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Abstract

Motivated by the statistical evaluation of complex computer models, we deal with

the issue of objective prior specification for the parameters of Gaussian processes. In

particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this

situation, and prove that the resulting posterior distributions are proper under a quite

general set of conditions. Another prior specification strategy, based on maximum likeli-

hood estimates, is also considered, and all priors are then compared on the grounds of the

frequentist properties of the ensuing Bayesian procedures. Computational issues are also

addressed in the paper, and we illustrate the proposed solutions by means of an example

taken from the field of complex computer model validation.
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1 Introduction

In this paper, we address the problem of specifying objective priors for the parameters

of general Gaussian processes. We derive formulas for the Jeffreys-rule prior; for an

independence Jeffreys prior; and for a reference prior on the parameters involved in the

parametric specification of the mean and covariance functions of a Gaussian process. The

mean is assumed to be a q-dimensional linear model on location-dependent covariates, and

the correlation function involves an r-dimensional vector of unknown parameters. The

resulting posteriors are shown to be proper under a more restrictive, yet with practical

relevance, scenario. We also address computational issues, and in particular we devise

a sampling scheme to draw from the resulting posteriors that requires very little input

from the user. An empirical Bayes procedure, based on maximum likelihood estimates,

is also described, and we present the results of a simulation study designed in order to

compare the frequentist properties of all the Bayesian methods described in the paper.

An example, based on real data, is used to illustrate some of the proposed solutions.

The motivation for considering the problems addressed in this paper is both theoretical

and practical. From the applied point of view, these results are of interest in general for

the field of spatial statistics, but especially for the analysis and validation of complex

computer models. Indeed, one prominent approach to this problem involves fitting a

Gaussian process to the computer model output, and a separable correlation function

involving several parameters, typically a multidimensional power exponential, is frequently

assumed — cf., e.g., Sacks et al. (1989), Kennedy and O’Hagan (2000, 2001) and Bayarri

et al. (2002). The computer models are often computationally extremely demanding and

this is a way of providing a cheaper surrogate that can be used in the design of computer

experiments; optimization problems; prediction and uncertainty analysis; calibration; and

validation of the model. In the Bayesian approach, one must specify prior distributions

for the parameters of the Gaussian processes. Typically, little or no prior information

about the parameters is available, and their interpretation is not always straightforward,

so that automatic or default procedures are sought. The need for default specification of

priors, and also for the development of computational schemes for the resulting posteriors,

is thus considerable in this area.

From a more theoretical perspective, this article is also relevant. Berger, De Oliveira,

and Sansó (2001) consider objective Bayesian analysis of Gaussian spatial processes with
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a quite general correlation structure, but the study is restricted to the situation where

only the (one-dimensional) range parameter is considered to be unknown. The original

motivation for their paper was the observation that commonly prescribed default priors

could fail to yield proper posteriors. A more in-depth study of the problem revealed

very interesting and unusual facts. In the presence of an unknown mean level for the

Gaussian process, the integrated likelihood for the parameters governing the correlation

structure is typically bounded away from zero, which explains the difficulty with posterior

propriety. Also, the independence Jeffreys prior (assuming the parameters in the mean

level are a priori independent of the ones involved in the covariance), which is often

prescribed, fails to yield a proper posterior when the mean function includes an unknown

constant level. The usual algorithm for the reference prior of Bernardo (1979) and Berger

and Bernardo (1992), in which asymptotic marginalization is used, also fails to produce

a proper posterior — this is the first known example in which exact marginalization is

required to achieve posterior propriety. The authors end up recommending this “exact”

reference prior.

The next logical step is to investigate whether these results still hold in higher dimen-

sions, which is precisely one of the aims of the present article. The answer is no, in the

sense that there are no surprises in terms of posterior propriety, and we describe in detail

the reasons for that.

The paper is organized as follows: Section 2 sets up some notation and establishes

formulas for the objective priors that are valid in a very general setting. The next section

begins by describing the scenario where analytical results have been achieved, and in the

sequel we analyze the behavior of the integrated likelihood and of the priors. Finally,

conditions ensuring posterior propriety are determined.

Section 4 addresses computational aspects of the problem, and in particular we describe

a Markov chain algorithm to sample from the posterior that requires very little input from

the user. This algorithm involves computing maximum likelihood estimates and the Fisher

information matrix. Taking advantage of the availability of these quantities, we propose

also an Empirical Bayes approach to the problem. This section ends with an example,

using real data, that illustrates some of the proposed solutions.

Section 5 presents the results of a simulation study designed to compare the frequentist

properties of the Bayesian procedures proposed in the paper, and ends with some final

recommendations.
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In the Appendix we present the proofs of the various results that are described in the

body of the paper.

2 Notation and the Objective Priors

Let us consider the following rather general situation: Y (·) is a Gaussian process on

S ⊂ � p with mean and covariance functions given respectively by

�
Y (x) ≡ Ψ(x) · θ

and

�
ov(Y (x), Y (x?)) ≡ σ2 c(x,x? | ξ) ,

where c(·, ·) is the correlation function, σ2 is the variance, and ξ is an r-dimensional

vector of unknown parameters. The vector Ψ(x) = (ψ1(x), . . . , ψq(x))′ is a q-vector of

location-dependent covariates. Define η = (σ2,θ′, ξ′)′.

The stochastic process Y (·) is observed at locations S = {x1, . . . ,xn} and hence the

resulting random vector, Y = (Y (x1), . . . , Y (xn))′, satisfies

Y | η ∼ N(Xθ, σ2Σ) (2.1)

where Σ ≡ Σ(ξ) = [c(xi,xj | ξ)]ij and

X =











Ψ(x1)
′

...

Ψ(xn)′











. (2.2)

As a result, the associated likelihood function based on the observed data y is given by

L(η | y) ∝ (σ2)−n/2 |Σ|−1/2 exp

{

− 1

2σ2
(y − Xθ)′Σ−1(y − Xθ)

}

. (2.3)

The priors on η that we will consider are of the form

π(η) ∝ π(ξ)

(σ2)a
(2.4)

for different instances of π(ξ) and a. Indeed, we will in the next two propositions show

that this is the case for the Jeffreys-rule prior, for an independence Jeffreys prior and for
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a reference prior. This general prior follows a familiar form: flat on the parameters that

specify the mean and usual forms for the variance σ2.

Following Berger et al. (2001), in order to derive the reference prior we specify the

parameter of interest to be (σ2, ξ) and consider θ to be the nuisance parameter. This

corresponds in the reference prior algorithm to factoring the prior as

πR(η) = πR(θ | σ2, ξ) πR(σ2, ξ)

and selecting πR(θ | σ2, ξ) ∝ 1, because that is the Jeffreys-rule prior for the model at

hand when σ2 and ξ are considered known. Next, πR(σ2, ξ) is calculated as the reference

prior but for the marginal model defined by the integrated likelihood with respect to

πR(θ). It is this marginalization step that usually is carried in an asymptotic fashion;

Berger et al. (2001) recommend that, for statistical models with a complicated covariance

structure, the exact marginalization should become standard practice.

Before stating the formula for this reference prior, let us define Σ̇
k

as the matrix

that results from Σ by differentiating each of its components with respect to ξk, the kth

component of ξ. Also, note that the marginal model with respect to πR(θ) ∝ 1 is in this

case

LI(σ2, ξ | y) =

∫

�
q

L(η | y) πR(θ) dθ

∝ (σ2)−(n−q)/2|Σ|−1/2 |X ′Σ−1X|−1/2 exp

{

−
S2

ξ

2 σ2

}

(2.5)

where S2
ξ = y′Qy, Q = Σ−1P and P = I − X(X ′Σ−1X)−1X ′Σ−1.

Proposition 2.1 The reference prior πR(η) is of the form (2.4) with

a = 1 and πR(ξ) ∝ |IR(ξ)|1/2 (2.6)

where, with W k = Σ̇
k
Q, k = 1, . . . , r,

IR(ξ) =

















n− q trW 1 trW 2 · · · trW r

trW 2
1 trW 1W 2 · · · trW 1W r

. . . · · · ...

trW 2
r

















. (2.7)

Proof: See Appendix B. �
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In the next proposition, we present the formulas for the two Jeffreys-type priors we

will consider.

Proposition 2.2 The independence Jeffreys prior, πJ1, obtained by assuming θ and

(σ2, ξ) a priori independent, and the Jeffreys-rule prior, πJ2, are of the form (2.4) with,

respectively,

a = 1 and πJ1(ξ) ∝ |IJ(ξ)|1/2 , (2.8)

and

a = 1 +
q

2
and πJ2(ξ) ∝ |X ′Σ−1X|1/2 πJ1(ξ) , (2.9)

where Uk = Σ̇
k
Σ−1 and

IJ(ξ) =

















n tr U1 tr U2 · · · tr U r

tr U2
1 tr U1U2 · · · tr U 1U r

. . . · · · ...

tr U2
r

















. (2.10)

Proof: See Appendix B. �

For priors of the form (2.4), it is possible to integrate explicitly the product of the

likelihood and the prior over (σ2,θ). Indeed, standard calculations yield (as long as

a > 1 − (n− q)/2)

∫

�
q×

�
+

L(η | y)π(η) dθ dσ2 = LI(ξ | y)π(ξ)

where

LI(ξ | y) ∝ |Σ|−1/2|X ′Σ−1X|−1/2(S2
ξ)−((n−q)/2+a−1) . (2.11)

It is clear that the posterior associated with the prior (2.4) is proper if and only if 0 <
∫

Ω L
I(ξ | y) π(ξ)d ξ <∞, where Ω ⊂ � r is the parametric space of ξ.

It appears to be difficult to study analytically the properties of both the integrated

likelihood LI(ξ | y) and the function π(ξ) — which we will often abuse terminology and

refer to as the marginal prior for ξ —, in such a general setting. In the next section we

will make the problem more amenable to analytical treatment by introducing a number

of assumptions defining a more restrictive, yet with practical relevance, scenario.
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3 Posterior Propriety

In this section, we show that the objective priors yield proper posteriors for an important

special case. The proof is constructed as follows. In §3.1 we introduce the notion of a

separable correlation function and the restrictions we assume on the linear model speci-

fying the mean function. Next, under added assumptions, we describe the behavior of

the integrated likelihood, whereas in §3.3 we achieve the same goal but for each of the

objective priors determined in Section 2. Putting these results together, we are able to

prove the theorem stated in §3.4. Throughout the present section, we will number the

assumptions in order to easily be able to refer to them.

3.1 Separable Correlation Functions

Let p ≥ 2. It is a simple consequence of Bochner’s Theorem, cf. Cressie (1993), that

if ci(x, x
?) ≡ ci(|x − x?|), i = 1, . . . , p, are isotropic correlation functions in

�
, then

c(x,x?) =
∏p

i=1 ci(|xi−x?
i |) is a valid correlation function in

� p. Such correlation functions

are called separable. If a separable correlation function is used and if furthermore the set

of locations at which the process is observed forms a Cartesian product, it is easy to

see that the correlation matrix of the data is the Kronecker product of the individual

correlation matrices associated with each dimension. (Recall that the Kronecker product

of two matrices, A = [aij ] and B, is defined by A ⊗ B = [aij B].) It is essentially in

this setting that we will study the analytical properties of the integrated likelihood and

priors, along with establishing sufficient conditions for posterior propriety. We next make

these statements precise.

We will henceforth assume that r ≡ p ≥ 2 and that

c(x,x? | ξ) =

p
∏

k=1

ρ(|xk − x?
k|; ξk) , (3.1)

where ρ is a valid correlation function in
�
. Also, the set of locations at which the Gaussian

process is observed will be assumed to follow a Cartesian product, i.e.

S = S1 × S2 × · · · × Sp (3.2)

where Sk = {x1k, · · · , xnk,k} ⊂ �
, #Sk = nk, so that #S ≡ n =

∏p
k=1 nk. One should

think about the parameter ξk as representing the range parameter of the associated cor-
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relation structure; if other parameters are present, e.g. roughness parameters, those will

be assumed known.

In terms of the mean structure, we will restrict attention exclusively to the situation

where there is only one unknown parameter θ, i.e. q = 1, and the design matrix (2.2) can

be written in the form

X = X1 ⊗ X2 ⊗ · · · ⊗ Xp (3.3)

with each Xk of dimension nk × 1. Within this framework we can find, for instance, the

unknown constant mean case, i.e.,

q = 1 and Ψ(x) ≡ 1 ⇒ �
Y (x) = θ ∀ x , (3.4)

and X ≡ 1n = 1n1 ⊗ · · · ⊗ 1np . This is in turn an instance of the more general situation

described by

q = 1 and Ψ(x) ≡
∏

k∈A

ψk(xk) ⇒ �
Y (x) = θ

∏

k∈A

ψk(xk) ∀ x , (3.5)

where A ⊂ {1, . . . , n}. In this circumstance, Xk = (ψk(xik), i = 1, . . . , nk)
′, if k ∈ A;

otherwise, Xk = 1nk
.

Above, and throughout the paper, when we write Xk = 1nk
what we really mean is

that Xk is a multiple of the nk-dimensional vector of all ones, or, in a more mathematical

sense, that 1nk
is in the space spanned by Xk. The same comments apply to the statement

Xk 6= 1nk
.

As we alluded to before, the Cartesian product structure of the design set, and the

separable correlation function that we assumed, jointly allow for a very convenient Kro-

necker product expression for the correlation matrix of the data. To make that clear and

to set up some notation as well, we have

Σ = Σ1 ⊗Σ2 ⊗ · · · ⊗Σp ≡
p
⊗

k=1

Σk (3.6)

where Σk = [ρ(|xik − xjk|; ξk)]i,j=1,...,nk
, k = 1, . . . , p, are the correlation matrices associ-

ated to each dimension. Note that each of these matrices is of dimension nk × nk. This

fact is further explored in Section 4. For simplicity, we will from here on use the shorthand

exemplified above: we represent by ⊗p
k=1Ak the matrix A1 ⊗ · · · ⊗ Ap.

The ρ functions we will consider are quite general, but we will focus particular attention

on the families of correlation functions that we list in Table 1 for future reference. For

more details and additional references, consult Cressie (1993).
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Spherical—

ρ(d; ξ) =
[

1 − 3
2

dξ + 1
2
(dξ)3

]

I{dξ ≤ 1}; ξ > 0 .

Power Exponential—

ρ(d; ξ) = exp [−(dξ)α] ; ξ > 0, α ∈ (0, 2] .

Rational Quadratic—

ρ(d; ξ) = [1 + (dξ)2]
−α

; ξ > 0, α > 0 .

Matérn— Kα(·) is the modified Bessel function of the second kind and order α.

ρ(d; ξ) = 1
2α−1Γ(α)

(dξ)αKα(dξ); ξ > 0, α > 0 .

Table 1: Families of correlation functions: ξ denotes a range parameter; α refers to a roughness

parameter; d represents the Euclidean distance between two locations.

We next summarize the assumptions introduced in this paragraph.

Assumptions:

A 1 Separability of the correlation function: r ≡ p ≥ 2 and

c(x,x? | ξ) =

p
∏

k=1

ρ(|xk − x?
k|; ξk) ,

where ρ is a valid correlation function in
�

.

A 2 Cartesian product of the design set:

S = S1 × S2 × · · · × Sp

where Sk = {x1k, · · · , xnk,k} ⊂ �
, #Sk = nk, so that #S ≡ n =

∏p
k=1 nk .

A 3 Mean structure: q = 1 and

X = X1 ⊗ X2 ⊗ · · · ⊗ Xp

with each Xk of dimension nk × 1. �

3.2 Behavior of the Integrated Likelihood

In this section, we will focus attention on the properties of the integrated likelihood.

Nonetheless, the next two lemmas are key also to the series of results that will follow

concerning the analytical behavior of the priors.
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Lemma 3.1 Under assumptions A 1–A 3, we have

Q = Σ−1 P =

p
⊗

k=1

Σ−1
k −

p
⊗

k=1

Φk , (3.7)

where Φk = Σ−1
k Xk(X

′
kΣ

−1
k Xk)

−1X ′
kΣ

−1
k , and

|X ′Σ−1X | =

p
∏

k=1

X ′
kΣ

−1
k Xk . (3.8)

Proof: See Appendix C.1. �

Lemma 3.2 Under assumptions A 1–A 3, suppose ρ(d; ξ) is a continuous function of ξ for

every d ≥ 0 such that

• ρ(d; ξ) = ρ0(d ξ), where ρ0(·) is a correlation function satisfying lim
u→∞

ρ0(u) = 0;

• as ξk → 0, each of the correlation matrices Σk satisfies

Σk = 1nk
1′

nk
+ ν(ξk)(Dk + o(1)) , k = 1, . . . , p (3.9)

for some continuous non-negative function ν(·) and fixed nonsingular matrix Dk.

• Above, and for k = 1, . . . , p, Dk should satisfy 1′
nk

D−1
k 1nk

6= 0, X ′
kD

−1
k Xk 6= 0,

and, if Xk 6= 1,

1′
nk

D−1
k 1nk

6= 1′
nk

D−1
k Xk(X

′
kD

−1
k Xk)

−1X ′
kD

−1
k 1nk

. (3.10)

Define the quantities

F k =
D−1

k 1nk
1′

nk
D−1

k

(1′
nk

D−1
k 1nk

)2
(3.11)

Gk = D−1
k −

D−1
k 1nk

1′
nk

D−1
k

1′
nk

D−1
k 1nk

(3.12)

Hk =
GkXkX

′
kGk

X ′
kGkXk

. (3.13)
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In this setting, we have that, as ξk → 0, k = 1, . . . , p

Σ−1
k = Gk(1 + o(1))/ν(ξk) (3.14)

|Σk| = [ν(ξk)]
nk−1|Dk|(1′

nk
Dk1nk

) (1 + o(1)) (3.15)

X ′
kΣ

−1
k Xk =











1 + o(1) if Xk = 1
[

X ′
kD

−1
k Xk − 1′D

−1
k XkX

′

kD
−1
k 1

1′D
−1
k 1

]

(1 + o(1))/ν(ξk) otherwise
(3.16)

Φk =











F k(1 + o(1)) if Xk = 1

Hk(1 + o(1))/ν(ξk) otherwise .
(3.17)

Proof: See Appendix C.1. �

The following result describes the behavior of the integrated likelihood (2.11) in the

present setting and under the assumptions of the previous lemma.

Proposition 3.3 Under the conditions of Lemma 3.2, and assuming a prior of the

form (2.4), LI(ξ | y) is a continuous function of ξ given by the expression

LI(ξ | y) ∝
p
∏

k=1

{

|Σk|−n(k)/2(X ′
kΣ

−1
k Xk)

−1/2
}

× [y′Qy]−(n−3+2a)/2 (3.18)

where Q is given by (3.7) and n(k) ≡
∏

i6=k ni.

Additionally, let A = {k ∈ {1, . . . , n} : Xk 6= 1} and B a nonempty, but otherwise

arbitrary, subset of {1, . . . , n}. Denote by Ē the complement of a set E. Then,

(a) as ξk → 0, k ∈ B and ξk → ∞, k ∈ B̄,

LI(ξ | y) ∝
∏

k∈B

ν(ξk)
(nk−3+2a)/2

∏

k∈A∩B

ν(ξk)
1/2 (1 + g(ξ)) (3.19)

with g(ξ) → 0;

(b) as ξk → 0, k ∈ B and 0 < δk < ξk < Mk <∞, k ∈ B̄,

LI(ξ | y) ∝
∏

k∈B

ν(ξk)
(nk−3+2a)/2

∏

k∈A∩B

ν(ξk)
1/2 ×

× (1 + g({ξk, k ∈ B})) × h({ξk, k ∈ B̄}) ,
(3.20)

with g(·) → 0 and h(·) continuous on {δk < ξk < Mk, k ∈ B̄}.

Proof: See Appendix C.1. �
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3.3 Behavior of the Priors

In the next two results, properties of both Jeffreys’ priors and of the reference prior are

described. They are based on a series of assumptions that we list below, and form (except

for A 8) a subset of those introduced in Berger et al. (2001) in their study of the asymptotic

properties of the priors. According to this paper, the families of correlation functions listed

on Table 1 (virtually always) satisfy these properties. (For example, beware of the fact

that for the power exponential with α = 2 and more than 3 equally spaced points, it is

not the case that D is invertible. It is if α ∈ (0, 2).) Note also how these assumptions

imply those of Lemma 3.2. Below, we denote by Σ̇k the matrix of derivatives of Σk with

respect to ξk, k = 1, . . . , p.

Assumptions: Suppose that ρ(d; ξ) = ρ0(d ξ), where ρ0(·) is a correlation function

satisfying lim
u→∞

ρ0(u) = 0, is a continuous function of ξ for any d > 0 and that, for

k = 1, . . . , p,

A 4 As ξk → 0, there are fixed matrices, Dk, nonsingular, and D?
k; differentiable functions

ν(·) (> 0) and ω(·); and a matrix function Rk(·) that is differentiable as well, such

that

Σk = 1nk
1′

nk
+ ν(ξk)Dk + ω(ξk)D

?
k + Rk(ξk) (3.21)

Σ̇k = ν ′(ξk)Dk + ω′(ξk)D
?
k + ∂

∂ξk
Rk(ξk) . (3.22)

A 5 The functions ν, ω and Rk further satisfy, as ξk → 0 and with ||[aij ]||∞ = maxij{|aij |}

ω(ξk)

ν(ξk)
→ 0

ω′(ξk)

ν ′(ξk)
→ 0

||Rk(ξk)||∞
ν(ξk)

→ 0
|| ∂

∂ξk
Rk(ξk)||∞
ν ′(ξk)

→ 0 .

A 6 Above, Dk satisfies 1′
nk

D−1
k 1nk

6= 0, X ′
kD

−1
k Xk 6= 0, and, if Xk 6= 1,

1′
nk

D−1
k 1nk

6= 1′
nk

D−1
k Xk(X

′
kD

−1
k Xk)

−1X ′
kD

−1
k 1nk

.

A 7 [tr(Σ̇k)
2]1/2 is integrable at infinity.

A 8 nk ≥ 2. �

We start with the reference prior and then proceed to the Jeffreys-type priors.
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Proposition 3.4 For the reference prior (2.6), and under assumptions A 1–A 3, there

are functions πR
k (ξk), k = 1, . . . , p such that

πR(ξ) ≤
p
∏

k=1

πR
k (ξk) , (3.23)

where, as ξk → 0, k = 1, . . . , p, and under added assumptions A 4–A 8,

πR
k (ξk) ∝

∣

∣

∣

∣

ν ′(ξk)

ν(ξk)

∣

∣

∣

∣

(1 + o(1)) , (3.24)

and πR
k is integrable at infinity.

Proof: See Appendix C.2. �

Proposition 3.5 Under assumptions A 1–A 3, for the independence Jeffreys prior, πJ1,

given by (2.8), and the Jeffreys-rule prior, πJ2, given by (2.9), there are functions πJi
k (ξk),

i = 1, 2, k = 1, . . . , p, such that

πJi(ξ) ≤
p
∏

k=1

πJi
k (ξk) (3.25)

where, under added assumptions A 4–A 8 and for k = 1, . . . , p, we have, as ξk → 0

πJi
k (ξk) ∝ |ν ′(ξk)|

|ν(ξk)|αk
(1 + o(1)) (3.26)

with

αk =











1 , if i = 1 or (i = 2 and Xk = 1)

3/2 , if i = 2 and Xk 6= 1 .
(3.27)

Also, πJi
k is integrable at infinity.

Proof: See Appendix C.2. �

3.4 Results on Posterior Propriety

In this section we investigate the propriety of the formal posterior associated with a general

prior of the form (2.4), in the scenario described throughout the previous sections. We end

with a result that specifically addresses the case of both Jeffreys’ priors and the reference

prior.
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Theorem 3.6 Under the set of assumptions A 1–A 8, the posterior associated with the

general prior (2.4) — where π(ξ) is either πR, πJ1 or πJ2 —, is proper as long as

a > 1/2 . (3.28)

Proof: See Appendix C.3. �

If we restrict attention to the instances of the general prior that are of particular

interest, then we have the following:

Corollary 3.7 Under assumptions A 1–A 8, the reference, the independence Jeffreys

and the Jeffreys-rule priors yield proper posteriors.

Proof: Just recall that a = 1 in the case of the reference and independence Jeffreys

prior, and that for the Jeffreys-rule a = 1 + q/2, where by assumption q = 1. �

It is interesting to understand what makes the multidimensional problem different

from the unidimensional one, the case covered in Berger et al. (2001). As we mentioned

in the Introduction, the reason why posterior propriety is difficult to achieve in the uni-

dimensional case has to do with the behavior of the integrated likelihood near the origin.

For example, if p = 1 and X = 1, we have, as ξ → 0

LI(ξ | y) = O([ν(ξ)]1−a)

which is independent of the sample size. Roughly speaking, the first and last factors of

(2.11) produce powers of ν(ξ) depending on the sample size that essentially cancel.

The key formula in the multidimensional case is

∣

∣

∣

∣

∣

p
⊗

k=1

Σk

∣

∣

∣

∣

∣

=

p
∏

k=1

|Σk|n(k)

where n(k) =
∏

i6=k ni. Considering (3.15), it is clear that, as ξk → 0,

|Σ|−1/2 ∝





p
∏

i6=k

|Σi|−n(i)/2



 ν(ξk)
−n/2 ν(ξk)

n(k)/2 (1 + o(1)) .

The first factor involving ν(ξk) will again essentially cancel, but we still keep the second,

which explains the different behaviors. For small ξk the prior is not that relevant in deter-

mining posterior propriety in the multidimensional case, whereas in the unidimensional

one it is of capital importance.
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4 Computation

As we already mentioned, there is considerable need in the area of computer model vali-

dation for default prior specifications and also for efficient computational schemes. In this

section, we address several computing issues, and in particular that of Bayesian learning

in the presence of the objective priors derived in this paper. We present an example, taken

from the field of computer model validation, to illustrate some of the proposed solutions.

We now return to the general setting of Section 2, and in particular, unless otherwise

noted, ξ represents a general r-dimensional vector involved in the parametric formulation

of the correlation function.

4.1 General Remarks

Evaluating any of the objective priors at one particular value of ξ is a computationally

intensive task. The reference prior is the most computationally intensive of all three,

followed by the independence Jeffreys prior and by the Jeffreys rule prior. In order to

convince oneself of that, it suffices to consider the calculations involved in computing each

of the entries of the matrices (2.7) and (2.10). For similar reasons, it is clear that the

likelihood function (2.3) is computationally less expensive than either of the integrated

likelihoods given by (2.5) and (2.11).

One should note that some of the assumptions of Section 3 have considerable poten-

tial impact on the computational side of the problem. When satisfied, the separability

assumption (A 1) paired with the Cartesian product structure of the design set (A 2),

which implies formula (3.6), can be exploited in order to tremendously simplify and speed

up computation. Indeed, the most expensive (and possibly numerically unstable) calcula-

tions of this problem are certainly computing the inverse of the correlation matrix and its

determinant. Formulas (II) and (III) of Appendix A essentially state that, in this case,

we only have to compute the inverse and the determinant of each of the p matrices Σk

of dimension nk × nk, and not for the n × n correlation matrix Σ. Even the Cholesky

decomposition of Σ can be obtained from that of the Σk, as it is easy to see. This allows

for much more freedom on the number of points at which one observes the stochastic

process, as explored in Bayarri et al. (2002) when dealing with functional output of a

computer model.
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4.2 Maximum Likelihood Estimates

The calculation of maximum likelihood (ML) estimates turns out to be useful at least in

two manners. On the one hand, from an applied perspective, it is often the case, and

especially in the field of computer model validation, that there is not enough information

in the data to learn about all the parameters that specify the correlation structure. In

particular, it is quite plausible that there is very little information in the data about

parameters that characterize geometric properties of the process, the so-called roughness

parameters. If one is not willing to impose restrictions on those characteristics based

on expert information, an alternative solution is to fix those parameters at some data-

determined value, in particular at some kind of maximum likelihood estimate. The other

circumstance where these estimates can be useful is in devising sampling schemes that

require little input from the user, as we will see in §4.4.
The question of which kind of estimate should one compute is relevant, as here we

have at our disposal explicit formulas for three distinct (integrated) likelihood functions.

There is considerable empirical evidence supporting the fact that, in general, maximum

likelihood estimates derived from integrated likelihoods tend to be more stable and also

more meaningful, so that one would in principle discard the idea of maximizing the joint

likelihood (2.3). Also, these estimates are not as useful in the context of devising sampling

schemes.

Maximizing the integrated likelihood (2.5) has some advantages over maximizing (2.11).

First of all, it gives rise to considerable simpler formulas for the gradient and the associ-

ated expect information matrix. Indeed, it is easy to see from inspection of the proof of

Proposition 2.1 that

∂

∂σ2
lnLI(σ2, ξ) =

1

2

(

1

σ4
y′Qy − 1

σ2
(n− q)

)

∂

∂ξk
lnLI(σ2, ξ) =

1

2

(

1

σ2
y′Qy − trW k

)

, k = 1, . . . , r .

and that the associated Fisher information matrix is

I(σ2, ξ) =
1

2

















n−q
σ4

1
σ2 trW 1

1
σ2 trW 2 · · · 1

σ2 trW r

trW 2
1 trW 1W 2 · · · trW 1W r

. . . · · · ...

trW 2
r

















. (4.1)
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This allows for a very simple optimization algorithm to be used in computing the associ-

ated estimate, namely Fisher’s Scoring method, a variant of the Newton-Raphson method

that results from approximating the Hessian of the logarithm of integrated likelihood by

its expected value. To be more precise, the (s+ 1)-th iterate of the numerical method is

given by

(σ2)(s+1) =
y′Qy

n− q

ξ(s+1) = ξ(s) + λ [I(ξ(s))]−1 ∂ lnLI(ξ)

∂ξ

∣

∣

∣

∣

ξ=ξ(s)

,

where I(ξ) results from (4.1) by dropping first row and column. The quantity λ is the

step size of the algorithm.

There are some drawbacks to this simple numerical method. First, it is possible that,

initially, some iterates happen to lie outside the parameter space. We surround this prob-

lem by simply saying that ξ
(s+1)
k = ξ

(s)
k whenever the k-th component of ξ(s+1) happens

to not belong to the corresponding parameter space. Also, it is well known that Newton-

Raphson-type methods are quite sensitive to the starting points, sometimes becoming

trapped in local maxima and sometimes simply not converging. This unfortunately is

not easy to solve. Some experimentation and tuning of λ are required in order to assure

convergence.

Getting an estimate of ξ by maximizing (2.11) is not as attractive because of the fact

that the formulas are computationally more involved. For example, there does not seem

to be a closed form expression for the associated expected information matrix. Also, in

the examples we have dealt with involving the power exponential family of correlation

functions, we did not notice any improvements over the simpler method. The availability

of an estimate of the variance will also be useful in the next section, where we will describe

an Empirical Bayes alternative to the objective priors.

4.3 An Empirical Bayes Alternative

The availability of ML estimates allows for an alternative prior specification to be con-

sidered, one that is data-dependent. The basic idea is to place independent Exponential

priors centered at a multiple of the ML estimates on the precision (reciprocal of variance)

and on the components of vector ξ, in effect specifying an Empirical Bayes procedure.

The constant that multiplies the ML estimate in order to get the mean of the prior can be
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determined by experimentation, making sure that the effect of the prior on the posterior

is relatively small. In other words, making sure that the prior is relatively flat in the

region of the parametric space where the posterior mass accumulates. For an example,

consider §4.5.
The reasons for entertaining this alternative method are as follows. First, having said

that the evaluation of the objective priors is computationally intensive, it makes sense to

consider this much simpler method and compare the results. Second, the objective priors

we derived are all based on formal methods, and hence it is nice to be able to compare

them with seemingly more intuitive approaches to the problem. Lastly, this comparison is

even more important as people often in practice resort to similar stategies as an alternative

to objective priors derived by formal methods.

4.4 Sampling from the Posterior

No matter which prior specification one uses — any of the objective priors or the Empirical

Bayes method —, one can sample exactly from the full conditional of θ and of σ2 — these

are respectively Gaussian and Inverse-Gamma:

θ | y, ξ, σ2 ∼ N((X ′Σ−1X)−1X ′Σ−1y, σ2(X ′Σ−1X)−1)

σ2 | y,θ, ξ ∼ Γ−1(n/2 + a− 1, y′Σ−1y/2 + rσ2)

where, by convention, a = 2 in the case of the Empirical Bayes. Recall that in the case

of the reference and independence Jeffreys priors a = 1, whereas in the Jeffreys-rule,

a = 1 + q/2. Also, rσ2 is the rate of the Exponential prior in the Empirical Bayes case,

and should be set to zero otherwise.

Then, one has the choice between sampling from the marginal posterior [ξ | y] or

from the full conditional [ξ | y, σ2,θ]. We adopt this latter strategy since the integrated

likelihood is computationally more expensive than the full likelihood and, based on the in

the experiments we conducted, there are no apparent gains in terms of mixing in adopting

the other strategy.

At this point we have also the option of drawing ξ as a block or not. To this end, notice

that as long as one updates one of the components of ξ one has basically to recompute

the likelihood, as it does not factor in any useful way. From that perspective, it is more

efficient therefore to sample ξ as a block. On the other hand, it is reasonable to expect

some correlation between the ξk, and sampling ξ as a block would at least reduce it.
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The question is, can we get a proposal, in a more or less automatic fashion, that allows

for this? The ML estimate and the expected information matrix we described in §4.2 are

useful in accomplishing this goal. Although the resulting sampling scheme is certainly not

new and has been widely used, it seems to work well in the examples we examined so far.

The idea is to consider a reparameterization

ζ = g(σ2, ξ)

so that the new parameter space is
� r+1. For this alternative parameterization, it is easy

to calculate both the marginal ML estimate, ζ̂, and the associated expected information

evaluated at the ML estimate, Iζ(ζ̂), given that we can compute those quantities for the

original parameterization. Consider the partition of Iζ(ζ̂) given by (u is a scalar, v is an

r × 1 vector)

Iζ(ζ̂) =





u v′

v A



 (4.2)

and define

V̂ = A − v v′/u . (4.3)

We perform a Metropolis step in the alternative parameterization with a t-density proposal

centered at the previous iteration, with d degrees of freedom and scale matrix c2 V̂ .

The only quantities that need to be specified in order to implement this Markov chain

Monte Carlo (MCMC) method is the number of degrees of freedom and the multiple c.

The number of degrees of freedom is not an issue, one can even use a Normal instead of a

t. As for c, one can always experiment with a few values, and a reasonable starting guess

is c ≈ 2.4/
√
r.

4.5 An Example

For illustrative purposes, we are going to consider a simplified version of a problem ana-

lyzed in detail in Bayarri et al. (2002). In this paper, they consider the analysis of a

computer model that simulates the crash of prototype vehicles against a barrier, recording

the velocity curve from the point of impact until the vehicle stops. For our purposes, we

will imagine that if we input an impact velocity and an instant in time, the computer

model will return the velocity of the vehicle at that point in time after impact.
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The data consists of the output of the computer model at 19 values of t and 9 initial

velocities v, which corresponds to an 171-point design set that follows a Cartesian product.

If we subtract from each of the individual curves the initial velocity, what happens is that

all the curves will start at zero and decay at a rate roughly proportional to the initial

velocity. For this transformed data, which is plotted on Figure 1, it seems reasonable to

consider the mean function
�
Y (v, t) = v t θ, which in the notation of Section 2 translates

into q = 1 and ψ(v, t) = v t. In particular, this problem satisfies assumptions A 2 and

A 3.
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Figure 1: Relative velocity as a function of time after impact and of impact velocity.

In terms of correlation function, we will assume a two-dimensional separable power

exponential function, with the roughness parameters fixed at 2, and the following parame-

terization

c((t1, v1), (t2, v2)) = exp(−βt |t1 − t2|2) exp(−βv |v1 − v2|2) . (4.4)

Figure 2 shows estimates of the posterior distribution associated with each of the priors

that we have introduced in the paper. The Empirical Bayes corresponds to centering the

Exponential priors at 10 times the computed ML estimates, and the dotted lines on that

figure correspond to those densities. Figure 3 shows the same samples now in the form

of box-plots. The sampling mechanism was implemented exactly as detailed above, and
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we used a t density with 3 degrees of freedom and c = 1.7. The transformation g that we

used was the logarithmic one. The acceptance rate was roughly 0.27 in all cases, and the

results correspond to 50,000 iterations, minus 500 that were discarded as burn-in. The

chains seem to reach stationarity very quickly, and 50,000 iterations is certainly more than

we actually need for reliable inference.
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Figure 2: Smoothed histograms of samples drawn from the posterior distribution associated

with each of the priors. Dotted lines correspond to Exponential priors of Empirical Bayes, and

the triangles indicate the marginal likelihood estimates.

For these data, the answers are quite robust with respect to the type of default prior

chosen. In the next section we study finer details of the methods proposed in the paper,

in particular by studying the frequentist properties of the resulting Bayesian procedures.

5 Comparison of the Priors

When faced with more than one valid default prior specification strategy, it is often argued

that one way to distinguish among these is by studying the frequentist properties of the
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Figure 3: Box-plots of samples drawn from the posterior distribution associated with each of

the priors.

resulting Bayesian inferential procedures. This usually takes the form of computing the

frequentist coverage of the (1 − γ) × 100% equal-tailed Bayesian credible interval for one

of the parameters of interest. The closer to the nominal level is this frequentist coverage,

the ‘better’ is the prior.

This frequentist coverage is a computationally very intensive type of calculation since,

if no other problem-specific method is available, one has to proceed as follows to get an

estimate of such probability. Having fixed a value for the vector of unknown parameters,

one has to generate data from the ensuing model and calculate the equal-tailed credible

interval. Often, as in the present case, this is accomplished by generating an MCMC

sample from the posterior and obtaining the associated γ/2- and (1 − γ/2)-quantiles for

the parameter of interest. Finally, one records the realization of the Bernoulli experiment

in which the success corresponds to the parameter of interest lying within the limits of

the computed credible interval. These steps have to be repeated a large number of times

in order to get a reliable estimate of this success probability, which is typically large in
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magnitude. Obviously, this is only feasible if a nearly automated MCMC algorithm is

available, which is presently the case.

Our study was conducted in the context of the power exponential correlation function

with p = 2, parameterized as in (4.4), with the roughness parameters (α1 and α2) treated

as known. For a 5×5 equally spaced grid in [0, 1]×[0, 1], we considered two options for the

mean structure: an unknown constant term that we fixed at θ = 1 and
�
[Y (x) | η] = θx1,

where again θ was fixed at 1. Several choices for the other parameters were considered,

and we simulated 3000 draws from the ensuing model. Each Markov chain consisted of

15000 iterations, the first 100 being discarded as burn-in. We calculated 95% credible

intervals for σ2, θ and β1, and partial results are summarized in Table 2. Along with the

estimate of the coverage probability, we present also an estimate of the expected length

of the resulting credible interval and the standard deviation associated with the estimate.

A clear conclusion to extract from the results of these experiments is the comparatively

poor behavior of the Empirical Bayes method, which resulted from centering the priors

at 10 times the computed ML estimate. This conclusion is particularly important since,

whenever a formal objective prior is not available, practitioners tend to resort to similar

strategies to produce so-called “vague” or “diffuse” priors. On the basis of this study, one

might argue against that type of approach to objective Bayesian analysis.

It is also possible to argue against the use of the Jeffreys-rule prior, and the reason

for its inferior behavior has to do with the power a = 1 + q/2 in its formulation. This

was already reported in Berger et al. (2001): this type of prior is known to add spurious

degrees of freedom to uncertainty statements.

The present study is not quite decisive about how the reference prior and the indepen-

dence Jeffreys prior compare, and one may conclude that they present virtually equivalent

performance. On the basis that the reference prior is computationally more demanding,

we recommend the independence Jeffreys prior as a default prior for the problem at hand.
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Coverage Prob. Expected Length Std. Dev.

Empirical Bayes 0.857 2.904 0.005

Reference Prior 0.956 11.354 0.003

Independence Jeffreys Prior 0.954 11.698 0.003

Jeffreys-Rule Prior 0.946 6.334 0.003

Interval for σ2; parameter vector fixed at (1.5,3.2,3.6,1.5,1.7);
�
Y = 1.

Coverage Prob. Expected Length Std. Dev.

Empirical Bayes 0.805 3.156 0.007

Reference Prior 0.952 7.434 0.005

Independence Jeffreys Prior 0.956 7.410 0.005

Jeffreys-Rule Prior 0.902 5.265 0.012

Interval for θ; parameter vector fixed at (1.5,3.2,3.6,1.5,1.7);
�
Y = θ ≡ 1.

Coverage Prob. Expected Length Std. Dev.

Empirical Bayes 0.840 1.077 0.007

Reference Prior 0.948 0.950 0.003

Independence Jeffreys Prior 0.955 0.931 0.004

Jeffreys-Rule Prior 0.928 1.027 0.005

Interval for θ; parameter vector fixed at (1.5,0.2,0.6,1.5,1.7);
�
Y = θx1 ≡ x1.

Coverage Prob. Expected Length Std. Dev.

Empirical Bayes 0.826 1.145 0.007

Reference Prior 0.946 0.901 0.004

Independence Jeffreys Prior 0.954 0.890 0.004

Jeffreys-Rule Prior 0.919 1.059 0.005

Interval for β1; parameter vector fixed at (1.5,0.2,0.6,1.5,1.7);
�
Y = 1.

Coverage Prob. Expected Length Std. Dev.

Empirical Bayes 0.797 1.815 0.007

Reference Prior 0.948 1.042 0.004

Independence Jeffreys Prior 0.948 0.996 0.004

Jeffreys-Rule Prior 0.916 1.255 0.005

Interval for β1; parameter vector fixed at (1.5,0.2,0.6,1.0,1.2);
�
Y = 1.

Table 2: Coverage probability of 95% credible intervals. The order of the fixed parameter vector

is (σ2, β1, β2, α1, α2).
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APPENDIX

A Auxiliary Facts

Throughout the appendix, we will repeatedly use the following results, often without

referring explicitly to them. They are either standard propositions, whose proof can easily

be found (cf. e.g. Harville (1997) for matrix algebra and Tong (1990) for multivariate

(normal) theory), or easy extensions of such results. Therefore, proofs will be omitted at

this point.

I — If for i = 1, . . . , p the product AiBi is possible, then we have

(

p
⊗

i=1

Ai

)(

p
⊗

i=1

Bi

)

=

p
⊗

i=1

(AiBi)

II — If the matrices Ai, i = 1, . . . , p are invertible, then ⊗p
i=1Ai is invertible and one has

(

p
⊗

i=1

Ai

)−1

=

p
⊗

i=1

A−1
i

III — If the matrices Ai, i = 1, . . . , p are are of dimension ni × ni, then

∣

∣

∣

∣

∣

p
⊗

i=1

Ai

∣

∣

∣

∣

∣

=

p
∏

i=1

|Ai|n(i)

where n(i) =
∏

k 6=i nk.

IV — If A and B are m× n matrices, and C is p× q, one has

C ⊗ (A + B) = C ⊗ A + C ⊗ B

(A + B) ⊗ C = A ⊗ C + B ⊗ C

V — tr(A ⊗ B) = (trA)(tr B)

VI — (A ⊗ B)′ = A′ ⊗ B′

VII — If A is a function of θ but B is not, then

∂

∂θ
[A ⊗ B] = [

∂

∂θ
A] ⊗ B

∂

∂θ
[B ⊗ A] = B ⊗ [

∂

∂θ
A]
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VIII — If Σ ≡ Σ(θ) is a positive definite matrix whose entries are differentiable with respect

to θ, then with Σ̇ = ∂
∂θΣ,

∂

∂θ
log |Σ| =tr

[

Σ−1Σ̇
]

∂

∂θ
Σ−1 = −Σ−1Σ̇Σ−1 ,

IX — Let X ∼ N(µ,Σ) and A and B symmetric matrices. Then

�
X ′AX = trAΣ + µ′Aµ

�
ov(X ′AX,X ′BX) = 2 trAΣBΣ + 4µ′AΣBµ .

X — Let A be a nonsingular matrix. Then

|A + 11′| = |A|(1 + 1′A−11) .

If, furthermore, 1′A−11 6= −1, then A + 11′ is nonsingular and

(A + 11′)−1 = A−1 − A−111′A−1

1 + 1′A−11
.

B Proofs of Section 2

Proof of Proposition 2.1: Recall that

LI(σ2, ξ | y) ∝ (σ2)(n−q)/2|Σ|−1/2 |X ′Σ−1X|−1/2 exp

{

−
S2

ξ

2 σ2

}

,

and define the shorthand `I = logLI(σ2, ξ | y). Berger, De Oliveira, and Sansó (2001)

prove that

∂

∂σ2
`I =

1

2σ2

(

S2
ξ

σ2
− � S

2
ξ

σ2

)

∂

∂ξi
`I =

1

2σ2

(

Ri
ξ −

�
Ri

ξ

)

where S2
ξ/σ

2 ∼ χ2
n−q and Ri

ξ is a quadratic form on PY ∼ N(0, σ2PΣ), associated with

the matrix Σ−1Σ̇
i
Σ−1. As a consequence,

�
(

∂

∂σ2
`I
)2

=
n− q

2σ2

�
(

∂

∂σ2
`I

∂

∂ξi
`I
)

=
1

2σ2
trW i

�
(

∂

∂ξi
`I

∂

∂ξj
`I
)

=
1

2
trW iW j ,
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where we have used the well-known fact that, whenever the products are possible, tr ABC =

tr CAB. The result follows from elementary properties of the determinant function. �

Proof of Proposition 2.2: Suppose Y | θ, ξ ∼ N(Xθ,Σ), where Σ ≡ Σ(ξ), so that

L(θ, ξ | y) ∝ |Σ|−1/2 exp

{

−1

2
(y − Xθ)′Σ−1(y − Xθ)

}

.

Standard results of matrix differentiation plus facts VIII and IX of Appendix A, allows

one to write, with `I ≡ logL(θ, ξ | y)

∂

∂θ
`I =

1

2

(

X ′Σ−1y − �
X ′Σ−1y

)

∂

∂ξi
`I =

1

2

(

Ri
ξ −

�
Ri

ξ

)

,

where Ri
ξ is a quadratic form on (Y − Xθ) ∼ N(0,Σ) associated with the matrix

Σ−1Σ̇
i
Σ−1. Then, it is easy to check that

�
(

∂

∂ξi
`I

∂

∂ξj
`I
)

=
1

2
tr U iU j

�
(

∂

∂θ
`I

∂

∂θ′ `
I

)

=
1

4
X ′Σ−1X

� ∂

∂ξi

∂`I

∂θ
= 0

and now all the results follow easily from elementary properties of the determinant

function. �

C Proofs of Section 3

C.1 Proofs of Section 3.2

Proof of Lemma 3.1: We start out by proving (3.8). Since Σ = ⊗p
k=1Σk, from Fact II of

Appendix A it follows that Σ−1 = ⊗p
k=1Σ

−1
k . Then, by Fact VI of Appendix A, repeated

application of Fact I, and by Assumption A 2, one has

X ′Σ−1X = (⊗p
k=1X

′
kΣ

−1
k )(⊗p

k=1Xk)

= ⊗p
k=1X

′
kΣ

−1
k Xk ,

which in conjunction with Fact III (or just by noting that X ′
kΣ

−1
k Xk is a scalar) estab-

lishes the result. This last expression, Fact II and repeated application of Fact I shows

(3.7). �
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Proof of Lemma 3.2: Formulas (3.14), (3.15) and (3.16) are shown in Berger et al.

(2001) to follow essentially from assumption (3.9) and from the fact that limξ→0 ν(ξ) = 0,

a simple consequence of (3.9) and ρ(0 | ξ) = 0. The assumption 1′
nk

D−1
k 1nk

6= 0 and

(3.10) assure that the matrices are well-defined and that the expansions are meaningful.

We next prove (3.17). For simplicity, we drop the subscript k in the sequel.

Suppose then that X = 1, and write Σ = A + 11′. Using Fact X and simple manipu-

lations, Berger et al. (2001) prove that (in a more general context)

1(1′Σ−11)−11′ = 1(1′A−11)−11′ + 11′

Premultiplying this last equation by Σ−1 = A−1 − (A−111′A−1)/(1 + 1′A−11) and sim-

plifying, yields

Σ−11(1′Σ−11)−11′ = A−11(1′A−11)−11′ ;

post-multiplying this one by the same quantity finally produces, after some algebra,

Σ−11(1′Σ−11)−11′Σ−1 =
A−111′A−1

(1 + 1′A−11)1′A−11
.

Substituting A = ν(ξ)(D + o(1)) in the right-hand side yields the first part of (3.17).

The second part follows directly from formula Φk = Σ−1
k Xk(X

′
kΣ

−1
k Xk)

−1X ′
kΣ

−1
k and

expansion (3.14). Assumption (3.10) assures that Hk is well defined, and it is also easy

to show that Hk 6= 0. �

Proof of Proposition 3.3: Formula (3.18) is a simple consequence of Lemma 3.1 and

Fact III of Appendix A. The continuity of LI(ξ | y) as a function of ξ follows from the

continuity of ρ as a function of the parameter and the product form of the correlation

function. We will use throughout this proof the fact that, as ξ → 0, ν(ξ) → 0, and that,

as ξk → ∞, Σk → Ink
. These are simple consequences of the assumptions of Lemma 3.2.

Using formula (3.18) and the expansions of Lemma 3.2, it is possible to check that in

the circumstances of part (a) we have

LI(ξ | y) ∝
∏

k∈B

ν(ξk)
(nk−3+2a)/2

∏

k∈A∩B

ν(ξk)
1/2 (1 + g(ξ)) ×

×







y′



C −
∏

k∈Ā∩B

ν(ξk) C?



y







−(n−3+2a)/2
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where C ≡ ⊗p
k=1Ck, C? ≡ ⊗p

k=1C
?
k, with

Ck =











Gk, if k ∈ B

Ink
, if k ∈ B̄

and

C?
k =























F k, if k ∈ Ā ∩B

Hk, if k ∈ A ∩B

Xk(X
′
kXk)

−1X ′
k, if k ∈ B̄ .

We next argue that the quantity between curly brackets can be bounded between two

positive constants as long as ξk, k ∈ B, are sufficiently small, in which case the result

follows immediately.

If Ā 6= ∅, then that quantity converges to y ′Cy, that we claim to be positive. To

see that, recall that the Kronecker product of positive definite matrices is still a positive

definite matrix. As a consequence, it suffices to show that Gk is positive definite. This

follows from (3.14) and the fact that Σ−1
k is positive definite (recall that ν is positive).

If Ā = ∅, then it suffices to show that y′(C −C?)y > 0. To see that, note that it can

be checked that C − C? can be written as

C(In − X(X ′CX)−1X ′C)

where, from what we have seen above, C is positive definite. The quantity between

brackets in the last expression is a projection matrix, and it is known that in this case,

cf. Harville (1997, page 262),

C(In − X(X ′CX)−1X ′C) = (In − X(X ′CX)−1X ′C)′C(In − X(X ′CX)−1X ′C)

which shows that

y′(C − C?)y = [(In − X(X ′CX)−1X ′C)y]′ C [(In − X(X ′CX)−1X ′C)y]

and this is positive since C is positive definite.

The proof of part (b) follows essentially from the same type of arguments. It is possible
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to check that in these circumstances we now have

LI(ξ | y) ∝
∏

k∈B

ν(ξk)
(nk−3+2a)/2

∏

k∈A∩B

ν(ξk)
1/2 (1 + g({ξk, k ∈ B})) ×

×
∏

k∈B̄

{

|Σk|−n(k)/2(X ′
kΣ

−1
k Xk)

−1/2
}

×

×







y′



C −
∏

k∈Ā∩B

ν(ξk) C?



y







−(n−3+2a)/2

where C ≡ ⊗p
k=1Ck, C? ≡ ⊗p

k=1C
?
k, with

Ck =











Gk, if k ∈ B

Σ−1
k , if k ∈ B̄

and

C?
k =























F k, if k ∈ Ā ∩B

Hk, if k ∈ A ∩B

Φk, if k ∈ B̄ .

If Ā 6= ∅, then the quantity between curly brackets in the last factor converges to y ′Cy >

0. In this case, h can be taken to be the second-to-last factor, which is obviously continuous

in the set {0 < δk < ξk < Mk < +∞}.
If Ā = ∅, then we must show that C − C? is positive definite in the set {δk < ξk <

Mk, k ∈ B̄}. That follows from an argument similar to the one used for part (a), and

therefore will be omitted. The product of the last and second-to-last factors is therefore

a continuous function on {δk < ξk < Mk, k ∈ B̄}, which concludes the proof. �

C.2 Proofs of Section 3.3

Proof of Proposition 3.4: Using facts I and VII of Appendix A along with (3.7), it

is clear that

W k = In1 ⊗ · · · ⊗ Σ̇kΣ
−1
k ⊗ · · · ⊗ Inp −Σ1Φ1 ⊗ · · · ⊗ Σ̇kΦk ⊗ · · · ⊗ΣpΦp .
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Next, note that ΣkΦk is a projection matrix, so that it is idempotent, and its rank, and

therefore its trace, is rankXnk
= 1. Also,

ΦkΣkΦk = Σ−1
k (ΣkΦk)(ΣkΦk)

= Σ−1
k (ΣkΦk) (by idempotence)

= Φk .

These facts, formula V of Appendix A, some algebra and the known fact that trAB =

trBA whenever the products are possible, allows one to show that

trW k = n(k) tr Σ̇kΣ
−1
k − tr Σ̇kΦk

trW 2
k = n(k) tr(Σ̇kΣ

−1
k )2 + tr(Σ̇kΦk)

2 − 2 tr Σ̇kΣ
−1
k Σ̇kΦk

trW iW j =
∏

l 6=i,j

nl × tr Σ̇iΣ
−1
i tr Σ̇jΣ

−1
j − tr Σ̇iΦi tr Σ̇jΦj ,

the key point to note being that only tr W iW j depends on more than one parameter.

Therefore, we can write (2.7) as

IR(ξ) =





T ω

ω′ gR
p (ξp)



 (C.1)

where T is (p−1)×(p−1) and does not depend on ξp, ω is (p−1)×1, and gR
p (ξp) = trW 2

p,

which depends on ξp only. As a consequence of the above block format, we have (cf.

Harville, 1997, page 188)

|IR(ξ)| = |T | (gR
p (ξp) − ω′T−1ω)

≤ |T | gR
p (ξp) ,

the last step following from the fact that T is positive definite, since IR(ξ) is, and therefore

so is T−1. If we repeat this procedure p times, we end up proving (3.23) by defining

πk(ξk) = [gR
k (ξk)]

1/2 = [trW 2
k]

1/2.

We now study πk(ξk) as ξk → 0. It is easy to verify that DkGk is idempotent and

that trDkGk = nk − 1. Also, it is possible to show that DkGkDkHk = DkHk and that

trDkHk = 1. Note also that, as a consequence of the assumptions we have, as ξk → 0,

Σ̇k = ν ′(ξk)Dk(1 + o(1)) . (C.2)

These properties, and simple expansions along with (3.14) and (3.17), shows (3.24). As-

sumption A 8 is capital to this result.
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Since, as ξk → ∞, Σk → Ink
, the integrability of πk(ξk) at infinity follows from

Assumption A 7. �

Proof of Proposition 3.5: This proof essentially mimics the one of Proposition 3.4.

Using the definition of U k and facts I and VII of Appendix A, it is easy to check that

Uk = In1 ⊗ · · · ⊗ Σ̇kΣ
−1
k ⊗ · · · ⊗ Inp .

Next, essentially the same type of arguments as before allows one to write

trUk = n(k) tr Σ̇kΣ
−1
k

trU2
k = n(k) tr(Σ̇kΣ

−1
k )2

trU iU j =
∏

l 6=i,j

nl × tr Σ̇iΣ
−1
i tr Σ̇jΣ

−1
j .

Again, only trU iU j depends on more than one parameter, and the construction carried

out in the proof of Proposition 3.4 can be repeated to show (3.25), where now πJ1
k (ξk) ∝

(trU2
k)

1/2 and πJ2
k (ξk) ∝ πJ1

k (ξk) |X ′
kΣ

−1
k Xk|1/2.

To obtain the behavior of these functions as ξk → 0, it suffices to use expansions (3.14),

(3.16) and (C.2). It is also necessary to recall that DkGk is idempotent and that its trace

is nk − 1 (and hence assumption A 8).

The integrability at infinity of πJi
k (·) follows from the fact that, as ξk → ∞, Σk → Ink

and Assumption A 7. �

C.3 Proofs of Section 3.4

Proof of Theorem 3.6: We will determine conditions under which

0 <

∫ ∞

0
LI(ξ | y) π(ξ) dξ1 · · · dξp <∞

holds, which is tantamount to posterior propriety. To simplify the notation, we will write

f(ξ) = LI(ξ | y). The function π(ξ) will be either associated with the reference prior or

with one of the Jeffreys’ priors we considered, but we will carry out the calculations for

a general exponent a in the integrated likelihood. Recall that when π = πR, a = 1, while

when π = πJi, i = 1, 2, it is a = 1 and a = 3/2, respectively. Also, in all of these instances

of π, there are functions πk(ξk), k = 1, . . . , p such that

π(ξ) ≤
p
∏

k=1

πk(ξk)
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and those have essentially the same behavior across the different choices for π(ξ), so that

a common proof can be sought — cf. propositions 3.4 and 3.5. Note that

∫ ∞

0
f(ξ) π(ξ) dξ1 · · · dξp ≤

∫ ∞

0
f(ξ) π1(ξ1) dξ1 · · · πp(ξp)dξp , (C.3)

and therefore we will have posterior property if the right-hand side is finite.

The above integral can be partitioned into a sum of integrals each of which with

different regions of integration. If the region is of the form [δ1,+∞[× · · · × [δp,+∞[, then

there are no issues to address since the πk are integrable at infinity and in this set the

integrated likelihood is bounded.

Therefore, we need only consider regions of the following type: let B be a nonempty

but otherwise arbitrary subset of {1, . . . , n}, and define said regions by

i) for k ∈ B, 0 < ξk < δk, where δk can be chosen arbitrarily small; for k ∈ B̄, ξk > Mk,

where Mk can be assumed arbitrarily large;

ii) for k ∈ B, 0 < ξk < δk, where δk can be chosen arbitrarily small; for k ∈ B̄,

δk < ξk < Mk, where Mk is finite but otherwise arbitrary.

Let’s consider (i) first. Combining expansions (3.19), (3.24) and (3.26), it is easy to

see that

f(ξ)

p
∏

k=1

πk(ξk) ∝
∏

k∈A∩B

|ν ′(ξk)| ν(ξk)(nk−2−2αk+2a)/2
∏

k∈Ā∩B

|ν ′(ξk)| ν(ξk)(nk−5+2a)/2×

×
∏

k∈B̄

πk(ξk) (1 + g(ξ)),

where αk is defined in Proposition 3.5 (αk ≡ 1 in the case of the reference prior).

When we look at situation (ii), formula (3.20), and the same expansions as before

for the priors, yield an expression formally identically to the one above multiplied by

h(ξk, k ∈ B̄).

Since the functions πk are integrable at infinity, and for small enough ξ, ν(ξ) < 1, it is

clear that posterior propriety will be achieved for all three priors whenever the function

|ν ′(ξ)| ν(ξ)(nk−5+2a)/2

is integrable at the origin for every k, or, equivalently, when that happens to the function

|ν ′(ξ)| ν(ξ)(min nk−5+2a)/2 .

32



From the assumptions, it is easy to conclude that, for small enough ξ, ν ′(ξ) > 0, so that

the integrability at the origin reduces to verifying that

lim
ξ→0

ν(ξ)(min nk−5+2a)/2+1 <∞ ,

which reduces to (3.28) since ν = o(1) and, by assumption A 8, minnk ≥ 2. �
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