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ABSTRACT
Reluctance of data owners to share their possibly confi-
dential or proprietary data with others who own related
databases is a serious impediment to conducting a mutually
beneficial data mining analysis. We address the case of verti-
cally partitioned data – multiple data owners/agencies each
possess a few attributes of every data record. We focus on
the case of the agencies wanting to conduct a linear regres-
sion analysis with complete records without disclosing values
of their own attributes. This paper describes an algorithm
that enables such agencies to compute the exact regression
coefficients of the global regression equation and also per-
form some basic goodness-of-fit diagnostics while protecting
the confidentiality of their data. In more general settings be-
yond the privacy scenario, this algorithm can also be viewed
as method for the distributed computation for regression
analyses.

General Terms
Regession Analysis

Keywords
Data confidentiality, data integration, secure multi-party
computation, regression

1. INTRODUCTION
In numerous contexts immense utility can arise from statisti-
cal analyses that “integrate” multiple, distributed databases.
These analyses would be more informative than individual
analyses, i.e., it would enable us to fit models involving
more attributes and/or estimate models more accurately
(with lower standard errors of estimates). At the same time,
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concerns about data confidentiality post strong legal, regu-
latory or even physical barriers to literally integrating the
databases. These concerns are present even if the database
“owners” are cooperating: they wish to perform the analy-
sis, and none of them is specifically interested in breaking
the confidentiality of any of the others’ data. This need to
balance the utility of better combined analyses with the risk
of privacy violation has received considerble interest lately.
Specifically, consider two cases

• Vertically partioned data When multiple parties have
data on certain data subjects but each party only pos-
seses data on different sets of attributes of those enti-
tities. E.g., a government agency might have employ-
ment information, another health data, and a third
information about education. A regression analysis on
an integrated database would be more informative and
powerful than, or at least complementary to, individ-
ual analyses.

• Horizontally partioned data When the participating
agencies have databases that contain the same numer-
ical attributes for disjoint sets of data subjects. E.g.,
several State Departments of Education might want
to combine their student data in order to conduct a
more accurate analysis of student performance for the
general student population.

The results of such analyses may be either used by the
database owners themselves or disseminated more widely.

In this paper, we show how to perform secure linear regres-
sion for “vertically partitioned data”. Our work is similar
in spirit to [7, 8] who describe methods for doing cluster
analysis and association rule discovery in vertically parti-
tioned data. The problem of horizontally partitioned data
is addressed in a companion paper [4].

We view a group of government agencies seeking to perform
a combined analysis on their data as a setting that reflects
well the semi-honest data sharing scenario we deal with.
Hence, we term the participants “agencies” even though in
some settings they might be corporations or other data hold-
ers. In Section 2 we outline the privacy preserving regression



problem. This is followed, in Section 3, by a brief descrip-
tion of Powell’s method for numerical minimization and a se-
cure summation protocol that together form building blocks
of our procedure. Section 4 contains a description of the
main algorithm and Section 5 discusses what has been re-
vealed by using the procedure as well as what the agencies
collectively learn (including possible paths for conducting
regression analyses). We end with concluding remarks in
Section 6.

2. THE REGRESSION PROBLEM
Consider the case when we need to fit the standard linear
regression model [9]

y = Xβ + ε, (1)

where

X = [x1 . . .xp] , y =




y1

...
yn


 , (2)

with

xi =




xi1

...
xin


 , (3)

and

β =




β1

...
βp


 , ε =




ε1

...
εn


 . (4)

Under the condition that

ε ∼ N (0, σ2I), (5)

The least-squares estimate (which is also the maximum like-
lihood estimate) for β is obtained as the minimizer of the
the “sum of squared errors” function

E(β) = (y −Xβ)T (y −Xβ). (6)

The function in equation (6) is a quadratic in β and the
minimizer is well-known and readily calculated as

β̂ = (XT X)−1XT y. (7)

We will assume the following scenario: There are several
interested agencies interested in computing this regression
equation, but each agency only possesses part of the data.
K > 2 agencies, A1, A2, . . . , AK , are involved. Agency Aj

possesses dj columns of the predictor attributes (x’s), and
Ij denotes the index set of Aj ’s predictors. In addition, we
assume that all agencies know the “response” attribute, y.
(We believe this is not strictly necessary; but if this is not
so, we need to add another layer of security. The details of
which are quite complex and there are also some additional
subtle issues, such as information asymmetry, that arise. We
will deal with these issues in a separate paper.) Also, if u
has components (u1, . . . , um), we will use uIj as shorthand
for {ui}i∈Ij . The following example clarifies this notation.

Example 1. If K = 3 agencies are involved, and if agency
A1 knows x1,x2, x3, A2 knows x4,x5,x6, and A3 knows

x7,x8,x9. Then d1 = d2 = d3 = 3, I1 = {1, 2, 3} I2 =
{4, 5, 6} and I3 = {7, 8, 9}. Also,

X = [

XI1︷ ︸︸ ︷
x1 x2 x3

XI2︷ ︸︸ ︷
x4 x5 x6

XI3︷ ︸︸ ︷
x7 x8 x9]

and

βT = (

βI1︷ ︸︸ ︷
β1, β2, β3

βI2︷ ︸︸ ︷
β4, β5, β6

βI3︷ ︸︸ ︷
β7, β8, β9).

We consider the case where agencies A1, A2, . . . , AK collec-
tively wish to compute β without sharing their possibly con-
fidential data (they are also assumed to be unwilling to share
summary statistics that relate their data to the other agen-
cies’ data, such as correlations between attributes). Cal-
culation of β using equation (6) requires the sharing of at
least some summary statistics. We develop a strategy for
a distributed computation of β using direct numerical min-
imization of E(β). In our scheme, each agency Aj will be

able to obtain its component β̂Ij of the global estimate β̂
without revealing its data to any of the other agencies. It is
assumed that all the agencies will share their β̂Ij with the
other agencies so that everyone benefits from the analysis
(and also so that everyone has some incentive to participate

in this exercise). In addition to β̂Ij , all agencies also learn

the vector of residuals, ê = y −Xβ̂, as a by-product of our
procedure. They could use ê to conduct basic diagnostic
tests about the regression model.

We now note some finer points related to our setup before
proceeding with the details.

Remark 1: As in other data sharing protocols, we require
one agency to assume a lead role in initiating and co-
ordinating the process. This is a purely administrative
role and doesn’t imply any information advantage or
disadvantage. We will assume that Agency 1 is the
designated leader.

Remark 2: The databases need to have a common primary
key that enables the agencies to align the records cor-
rectly in the same order (possibly under direction from
Agency 1).

Remark 3: We assume that the attribute sets do not over-
lap (Ij ∩ Ik = ∅). If any attributes overlap, i.e., if
more than one agency posseses the same attribute,
we can designate one of the owning agencies as the
designated “owner”. This is not a problem since the
agencies share all the β’s at the end of the estimation
process. On a related note: regression models such
as (1) will typically include a constant or “intercept”
term. This is equivalent to one of the x’s being a col-
umn of 1’s. Without loss of generality, we will assume
that one of the attributes is xT = (1, 1, . . . , 1) and that
it is “owned” by Agency 1.

3. PRELIMNARIES
We now provide some background on a numerical minimza-
tion technique that forms the crux of our proposed method,
and a protocol to compute secure sums that is an essential
component of our method.



3.1 Powell’s Method for a Quadratic function
of p variables

Powell’s algorithm [5] for finding the minimizer of a function
of many variables forms the basis of our proposed procedure.
We will use it to directly find β̂ as a numerical solution to the
problem arg minβ∈�p E(β) (from equation (6)) in a manner
such that the agencies are not required to share their data.
Powell’s method is a derivative-free numerical minimization
method that solves the multidimensional minimization prob-
lem by solving a series of 1-dimesional line minimization
problems. A very high-level description of the algorithm is
as follows. Start with a set of suitably chosen set of p vec-
tors in �p which will serve as “search directions”. Start at
an arbitrary starting point in �p and determine the step
size δ along the first search direction s(1) that will minimize
the objective function (this is a 1-dimensional minimization

problem). We then move distance δ along s(1). Then move

an optimal step in the second search direction s(2), and so
on until all the search directions are exhausted. After that,
appropriate updates are made to the set of search directions,
and the iterations continue until the minimum is obtained.
Specifically, the procedure for finding the minimizer of a
function E(β) consists of an initialization step and an iter-
ation block as described below.

Initialization : Select as an arbitrary orthogonal basis1

for �p: s(1), s(1), . . . , s(1) ∈ �p. Also pick an arbitrary
starting point β̃ ∈ �p.

Iteration : Repeat the following block of steps p times.

• Set β ← β̃.

• For i = 1, 2, . . . , p:

– Find δ that minimizes f(β + δs(i)).

– Set β ← β + δs(i).

• For i = 1, 2, . . . , (p− 1): Set s(i) ← s(i+1).

• Set s(p) ← β − β̃.

• – Find δ that minimizes f(β + δs(i)).

– Set β̃ ← β + δs(i).

Note that each iteration of the iteration block involves solv-
ing (p + 1) 1-dimensional line minimization problems (to
determine the δ’s). Powell established the remarkable result
that if f(β) is a quadratic function, then exactly p itera-
tions of the iteration block would yield the exact minimizer
of f(β)! (This involves solving p(p + 1) line minimization
problems to obtain the minimizer of a quadratic function.)
We refer the reader to [6, 5, 2] for proofs and elaborations.

Note
In our regession case (equation (6)), the δ that minimizes

E(β + δs(i)) = (y − X(β + δs(i)))T (y − X(β + δs(i))), is
readily obtained as

δ =
(y −Xβ)T Xs(i)

(Xs(i))T Xs(i)
. (8)

1Powell’s original algorithm used the coordinate axis vec-
tors {e1, e2, . . . , ep} as the basis. Brent [2] shows that an
arbitrary orthogonal basis also suffices.

3.2 Secure Summation
Consider K > 2 cooperating, such that Agency j has a
value vj , and suppose that the agencies wish to calculate

v =
∑K

j=1 vj in such a manner that each Agency j can learn
only the minimum possible about the other agencies’ values,
namely, the value of v(−j) =

∑
� �=j v�. The secure summa-

tion protocol [1, 3] can be used to effect this computation.

Choose m to be a very large number which is known to all
the agencies such that v is known to lie in the range [0, m).
Agency 1 is assumed to be the leader. The remaining agen-
cies are numbered 2, . . . , K. Agency 1 generates a random
number R, chosen uniformly from [0, m). Agency 1 adds R
to its local value v1, and sends the sum s1 = (R+v1) mod m
to Agency 2. Since the value R is chosen uniformly from
[0, m), Agency 2 learns nothing about the actual value of
v1.

For the remaining agencies j = 2, . . . , k − 1, the algorithm
is as follows. Agency j receives

sj−1 = (R +

j−1∑
s=1

vs) mod m,

from which it can learn nothing about the actual values
of v1, . . . , vj−1. Agency j then computes and passes on to
Agency j + 1

sj = (sj−1 + vj) mod m = (R +

j∑
s=1

vs) mod m.

Finally, agency K adds vK to sK−1(mod m), and sends the
result sK to agency 1. Agency 1, which knows R then cal-
culates v by subtraction:

v = (sK −R) mod m

and shares this value with the other agencies. (This method
for secure summation faces an obvious problem if, contrary
to our assumption, some agencies collude.)

4. ALGORITHM FOR THE DISTRIBUTED
COMPUTATION OF THE REGRESSION
COEFFICIENTS

Our algorithm is essentially Powell’s algorithm implemented
in such a manner that each agency Aj updates its own com-
ponents of the β’s and its own components of the search
directions based on the data attributes it owns and one n-
dimensional vector common to all agencies that is computed
using secure summation. The details are as follows.

1. Let s(1), s(2), . . . , s(p) ∈ �p be p-dimensional vectors
that will serve as a set of search directions in �p which
we will use for finding the optimal estimate β̂. The
s(r) will be initially chosen and later updated in such

a manner that Aj knows only the s
(r)
Ij

components of

each {s(r)}pr=1.

2. Initially, s(r) are chosen as follows. Each Aj picks an
orthogonal basis for �dj : {v(r)}r∈Ij . Then for r ∈ Ij

let s
(r)
Ij

= v(r), and s
(r)
l = 0 for l �∈ Ij . Each agency



should pick the bases at random so that the other agen-
cies cannot obviously guess it.

Example 2. In the setting of Example 1, if the ini-
tial search directions were written as columns of a ma-
trix S = [s(1), s(2), . . . , s(p)], then S would have the
form



s
(1)
1 s

(2)
1 s

(3)
1 0 0 0 0 0 0

s
(1)
2 s

(2)
2 s

(3)
2 0 0 0 0 0 0

s
(1)
3 s

(2)
3 s

(3)
3 0 0 0 0 0 0

0 0 0 s
(4)
4 s

(5)
4 s

(6)
4 0 0 0

0 0 0 s
(4)
5 s

(5)
5 s

(6)
5 0 0 0

0 0 0 s
(4)
6 s

(5)
6 s

(6)
6 0 0 0

0 0 0 0 0 0 s
(7)
7 s

(8)
7 s

(9)
7

0 0 0 0 0 0 s
(7)
8 s

(8)
8 s

(9)
8

0 0 0 0 0 0 s
(7)
9 s

(8)
9 s

(9)
9




Where the non-zero diagonal blocks are each orthogo-
nal bases for �3 picked by A1, A2, A3.
Thus, {s(1), s(2), . . . , s(p)} constitutes an orthogonal ba-
sis for �p.

3. Let β̃ =
(
β̃I1 , β̃I2 , . . . , β̃Ik

)
∈ �p be the initial starting

value of β obtained by each Aj picking β̃Ij arbirarily.

4. Perform the Basic Iteration Block below p times.
The final value of β̃ will be exactly the optimal esti-
mate β̂.

The Basic Iteration
1. Each Aj sets βIj ← β̃Ij .

2. For r = 1, 2, . . . , p:

(a) Each Aj computes XIj βIj and XIj s
(r)
Ij

.

(b) z = y−Xβ = y−∑k
j=1 XIj βIj and w = Xs(r) =∑k

j=1 XIj s
(r)
Ij

are computed collectively by A1, A2, . . . , Ak

using the secure summation protocol to compute

the sums
∑k

j=1 XIj βIj and
∑k

j=1 XIj s
(r)
Ij

. (Ex-

cept in the first iteration of this block when, for

a given r, XIj s
(r)
Ij

is non-zero only for the agency

who owns xr. Revealing this to all agencies is too
risky, so only that particular agency, say Ar, will
compute w not reveal it to the others.)

(c) All parties compute δ = zT w/wT w. (Except in
the first iteration, when Ar computes this and
announces it to the rest.)

(d) Each Aj updates βIj ← βIj + δ · s(r)
Ij

.

3. For r = 1, 2, . . . , (p − 1): Each Aj updates s
(r)
Ij
←

s
(r+1)
Ij

.

4. Each Aj updates s
(p)
Ij
← βIj − β̃Ij .

5. z, w and δ are computed as before, and each Aj ’s up-

dates βIj ← βIj + δ · s(p)
Ij

.

5. DISCUSSION
5.1 What is Revealed
In each step, the only common information exchanged by the
agencies are the z and w vectors. Since each component of
the vectors is computed using secure summation, the sources
of disclosure threat for each component is the same as in
using the secure summation protocol. However, the actual
risk to the data x is less since there is some masking with
components of the s vectors. Specifically, the vulnerability is
highest in the first step of the iteration since (due to the way
we have chosen the initial s) only one agency contributes to
the sum w at each round of the basic iteration block. We
avoid risk of disclosure by having on the contributing agency
compute δ privately and announcing it to the others.

In general we also observe that the data for agencies who
have a larger number of variables is more secure since the

components of XIj s
(r)
Ij

involve summing over a larger num-

ber of s
(r)
Ij

.

5.2 What is Learned
After the regression coefficients are shared the agencies learn
at least three useful quantities:

1. The global coefficients, β. This enables the individ-
ual agencies to assess the effect of their variables on
the response variable after accounting for the effects
of the other agencies’ variables. They can also assess
the size of effects of the other agencies’ variables. If
an agency obtains a complete record for some individ-
ual, the global regression equation can also be used for
prediction of the response value. A comparison of the
globally obtained coefficients with the coefficients of
the local regression (i.e., the regression of y on XIj )
could also be informative.

2. The vector of residuals, e = y −Xβ̂ are also known
(this is equal to final z in our iterative procedure).
The residuals permit us to perform diagnostic tests
to determine if the linear regression model is appro-
priate (i.e., if the model assumptions are satisfied).
One could perform formal statistical tests. Two sim-
ple visual diagnostics are shown in Figures 1-2. If as-
sumptions are satified, the distribution of the residuals
ought to be symmetric. Figure 1 shows histograms of
two sets of hypothetical residuals. The skewed distri-
bution indicates a violation of the assumptions. The
residuals can also be examined for systematic patterns.
Residuals from a valid model should exhibit no pattern
when plotted against, for example, y. In Figure 2, the
top plot shows residuals from a valid regression and
the bottom one shows a distinct ’fan-out’ pattern indi-
cating a violation of the “equal-variance” assumption
(other patterns could indicate other violations such as
violation of a linear relationship assumption).

3. The coefficient of determination, R2. Agencies can
compute

R2 =
yT y − eT e

yT y
. (9)

This R2 ∈ [0, 1] is a useful measure of the strength
of the linear relationship assumed. Low values of R2
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Figure 1: Distributions of the residuals
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Figure 2: Scatterplots of the residuals

indicate a weak linear relationship and high values in-
dicate a good linear fit.

6. CONCLUDING REMARKS
We have presented a privacy preserving linear regession anal-
ysis algorithm that permits agencies to obtain the global re-
gression equation as well as perform rudimentary goodness-
of-fit diagnostics without revealing their data.

There are some situations that the agencies need to be aware
of.

• Our method critically relies on semi-honestness. If an
agency is malicious and participates only to sabotage
the collective efforts of the others, it can be quite suc-
cessful by secretly not following protocol.

• The method is susceptible to “unfortunate” data. For
instance, it might turn out that R2 ≈ 1 and all βj ≈ 0
for j �= 3; then x3 is at risk.

• The ownership of certain attributes itself might be a
sensitive issue. For instance, a agency that provides
investment advice might possess health-related data
on their clients that they would like to include in the
regression, but would not like to reveal that to other
agencies.

Outside the privacy scenario, our procedure is also useful as
a method for computing a common regression equation when
the data reside in distributed databases. This application
for distributed computation or as a strategy for a scalable
method for linear regression is worth exploring further.

Our procedure also illustrates a more generally useful strat-
egy for devising privacy-preserving data mining methods:
Fitting of most data mining models involves the estima-
tion of the parameters of the model by solving an optimiza-
tion problem. Well-established models have well-established
standard procedures for solving the optimization problem.
Our approach indicates that exploring other non-standard
methods for carrying out the optimization might lead to a
method that is more suitable in the privacy preserving set-
ting.
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