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                                                            ABSTRACT 
 

 
Calibrating and validating traffic models is a process that depends on field data that are often 

limited, but essential for determining inputs to the model and for assessing its reliability. A 

quantification and systemization of the calibration/validation process exposes statistical issues 

inherent in the use of such data.  Formalization of the calibration/validation process leads 

naturally to the use of Bayesian methodology for assessing uncertainties in model predictions 

arising from a multiplicity of sources especially statistical variability in estimating and 

calibrating input parameters and model discrepancy.  In an earlier paper the general problem was 

elucidated; in this paper we will carry out the full calibration/validation process in the context of 

a widely used deterministic traffic model, namely the Highway Capacity Manual (HCM) model 

for control delay at signalized intersection approaches.  In particular we are able to assess the 

reliability of the model through quantification of the uncertainty in estimation of model 

parameters, predictions of model delay and predictions using data-adjustments to the model. 

While the methods are described in a specific context they can be used generally, inhibited at 

times by computational burdens that must be overcome.  

 

 

Key words and phrases: Bayesian Analysis; Posterior Distribution; Model Calibration; Model 

Validation; Highway Capacity Manual; Control Delay. 
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0. Introduction 

Calibrating and validating traffic models are inherently complex processes that are commonly 

treated informally and through a mix of ad hoc methodologies. Explicit ingredients of such a 

process are field data that are often limited and expensive to acquire but essential for determining 

inputs to the model and for assessing the reliability of the model.  A quantification and 

systemization of the calibration/validation process exposes statistical issues inherent in the use of 

such data for assessing the validity of a model. In previous work by Bayarri et al (1) these issues 

were elucidated and a methodology advanced to address them. 

 

As described in (1), a clear statement of what “validation” means is rarely set forward. Usually, 

the question is put as “does the model faithfully represent reality?”  But, the answer to this 

question is simple: no, models are not perfect. But models can make useful, reliable predictions 

in particular settings; they may be useful for some purposes, useless for others. We can state this 

more formally as  

 Pr "reality"  prediction δ α − <  >   .                                Eq(1) 

Here we must specify δ = tolerable difference (how close) and α = level of assurance (how 

certain), say what is meant by “reality”, define  prediction and, ultimately, compute the 

probabilities involved. 

 

What we mean by “reality” is, operationally, a feasible measure of actual performance of a 

particular network. For the cases we examine here control delay will be the key measure. To 

compare actual performance with prediction from the model will require access to field data and 

model output that relate to the performance measure. As noted in (1) little attention has been 
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previously paid to the characterization of the uncertainty in model inputs and resulting effect on 

calibration and validation.   

 

In (1) a framework that focuses on analyses that combine calibration and validation, accounting 

for a multiplicity of uncertainties, was only partially fleshed out in the context of the traffic 

simulation model, CORSIM. The focus of this paper is to fully treat specific algebraic 

mathematical models used in the Highway Capacity Manual (HCM).  Our comments and 

methods are general but we will utilize as a test bed, a traffic network in Chicago and the specific 

control delay models that appear in the signalized intersection analyses of the HCM2000 (2). A 

detailed account of the network, the data and their use in a signal study is in Sacks et al. (3).  

 

Inputs (including model parameters) to models, such as control delay in the HCM2000, come in 

various forms. Some, such as geometric inputs (lane widths, bus stops, parking, etc.) are readily 

supplied by accurate measurement or through documented sources. Others can be obtained by 

calibration that is, through the use of field data. These latter can be classified as  

(A)  parameters that can be directly estimated, perhaps with error, from field data (e.g., demand 

volumes)  

(B)  parameters not directly measurable (e.g., driver type) 

(C)  tuning parameters (e.g., ideal saturation flow rate) that are not “real” but are required by the 

model.  

Some parameters in (B) and (C) may be set to default values and thus removed from the 

calibration process. The remaining parameters in (B) and (C) are typically treated by adjusting 

them until the model output seems to ‘fit’ the field data, data from the real traffic system being 
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modeled. Sometimes the adjustment is informal; sometimes more formal by optimizing the 

parameters, using least squares or other optimization tools to minimize the difference between 

features of the field data and predictions from the model (see for example Jha et al. (4) and 

Hourdakis et al. (5)). Such approaches to calibration, as pointed out in (1), may have unpleasant 

consequences. For example, model imperfections may be masked by “over-tuning” which can 

then lead to highly inaccurate predictions in later usage of the model.  

 

As discussed in (1) Bayesian analysis (described there and below as well) provides an attractive 

path to simultaneously calibrate the parameters of type (A), (B) and (C) and deal with the 

possible presence of model bias. Calibration and assessment of validity can be done in one 

combined analysis.  

 

Bayesian analysis determines the posterior (or summary) distribution of model parameters and 

inputs, given the observed field data. The resulting distribution will then reflect the actual 

uncertainty in the parameters and inputs, adjudicate between the tuning parameters and the 

possible model bias thereby providing resistance to over-tuning, and quantify and assess the 

model bias.  In short, a Bayesian analysis can provide a complete answer to Equation (1). 

 

1. Test Bed Models, Network and Data 

 

We consider two forms of the HCM control delay model at the signalized intersections that were 

investigated. In the first Model (M1), and based on the empirical data for the first intersection, 

there were no queues that spilled over from one cycle to the next. Therefore, only the first two 
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control delay components (d1 and d2) in the HCM2000 Chapter 16 (2) were considered. That 

restriction was removed in the second model (M2) (for the second intersection) where the initial 

queue delay term d3 was added. This was due to the presence of downstream blockage in some 

cycles, resulting in an apparent drop in the saturation flow rate and the occurrence of an initial 

queue at the end of the green phase. In both cases, the unit of analysis for model calibration and 

validation was a single cycle, as opposed to a peak 15 minute period or a full hour.      

 

The intersections where the models are applied are sketched in Figure 1. They come from a 

Chicago traffic network connecting an important freeway and major arterials with the central 

business district.  The intersections we focus on are denoted as SB Wells-Grand during the 

morning peak period (M1) and NB LaSalle-Ontario during the evening peak period (M2). 

[FIGURE 1 GOES HERE]  

 

2. Model M1 at SB Wells-Grand (2 through lanes) 

Model Inputs   

T = duration of analysis period, CL = cycle length, V = volume, P = proportion of vehicles 

arriving on green, g = effective green time (g = G+E−SL = displayed green time + used yellow 

and all red time − start up lost time), s = adjusted lane group saturation flow rate per lane (i.e. 

after accounting for all factors such as lane width, parking, grade, etc), k =incremental delay 

factor (normally defaulted to 0.50 for fixed time signals), I = upstream metering/filtering factor 

(normally defaulted to 1.0 but considered variable due to the short block length at the site) ,       

fPA =  supplemental delay adjustment factor for platoon arrivals. 
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Let c = 2 s⋅g/CL = lane group capacity; X=V/c, 1
1
−

=
−

PA( P ) fPF
g / CL

.  Then there are two 

components to model delay, yM:  

( )
( )

2

1
0 5 1

1 1
−

=
 −  

. CL( g CL )d V ,P,s PF
min , X g / CL

⋅                                             

( ) 2
2

8900 1 1
 

= − + − + 
 

kIXd V ,P,s,kI T ( X ) ( X )
cT

  Eq (2) 

 
 ( ) ( )

1 2= +My (V ,P,s,kI ) d V ,P,s d V ,P,s,kI  
 
Several of these inputs are known and fixed: CL = 75 sec, T = CL/3600, while g = 31 sec is 

obtained from the field.   Because k and I appear only as the product kI, we will only work with 

this product.  Both kI and s are to be taken as tuning parameters. From cycle to cycle the only 

inputs that change are V, P and fPA (as a consequence X and PF also change every cycle).    

 

Data 

Video cameras perched atop nearby buildings were placed that recorded all vehicles passing 

through the intersections over one-hour periods during the morning and evening rush hours.  The 

SB Wells-Grand movement was analyzed for the morning rush hour; the NB LaSalle-Ontario 

movement was analyzed with the evening rush-hour data.  

 

There are 48 cycles each of 75 seconds (under fixed-time signal control).  The video data were 

examined and for each cycle i, (1≤ i≤ 48), Vi, Pi were extracted and (field) delays, yF (Vi, Pi), 

measured in accordance with the procedure in Appendix A of HCM Chapter 16 (2).  For the 

model we can produce yM (V,P,s,kI) for any values of the four inputs.  The field data, of course, 
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do not depend on s, kI  − nature has no need for tuning parameters. A summary of the field 

measurements for the two approaches is provided in Tables 1 and 2, respectively. 

 

[TABLES 1 and 2 GO HERE] 

 

Analysis of Model M1 

The statistical structure connecting the field data, the model, randomness in field delay 

measurements, the inputs and tuning parameters, and possible model bias is given as follows:  

Let xi be the vector of counts (Vi,Pi); let u = the vector of tuning parameters (s,kI).  Then for each 

cycle i 

                                                 ( ) ( ) ( ) ε= + +F M
i i u iy x y x ,u b x i                                Eq (3) 

  
where: yF, yM denote field and model delays, b  the model bias, ε  the variability in measured 

delays.  The interpretation of Eq(3) is that “reality” = E[yF] = model + bias. 

The εi’s are assumed to be independent normal random variables with mean 0 and precision 

(=1/variance) λF . From Eq (3) it is clear that the tuning parameters u and the bias b are 

intertwined (confounded) and the way we treat the bias later reflects that condition.   

The bias is an unknown function and treating it requires non-standard techniques.  There is no 

rationale leading to specific forms for b and we therefore adopt a non-parametric Bayes 

approach.   The approach, taken (and discussed) in Bayarri et al. (6) (see also Santner et al. (7)), 

is described in Appendix I and introduces a parameterized family of (prior) distributions for b. 

The parameters of the family, described in the appendix and denoted by λb,θ, β1,…,βJ, introduce a 

level of complexity to the Bayes analysis we now describe.  
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The basics of Bayesian analysis consist of taking the data density, given the unknown 

parameters, including the unknown b, and combining it, via Bayes theorem, with a prior 

distribution of the parameters.   The parameters are s, kI, λF , b, λb,θ, β1,…,βJ .  Denote the 

collection of these parameters by γ.  Then given γ, the likelihood of the data, yData = {yF(Vi,Pi); 

i=1,…,48}, is multivariate normal with mean and covariance depending on γ.  Denote this 

likelihood as ( Data )f y |γ .  If π(γ) denotes the prior distribution of the parameters then what we 

seek is (Bayes formula) the posterior distribution of the parameters given the data 

 ( ) ( ) ( )
( ) ( )

Data
post Data

Data

f y |
| y

f y | d

γ π γ
π γ

γ π γ γ
=
∫

                                Eq(4)  

 
The posterior distribution captures the uncertainty present about γ after the data are collected.  

Uncertainty resulting from model predictions can then be assessed by treating πpost( γ | yData) as 

the ``random input distribution" for the model, and making repeated evaluations of the model, 

initialized by draws from this distribution.   

 

Choice of the Prior Distribution of γ  

s is uniform on an interval [s0, s1]; kI  is uniform on an interval [kI0, kI1];  λF has an exponential 

density with mean  0.172, λb has an exponential density with mean 0.394. The priors for λF , λb 

are constructed using the calculations described in Appendix II.  For θ, β1,…,βJ  we adopt a 

computational shortcut by setting θ = 0 and fixing β1,…,βJ  in a manner described in Appendix II. 

In effect, these parameters are removed from the Bayesian analysis.   

 

For fixed λb,θ, β1,…,βJ , b has a prior distribution as described in Appendix I. The prior for γ is 

taken as the product of these five prior densities: 
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 ( ) ( ) ( ) ( ) ( ) ( )prior prior prior F prior b prior bs kI b |π γ π π π λ π λ π λ= × × × ×  
 
To treat πpost( γ | yData) we first use laws of conditional probability and write  

( ) ( ) ( )1 1
post data post data F b post F b data

J J| y b | y ,s,kI , , , , ,... s,kI , , , , ,... | yπ γ π λ λ θ β β π λ λ θ β β= ×     Eq(5)   

 

As described in Appendix I the first term on the right side of Eq(5) is readily obtained through 

properties of the multivariate normal distribution (MVN).   But, even with fixed values forθ , 

β1,…,βJ , closed form expressions for the needed posterior distribution of the second term  are not 

available. Consequently, posterior probabilities must be obtained by numerical methods or by 

simulation. The most commonly used Bayesian computational technique is called Markov Chain 

Monte Carlo (MCMC); see Robert and Casella (8) for a thorough description of this simulation 

method. Fixing β1,…,βJ makes the MCMC computations more feasible.    

 

The MCMC process will produce a sample of size, say N, from the posterior distribution 

  (we have removedθ , β(post F b Datas,kI , , | yπ λ λ ) 1,…,βJ  because they are now fixed).  For the nth 

element of the sample we can make a draw from ( )post F b Data
n n n nb | s ,kI , , , yπ λ λ   (described in 

Appendix I) to get a value for bn.  Adjoining this to the nth element of the MCMC sample  will 

produce a sample of size N from ( )post Data| yπ γ .  How we use this sample is explored below in 

the Results section. In our examples we have N=10,000. 

 

Results 

For the choice of prior distributions for s and kI set [s0, s1] = [1400, 2000] and [kI0, kI1] = [0.1, 

0.5].  The sample of size N from the posterior distribution of γ described above produces the 
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histograms in Figure 2 for the (marginal) posterior distributions of the two tuning parameters.  

The histograms for the precision parameters may also be obtained but they are of less interest. 

[FIGURE 2 GOES HERE] 

The histogram for s (recall that s is the adjusted not the ideal saturation flow rate) indicates that 

the median is about 1750 vph/lane and that [1650, 1920] is a 90% uncertainty interval for s. The 

histogram for kI indicates that nothing is learned about kI from the data. This suggests that 

virtually any value in [0.1, 0.5] is an acceptable choice for kI.  We choose the posterior means 

smean = 1786, kImean = 0.305.  

 

These values for the tuning parameters are very similar to those estimated using conventional 

calibration methods. For example, Figure 3 shows the relationship of the Mean Square Error 

(MSE) between the cycle-by-cycle field and model delays against various values of s and kI. The 

best (smallest MSE) results are achieved in the range of 1650-1850 vph/lane for s and, in that 

regime, the errors are unaffected by the value of kI.  

[FIGURE 3 GOES HERE] 

We turn next to the question of predicting reality = yM + b as noted following Eq(3) and of 

estimating the bias, both of which are connected to the issue of validation.  Start with the MCMC 

generated N draws, {γn}, from , evaluate (post Data| yπ γ ) ( )M
n ny V ,P,s ,kI  and obtain draws 

 from .  Then, (nb V ,P) ( )F b Data
n n, , , yλ λpost

n nb | s ,kIπ ( ) ( ){ }M
n ny V ,P,s ,kI + nb V ,P is a sample of 

the posterior distribution of reality at V, P given the data and the prior distributions.  We then 

take as the so-termed bias-corrected prediction of reality at (V,P)   

                        ( ) ( ) (
1

1 N
R M

n n n
n

y V ,P y V ,P,s ,kI b V ,P
N =

= ∑) )+  .                                Eq(6) 
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If  are the posterior means of the tuning parameters we define the pure model 

prediction of reality by evaluating the model with these values of the tuning parameters plugged 

in: .  The bias is then estimated by subtraction:  

mean means ,kI

My V ,P,( mean means ,kI )

                                  ( ) ( ) ( )R M
mean meanb V ,P y V ,P y V ,P,s ,kI= −

) )                           Eq(7) 
 
Uncertainty bounds forb V( ,P)

)
are obtained as follows: ( ){ }nb V ,P is a sample from the posterior 

distribution of bias given the data and the prior distributions on γ. If we choose δb so that 90% of 

( ) ({ )}nb V ,P b V ,P−
)

are between + δb and − δb then  

                             ( ) ( )Pr 90 for each bbias V ,P b V ,P . V ,Pδ − < = 
)

                  Eq(8) 

 
In Figure 4a we plot b V( ,P)

)
 with uncertainty bounds for all V,P;  δb ~ 1.2.  We do so for a 

single P =.20 since b V( ),P
)

 changes little, if at all, for different values of P in this example. 

[FIGURE 4 GOES HERE] 

 

Uncertainty bounds for predictions of reality are obtained similarly: For uncertainty bounds on 

pure model predictions find δM such that 90% of the MCMC sample satisfies  

 
        ( ) ( ) ( )M M

n n n mean mean My V ,P,s ,kI b V ,P y V ,P,s ,kI δ+ − ≤                 Eq(9)             

We then get a precise statement of Eq(1):    

                   Pr reality pure model prediction 90 M .δ − <  =                Eq(10) 

For the example at hand Figure 4c plots pure model predictions; δM ~ 1.5.    
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If we use the bias-corrected prediction ( )Ry V ,P)  instead of ( )M
mean meany V ,P,s ,kI and find δR so 

that 90% of the MCMC sample satisfies  

                          ( ) ( ) ( )M
n n ny V ,P,s ,kI b V ,P y V ,PR

Rδ+ − ≤)                                     Eq(11) 

we get the counterpart of Eq(10):   

             Pr reality bias-corrected prediction 90 R .δ − < =                                        Eq(12) 

For the example at hand Figure 4b plots bias-corrected predictions; δR ~ 1.3.    

 

Because the bias is near zero it is unsurprising that δM and δR are the same. Because the bias-

corrected predictions are best predictions we will always have δR < δM.   If  δM ~ 1.5 is small 

enough and 0.90 is the desired level of assurance then Eq(10) can be interpreted as stating that  

model M1 is valid for the Wells-Grand study lane group.  Thus, we have in a single analysis 

treated the calibration/tuning (Figure 2) and the assessment of model validity (Figure 4).  

 

We could have proceeded in a more “traditional” way of finding values of the tuning parameters 

by minimizing the squared error differences between model and field data, and then estimating 

the bias by fitting a function to the differences between field and model (for example, as in 

Figure 3 and Appendix II).  Because the bias is nearly zero we would be led to similar estimates 

as found by the Bayes analysis but with no assessment of uncertainty. If the bias is not zero such 

an analysis could be misleading and, moreover, we would be unable to assess the utility of the 

model as we can via Eq(10) and Eq(12).   
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3. Model M2 at NB LaSalle-Ontario (3 through lanes) 

The model inputs include those for M1 and, in addition, the input Q = initial queue length at the 

beginning of the cycles. Based on the HCM model with initial queue,    

let c = 3 s⋅g/CL = capacity; X=V/c, 1
1
−

=
−

PA( P ) fPF
g / CL

.   Let 
( )1 1

Qin T ,
c min ,X

t m
  =  

 −   
;          

w = 0 if t < T, else 
( )1 1

1
cT min ,X

w
Q

 −= −  .  There are three terms to model delay, yM: 

     ( )
( )

2

1
0 5 10 5 1

1 1
t . CL( g CL ) T t,P,Q,s . CL( g CL ) PF
T Tmin , X g CL

d V − −
= − + ⋅ ⋅

 −  
 

 

( ) 2
2

8900 1 1 kIXd V ,P,Q,s,kI T ( X ) ( X )
cT

 
= − + − +

 
                                    Eq(13) 

  

      ( )3
1800 1Q( w )t,P,Q,s

cT
+

=d V  

   
        

1 2 3
My (V ,P,Q,s,kI ) d d d= + +  

 
The data here are for one-hour during the evening rush hour.  The results are as follows: 
 
The histograms in Figure 5 indicate that, unlike M1, the data are informative about kI.  

The posterior means are smean = 1616 vph/lane , kImean = 0.521. The mean-square-error (MSE) 

analysis in this case yielded smean= 1550 vph/lane and kImean= 0.50.  The plots in Figure 6 are of 

the bias (with uncertainty bounds) as a function of volume for four different fixed pairs of values 

for P,Q.  The plots show that bias is present especially at P = .50.  Figure 7 shows the effect of 

the bias on how well the model predicts reality for each of these 4 pairs of P,Q.  In particular,  

 Pr reality pure model prediction 4 0 90 . . − < + =  
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when P=.50 and Q = 0 or 4.  If 4 seconds is an acceptable error then, despite the presence of bias, 

the model provides usable estimates of delay.  But 4 seconds is considerable, based on the range 

of observed delays in Table 2, and suggests that the model is somewhat unreliable.  The reason: 

possibly because s may be very different when Q=0 than when Q > 0. 

                                               [FIGURES 5, 6 and 7 GO HERE] 

 

The data–adjustment of the model by use of the bias-corrected predictions (Figure 8) produces 

discrepancies within 2 seconds of reality, a clear improvement.  (The dashed line in Figure 8 is 

the pure-model prediction; its distance from the bias-corrected prediction is noticeable.)  This 2 

second level of uncertainty cannot be improved upon without more data or different assumptions.  

Thus, the bias-corrected predictions provide the best answer for the example at hand and 

overcome the model’s shortcomings.                                          

        [FIGURE 8 GOES HERE] 

4. Comments  

The analysis used relied on the capability of producing model output quickly and cheaply. This is 

the case for the algebraic mathematical models found in the HCM.  For more complicated 

situations where the model may require extensive computation to produce output for a single set 

of inputs (as is the case for solving differential equations in other engineering contexts) we 

would need an additional step of approximation of the model through a computer experiment (6).   

 

An open issue and one that demands further research is how to determine the amount of data that 

must be collected to allow a given assurance for a specific discrepancy in (1).   
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5. Summary 

We have shown how a Bayesian analysis of commonly used mathematical models can produce, 

in a single analysis, complete answers to the issues of calibration/validation. Though 

computationally demanding the process described is transferable to any readily computed model 

for which field data are available. The applications to control delay in the HCM show the 

possible range of assessments that can be made: quantifying the uncertainty in the model 

parameters, asserting validity and quantifying the utility of the model and the data-adjusted (bias-

corrected) modification. In the first case presented in this paper we were able to assert the 

validity of the HCM model (predictions within 1.5 seconds of reality with 90% assurance). In the 

second case a tolerable difference of 2 seconds is possible only if the HCM model is bias-

corrected, the model without such adjustment is not reliable enough.  

 

Appendix I: Statistical Structure of b 

 

The values of b at any finite set of points are initially unknown. Assume that these values have a 

multivariate normal distribution with some mean vector and covariance matrix (a prior 

distribution in Bayesian parlance).  The dependence between values, reflected in the covariance 

matrix, will also reflect the fact that the values of a “tame” function at nearby points are close 

(“correlated”).   By choosing the mean vectors and covariance matrices appropriately this can be 

done consistently for every finite set of points on which b is defined.  The result is to give the 

whole function, b, a prior distribution.  If we can evaluate b at several points we can learn about 

the behavior of b at new places through the conditional distribution of the values of b at the new 

set given the values on the set where the evaluation is made. (The conditional distribution is 
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again Gaussian but with a mean and covariance updated and dependent on the values observed.)   

A choice for the means and covariances for this process that has proved to be highly effective in 

a variety of settings  is to take the mean vector to be constant (say θ ) and the covariance 

between two points x and w (this determines all the covariance matrices for the multivariate 

normal) to be given by  

                          ( )2

1

1 J
b

jbCov ( w,z ) exp w zβ
λ

= − −∏ ( j ) ( j )                           Eq(A1) 

(J is the dimension of the vectors w,z).  When the β’s are small the correlation (the product term 

in Eq (A1)) will get closer to 1 indicating a high degree of relationship between values of b.  

Large values of the β’s indicate a low degree of relationship and allow b to oscillate more 

rapidly. The size of the oscillations is greater if λb is small (low precision or high variability).  

The exponent 2 on the distance between coordinates of w and z in Eq(A1) assures that the 

function will be very smooth with infinitely many derivatives – we impose that assumption on b. 

Also, we do not let the distribution of b depend on u, thereby allowing a degree of decoupling of 

the bias from the tuning. 

 

This approach is typical of so-termed “kriging” methods in common use in spatial and 

geostatistics literature (Cressie, 1993) (9).  In essence, we have described a correlation structure 

between values of the function at the locations where it is defined; our choice of correlation 

structure is meant to capture the idea that bias should be smoothly varying 

 

Appendix II.  Selection of Parameters for the Prior on b 

First fix values of the calibration parameters (say at the midpoint of their prior intervals). Form 

the differences yF− yM for the input data, with the fixed values of the calibration parameters. 
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Then compute a maximum likelihood estimate of λF , λb ,β1,…,βJ based on the MVN of the 

differences.  The MVN will have a mean assumed to be 0 and a covariance matrix that depends 

on λF , λb as well as β1,…,βJ .  The maximum likelihood estimates of λF , λb  are used to construct 

priors for λF , λb ; the estimates for β1,…,βJ are retained for the analysis of b. Any errors in these 

estimates will have small effect on the ultimate use: prediction of b and prediction of reality. 

This characteristic was observed in previous work where the tactic was used (6). The reduction 

in computational effort is considerable and makes the Bayesian analysis more feasible.                                          
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Table1. Summary of Field Measurements at SB* Wells-Grand Intersection 

Cycle 
Number 

Count per 
Cycle (V) 

Proportion   
Arriving on Green (P) 

Measured Control 
Delay (yF) 

1 22 0.30 21.76  
2 24 0.08 28.02  
3 22 0.26 26.67  
4 25 0.20 26.82  
5 21 0.19 30.61  
6 24 0.25 20.85  
7 21 0.24 22.29  
8 24 0.21 21.83  
9 18 0.11 23.38  
10 19 0.21 22.15  
11 21 0.27 23.31  
12 14 0.29 23.21  
13 22 0.17 27.75  
14 25 0.24 23.28  
15 23 0.22 27.86  
16 21 0.14 27.10  
17 16 0.00 33.73  
18 17 0.33 23.52  
19 17 0.21 27.29  
20 22 0.26 21.27  
21 16 0.12 26.85  
22 21 0.19 24.34  
23 15 0.20 25.60  
24 18 0.16 25.78  
25 21 0.30 20.74  
26 22 0.08 30.87  
27 21 0.13 26.69  
28 17 0.05 29.84  
29 21 0.23 24.34  
30 20 0.20 26.18  
31 20 0.18 21.58  
32 18 0.11 30.80  
33 18 0.16 25.67  
34 17 0.17 26.54  
35 18 0.28 19.81  
36 19 0.21 22.72  
37 18 0.22 27.69  
38 14 0.07 28.56  
39 25 0.18 33.22  
40 20 0.10 25.66  
41 21 0.14 22.80  
42 20 0.23 20.26  
43 16 0.13 26.85  
44 21 0.14 28.74  
45 20 0.14 29.88  
46 20 0.24 19.86  
47 13 0.07 26.60  
48 19 0.16 25.09  

  *through lane group only 
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Table2. Summary of Field Measurements at NB* LaSalle- Ontario Intersection 
 

Cycle 
Number 

Count per 
Cycle (V) 

Proportion Arriving on 
Green (P) 

Initial Queue 
(Q) 

Measured Control 
Delay (yF) 

1 35 0.63 0 12.11  
2 30 0.80 0 4.96  
3 34 0.76 0 12.32  
4 29 0.55 0 16.54  
5 34 0.68 0 16.63  
6 36 0.72 0 12.86  
7 41 0.71 0 14.75  
8 32 0.91 0 1.82  
9 34 0.68 0 14.06  

10 34 0.88 1 3.42  
11 34 0.82 0 5.77  
12 28 0.82 0 5.49  
13 35 0.80 0 6.70  
14 32 0.78 3 8.31  
15 31 0.81 0 7.19  
16 31 0.71 0 19.66  
17 37 0.73 6 12.68  
18 37 0.78 0 10.04  
19 32 0.88 2 4.00  
20 33 0.79 0 7.23  
21 29 0.66 0 16.28  
22 35 0.71 1 12.75  
23 25 0.52 5 27.81  
24 38 0.50 7 22.48  
25 34 0.62 3 22.35  
26 29 0.59 3 20.01  
27 31 0.68 5 15.47  
28 33 0.70 0 14.48  
29 38 0.58 0 24.74  
30 30 0.57 7 24.25  
31 22 0.50 3 26.45  
32 33 0.52 3 26.04  
33 32 0.75 3 16.01  
34 25 0.44 7 39.62  
35 34 0.32 17 39.46  
36 33 0.64 6 24.68  
37 32 0.56 9 27.71  
38 27 0.67 3 26.43  
39 34 0.74 1 9.22  
40 37 0.73 0 11.19  
41 37 0.65 6 16.85  
42 31 0.65 2 18.40  
43 30 0.73 4 17.54  
44 27 0.67 3 19.05  
45 34 0.65 5 17.35  
46 35 0.77 0 12.37  
47 31 0.71 5 15.63  
48 29 0.72 0 17.60  

       *through lane group only 
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Figure 1 Intersection Configurations 
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Figure 2.  Histograms of the posterior densities of the tuning parameters s and kI. (Model M1; 
SB Wells-Grand) 
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           Figure 3 Control Delay MSE* vs. s and kI for Wells-Grand SB Lane Group 
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                                                          (a)  

      
 

        (b)      (c)  
 
  Figure 4. Estimates of bias, bias-corrected predictions and pure-model for Model 
M1 and SB Wells-Grand. For (a) the solid curve is the estimate of b and the dotted curves form 
90% uncertainty bounds.  For (b) the solid curve is the bias-corrected prediction of reality; the 
dotted curves form its 90% uncertainty bounds and the dashed curve is the pure-model prediction 
of reality.  For (c) the solid curve is the pure-model prediction of reality and the dotted curves 
form its 90% uncertainty bounds. 
 
  
 
 

 27



 
 
 

               
 
                                      (a)                                                               (b) 
   
 
Figure 5.  Histograms for posterior densities of the tuning parameters s and kI. (Model M2; NB 

LaSalle-Ontario) 
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Figure 6. Estimates of bias (Model M2; NB LaSalle-Ontario). The solid curves are estimates of b 
as a function of volume for four different combinations of P,Q; the dotted curves form the 90% 

uncertainty bounds.   
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Figure 7. Pure-model predictions of reality (Model M2; NB LaSalle-Ontario). The solid curves 
are predictions as a function of volume for four different combinations of P,Q; the dotted curves 

form the 90% uncertainty bounds. 
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Figure 8. Bias-corrected predictions of reality (Model M2; NB LaSalle-Ontario). The solid 
curves are predictions as a function of volume for four different combinations of P,Q; the dotted 

curves form the 90% uncertainty bounds; the dashed lines are the pure-model predictions.. 
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