy of predicting attributes
in Xsupp from attributesXfree is not effective: the information needed to do this is already available in the
ellipsoid obtained using Result 1 (see the Appendix).

In addition to restricting the search space, usingAsupp has practical benefits. Any regression that does
not involve X0 can be fit, which increases both volume and statistical usefulness. Relationships among
predictors ofX0 can be examined, which increases statistical usefulness by facilitating checks for multi-
collinearity.

We search for an optimalA over possible specifications ofXsuppand correspondingAsupp. Our specific
risk and utility measures are based on users’ ability to predict the unknown cross-products betweenX0 and
Xsupp using output fromAsupp. These entries, as well as the rest of the cross-products matrixS, can be
partitioned as

S =

 s00 st
supp st

free

ssupp

sfree
SD

 , (4)

whereD = {X1, . . . , Xd}, ssupp is the cross-products betweenX0 and Xsupp, andsfree contains the cross-
products betweenX0 andXfree.

When all elements ofS are known except for the stripssupp, the feasible values ofssupp must lie in the
interior of an ellipsoid, as shown in Result 1 in the Appendix. We use this ellipsoid to construct specific
measures of in-sample and out-of-sample disclosure risk.

Specific Risk Measures.Residual risk Rres quantifies users’ ability to predictX0 for particular subsets
of units in the data, for example those with atypical attribute values. The risk measure is the reciprocal of
the square root of the average of the squared residuals for the selected subset, obtained from the regression
X0|Xfree.

Prediction risk Rpred quantifies users’ ability to predictX0 from the largest possible regression, namely
X0|X1, X2, . . . , Xd. When some regressions are suppressed, i.e.,Xsupp 6= ∅, the user draws feasible values
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of the unreleasedssupp from the ellipsoid as described in §4, thereby generating feasible coefficients for
X0|X1, X2, . . . , Xd. The risk measure is the average value ofR2 for these feasible regressions, which
summarizes the predictive ability of the feasible models. When drawingssupp from the ellipsoid uniformly,
the sampling distribution of the averageR2 of the feasible models can be determined analytically, as is
shown in Result 2 in the appendix.

These measures can be adjusted to meet particular needs. ForRpred, values ofssupp can be drawn non-
uniformly, for example, to reflect domain knowledge by giving more weight to feasible regions consistent
with estimated coefficients available from published analyses. The values can be drawn so that certain
coefficients are always positive or always negative. Rather than the average of the feasibleR2, the measure
can be some function of the bounds on the predicted values ofX0 implied by the feasible regressions.
Similarly, for Rres, the residuals can be based on the feasible regressions rather than the released ones. Or,
the measure could be based on the relative, absolute residuals rather than squared residuals.

Specific Utility Measures.To measure volume, we use the dimension ofXfree. For statistical usefulness,
we present two measures.Unweighted accuracy Ursq is theR2 of X0|Xfree. Weighted accuracy Ursqwt adds
weightswi that reflect the importance of the variables:Ursq +

∑
i ∈freewi , allowing agencies to incorporate

domain knowledge into utility measures. Eachwi can be interpreted as the “R2 points” gained by including
Xi in Xfree. Settingwi = 1 forcesXi to be in Xfree. Setting allwi = 0 corresponds to having no domain
knowledge-based preferences about which variables are included.

Other utility measures targeted at estimation rather than prediction can be devised, and are associated
closely with the bounds derived in the Appendix.

5.3 Illustrating the Measures: A Simulation Study

We now illustrate the risk and utility measuresRpred, Rres, Ursq andUrsqwt using two simulated databases.
Both comprise 200 records, and contain one response variableX0 and nine predictorsX1, X2, . . . , X9. In
Data Set I,X1, X2, X3 are highly correlated, and each is highly correlated withX0. Data Set II has no strong
relationships among the variables.

For Rres, we select the units with the highest 5% of theX0 values as the target set, so that the agency
is protecting units with extreme values ofX0. For Rpred, we draw feasible values ofssupp uniformly from
the ellipse. ForUrsqwt, we set thewi to equal theR2 of the simple linear regression ofX0 on Xi . In reality,
for Rres the agency specifies the target set, and forUrsqwt the agency specifies weights based on domain
knowledge.

The measures are evaluated on each of 510 possible releases; the two unevaluated regressions include
X0 on the intercept only andX0|X1, . . . , X9. Figures 1–3 display scatterplots of the utility measures versus
the risk measures. Each point represents the value of the utility and risk functions for a particular candidate
release,Asupp. These displays can be used to selectA. In all figures, color indicates the dimension ofXfree.

Behavior of the Risk and Utility Measures. For Data Set I, Figure 1 shows that, as expected, utility
generally increases as risk increases. The precise relationship depends on the risk-utility combination, sug-
gesting that these measures capture different aspects of risk and utility for this data set. This results from the
structure of Data Set I: any release containing one or more of(X1, X2, X3) has high risk and utility, and any
other release has low risk and utility. In Figure 2, the colored points (those releases for whichXfree does not
contain any ofX1, X2, X3) all lie in the low-risk, low-utility region. The effect of(X1, X2, X3) also explains
why no clear dimension effect is evident in Figure 1.

For Data Set II, Figure 3 indicates a clear dimension effect. This is because no predictors are strong, so
that increasing the number of predictors raises all measures of risk and utility.
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Figure 1: Risk-utility scatterplots for both risk and utility measures and corresponding univariate histograms
for Data Set I.

12



Figure 2: Risk-utility scatterplots for both risk and utility measures for Data Set I. Colored points are those
releases in which{X1, X2, X3} 6∈ Xfree.
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Figure 3: Risk-utility scatterplots for both risk and utility measures and corresponding univariate histograms
for Data Set II.
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Selecting an Optimal Release.We now illustrate howAsuppcan be determined from the risk-utility plot
of the candidate releases. As mentioned in §3, general approaches include optimization ofU (A) subject to
an upper threshold onR(A) and selection ofAsupp from a frontier of undominated candidate spaces—those
for which no other candidate release has both lower disclosure risk and higher data utility. These approaches
are displayed in Figure 4.

To illustrate the risk threshold approach, suppose the agency seeks to prevent intruders from predicting
X0 for the chosen target units within 5% on average, which corresponds roughly to aRres threshold of 0.2.
Based on this, we pick the release candidate with highestUrsq andRres < 0.2, yielding as the optimal release
Asuppassociated withXsupp= {X1}, so thatXfree = {X2, X3, . . . , X9}.

To illustrate the frontier approach, the agency first defines a function of risk and utility that quantifies the
“benefit” to the agency for specified values of risk and utility. Contours of this function on the risk-utility
plane show how the agency is willing to trade risk for utility for a fixed level of “benefit”. The agency then
finds the point on the curve connecting all undominated release candidates—the frontier shown in color in
the right panel of Figure 4—that is the first to touch a risk-utility trade-off contour of highest “benefit.” In the
figure, the trade-off contours are linear; “benefit” increases as the line is shifted in a southeast direction. The
line is moved northwest, with the slope kept constant, until it touches a point on the frontier, and this point
corresponds to the optimal release. In Data Set I, this procedure again picksAsuppdefined byXsupp = {X1}

as the optimal release.
Clearly risk-utility plots and optimal releases based on them will vary for different data sets. For in-

stance, Data Set II would yield very different risk-utility values for the optimal release.

6 Discussion

Much of our discussion of disclosure risk and data utility in model servers has been in the context of linear
regression, and our illustrative example involved protecting a single variable. Protecting multiple variables
and dealing with models other than linear regressions complicate the measurement of risk and utility. We
document here some of these additional challenges and suggest paths for future research.

In some databases, relationships involving multiple variables are subject to inferential disclosure. Re-
lease decisions for individual variables necessarily interact and can affect risk and utility. For example,
supposeXa andXb are sensitive and can be predicted closely using other variables. ProtectingXa by pro-
hibiting a set of variables from appearing in models withXa also restricts the answer model space forXb,
andvice versa.

For a small number of variables, it is possible to enumerate all regressions using the sensitive variables as
outcomes, and to compute the risks and utilities for each possible release. This approach is computationally
challenging for data sets with many variables. It may be possible to consider only a small set of predictors as
candidates for those that may not appear with the sensitive variables. Developing effective search strategies,
as well as measures of combined risk and utility, is an area for further research.

It is important from a utility perspective to provide output for models involving transformationsg(X)

that do not result in disclosures (see §4). Operationally, such transformations are not a problem for the
server: the user can submit and receive output from models withg(X) replacingX, and agencies can protect
relationships involvingg(X) rather thanX. However, release strategies designed to protect relationships
involving g(X) do not necessarily protect relationships involving other transformations ofX. Clear-cut
and universally acceptable transformations of the data can be implemented prior to the agency’s releasing
the data. Beyond that, one approach is to disallow any transformations of the data, but at a high cost in
data utility. A less restricted alternative is to limit the space of permissible transformations (for example, to
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Figure 4: Risk-utility plots for selecting an optimal release.Left: release based on a risk threshold.Right:
release based on a risk-utility frontier.
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logarithms, squares and square roots) or to limit the models that can be fit with them (for example, whenever
g(Xa) andg(Xb) are not allowed to appear simultaneously in models, all other transformations ofXa andXb

are prohibited as well). Finding methods of assessing disclosure risks that account for transformations, even
when the space of transformations is restricted, is an extremely challenging problem for further research.

As mentioned in §4.2, approximate bounds for unreleased regression coefficients of complex models—
such as generalized linear models or generalized additive models—can be obtained by approximating the
complex model with a linear regression. It may be possible to obtain sharper bounds on estimated coef-
ficients. For example methods for bounding cells of tabular data correspond to bounds on coefficients of
particular log-linear models (Dobra et al., 2002, 2003). Research on bounds for complex models would have
useful applications for data dissemination even outside the model server context.

It is prudent for agencies to use relevant domain knowledge when deciding what can be released by
a server. As touched on in §5, such considerations can be incorporated into the risk and utility measures.
Examples incorporating domain knowledge for genuine data would be useful blueprints for agencies con-
sidering the analysis server approach.
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Appendix

Result 1 Positive definiteness ofS ensures thatssupp lies within the ellipsoid defined by

(ssupp− c)tB(ssupp− c) < 1, (5)

whereB =
(
S11 − S12S−1

22 S21
)−1

/r , with S11, S12, S21, S22 being the appropriately partitioned elements of
SD (with partitions corresponding to the lengths ofssupp andsfree respectively), r= s00 − st

freeS
−t
22sfree, and

c = S12S−1
22 sfree is the center of the ellipsoid.
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Proof In the partition ofS given in (4), letSD be partitioned as follows:

SD =

[
S11 S12

S21 S22

]
,

whereS11 has dimensionk × k, andS22 has dimension(d − k) × (d − k). Let S−1
D have the corresponding

partition:

S−1
D =

[
A11 A12

A21 A22

]
.

(SinceSD is positive definite, its inverse exists.)
As S is also positive-definite,

det(S) = det(SD) det(s00 − stS−1
D s),

wherest
= (st

supp st
free). SinceS andSD are both strictly positive definite,s00 − stS−1

D s > 0, so that

stS−1
D s

s00
< 1 (6)

and therefore
st

freeA22sfree + 2st
freeA21ssupp+ st

suppA11ssupp

s00
< 1. (7)

With c = −A−1
11 A12sfree, (7) can be rewritten as:

st
free(A22 − A21A−1

11 A12)sfree + (ssupp− c)tA11(ssupp− c)
s00

< 1. (8)

This can be further rewritten as(ssupp− c)tA11(ssupp− c) < r, wherer = s00 − st
free(A22 − A21A−1

11 A12)sfree.
That is,

(ssupp− c)tB(ssupp− c) < 1, (9)

whereB = A11/r . As A11 is strictly positive definite, andr > 0, the inequality in (9) represents the interior
of an ellipsoid.

Using expressions for inverses of partitioned matrices (Guttman, 1982), we can rewritec andr in terms
of elements ofS asc = S12S−1

22 sf ree and

r = s00 − st
freeS

−1
22 sfree. (10)

Note 1 The volume of the ellipsoid is given by

VEk =
π

k
2

0(1 +
k
2)

·
1

√
det(B)

=
π

k
2

0(1 +
k
2)

·
(s00 − st

freeS
−1
22 sfree)

k/2

√
det(A11)

, (11)

where0(·) is the gamma function. Note that (11) can be re-expressed asVEk = Vk/
√

det(B), whereVk is
the volume of thek-dimensional unit hypersphere.

Note 2 For the regression ofX0 on{X1, X2, . . . , Xd}, the coefficient of determinationR2 is X̂t
0X̂0/Xt

0X0 =

Xt
0X̂0/Xt

0X0, which in terms of elements of theSmatrix isstS−1
D s/s00. We can see from (6) that the interior

of the ellipse defines the region (inssupp-space) where theR2 is less than 1.
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Note 3 Similarly, for the regression ofX0 on the variables inXfree, the coefficient of determination, in terms
of elements of theSmatrix, isst

freeS
−1
22 sfree/s00. We will denote this quantity byρ.

Note 4 From (6)–(8),R2 can be written as

R2
=

st
free(A22 − A21A−1

11 A12)sfree + (ssupp− c)tA11(ssupp− c)
s00

(12)

=
st

freeS
−1
22 sfree + (ssupp− c)tA11(ssupp− c)

s00
.

Since bothS−1
22 andA11 are positive definite, andsfree is known,R2 is minimized forssupp= c, so that

R2
min =

st
free(S

−1
22 )sfree

s00
= ρ.

Hence the ellipse that defines the feasible region forssuppcorresponds toρ ≤ R2 < 1.

Result 2 If ssupp is distributed uniformly over its support (given by the ellipsoid from (9)), then the dis-
tribution of R2, the coefficient of determination for the regression of X0 on {X1, X2, . . . , Xd}, has density
function

fR2(u) =
k/2

(1 − ρ)k/2
(u − ρ)

k
2−1 for ρ ≤ u < 1 (13)

and expectation

E(R2) =
k + 2ρ

k + 2
. (14)

Proof We know that the defining condition for the ellipsoid is given by (6), which is equivalent to the
requirement thatR2 < 1 (see Note 1). Moreover,ρ ≤ R2 sincesfree is known (see Note 4). Let us denote
k-dimensional ellipsoid in byEk(1). We can also define thek-dimensional ellipsoid that corresponds to the
conditionR2 < u (with ρ ≤ u) by Ek(u). Analogous to the derivation of Result 1,Ek(u) is defined by:

(ssupp− c)tBu(ssupp− c) < 1, (15)

whereBu = A11/ru, with A11 as in Result 1 and

ru = us00 − st
freeS

−1
22 sfree (16)

If ssupp is distributed uniformly over its support (Ek(1)) then FR2(u) = Pr(R2
≤ u) the ratio of the

volumes of the two ellipsoids:V(Ek(u))/V(Ek(1)). From (11),

FR2(u) = Pr(R2
≤ u) =

V(Ek(u))

V(Ek(1))
=

(ru

r

)k/2

=

(
us00 − st

freeS
−1
22 sfree

s00 − st
freeS

−1
22 sfree

)k/2

=

(
u − ρ

1 − ρ

)k/2

. (17)

Differentiation of (17) yields (13), and a straightforward expectation calculation yields (14).
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