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Abstract

Reluctance of statistical agencies and other data owners to share their possibly confidential or pro-
prietary data with others who own related databases is a serious impediment to conducting mutually
beneficial analyses. In this paper, we propose a protocol for securely computing matrix products in ver-
tically partitioned data, i.e., the data sets have the same subjects but disjoint attributes. This protocol
allows data owners to estimate coefficients and standard errors of linear regressions, and to examine
regression model diagnostics, without disclosing the values of their attributes to each other or to third
parties. The protocol can be used to perform other procedures for which sample means and covariances
are sufficient statistics.

1 Introduction

In numerous contexts, immense utility can arise from statistical analyses that integrate multiple, distributed
databases. For example, statistical models can be fit using more records or more attributes when databases
are integrated than when databases are analyzed separately. Data integration is complicated by concerns
about data confidentiality, including legal, regulatory and even physical barriers to concatenating databases.
These concerns can be present even when the database owners cooperate: all may wish to perform integrated
analyses, but no one wants to break the confidentiality of others’ data.

The need to balance the utility of combined analyses with the risk of privacy violation has received con-
siderable interest lately. Two general cases have been addressed in the literature.Horizontally partitioned
databases comprise the same numerical attributes for disjoint sets of data subjects. For example, several state
or local educational agencies might want to combine their students’ data to improve the precision of analyses
of the general student population.Vertically partitioneddatabases comprise the same data subjects, but each
database contains different sets of attributes. For example, one government agency might have employment
information, another health data, and a third information about education, all for the same individuals. A
statistical analysis predicting health status from all three sources of attributes is more informative than, or
at least complementary to, separate analyses from each data source. The results of analyses of horizontally
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or vertically partitioned data may be kept internal to the database owners or disseminated more widely. A
third case, which we callpartially overlapping, vertically partitioneddatabases, combines features of the
horizontal and vertical cases (see Reiter et al. (2004) for approaches to analysis in that setting).

Several algorithms have been developed for performing secure analyses of horizontally partitioned data.
Among them, Evfimievski et al. (2002) and Kantarcioglu and Clifton (2002) present methods for data mining
with association rules; Lin et al. (2004) present methods for model based clustering; and, Karr et al. (2004)
present methods for secure regression analyses including model diagnostics. For vertically partitioned data,
which is the setting of this paper, secure analysis methods exist for association rule mining (Vaidya and
Clifton, 2002), K-means clustering (Vaidya and Clifton, 2003), and linear discriminant analysis (Du et al.,
2004). Sanil et al. (2004) and Du et al. (2004) present approaches to computing regression coefficients in
vertically partitioned data, using methods that do not share their sample mean and covariance matrices. The
approach of Sanil et al. (2004) assumes, however, that all agencies own the response variable.

In this paper, we show how to perform regression analyses on vertically partitioned data using an alter-
native approach to those of Du et al. (2004) and Sanil et al. (2004). We assume the data owners are willing
to share sample means and covariances of the integrated database, but not the raw data. Sharing the sample
covariance matrices allows the database owners to perform much richer sets of analyses than coefficient
estimation, including inference for the coefficients, model diagnostics and model selection. We note that the
approach of Du et al. (2004) can be modified to share sample covariance matrices, but the approach of Sanil
et al. (2004) cannot.

The paper is organized as follows. In Section 2, we provide a description of our linear algebra-based
protocol for computing a secure matrix product. In Section 3, we describe how this protocol can be used
to conduct secure linear regressions on arbitrary subsets of attributes, including model diagnostics. This
section also describes some straightforward extensions to secure linear regression.

2 A Secure Protocol for Computing Matrix Products

For simplicity, we describe the secure computation protocol for matrix products as a two-agency protocol.
It is readily extendible to multi-agency cases.

We assume that the agencies are semi-honest. That is, the agencies strictly adhere to an established
protocol designed to preserve privacy. Neither agency attempts to learn other agency’s data values by “gam-
ing” the protocol. For example, semi-honest agencies do not pass false information to each other with the
intention of learning the other’s data values. We believe the semi-honest assumption is realistic for many
data integration settings, especially government agencies seeking to perform combined analyses using their
data.

2.1 The Protocol

To save writing, we label the database owners as AgencyA and AgencyB, even though they might be
private companies or other data holders. Suppose that the agencies possess disjoint sets of attributes for the
samen data subjects. (The disjointness assumption is harmless: if it is not satisfied initially, the agencies
coordinate so that any common attributes are included in only one matrix.) Let AgencyA possessp data
vectors{X1, X2, . . . , Xp : Xi ∈ <n} and AgencyB haveq vectors{Y1, Y2, . . . , Yq : Yi ∈ <n}. Let
X = [X1, X2, . . . , Xp] andY = [Y1, Y2, . . . , Yq] denote the respective data matrices, and assumep < q.
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We assume the matrices are of full rank; if not, the agencies remove any linearly dependent columns. In
case the agencies have data on different sets of subjects, the process we describe can be readily carried out
with the data on subjects that are common to all the agencies.

AgencyA and AgencyB wish to compute securely the(p × q) matrix XTY and share it. Once they
have done so, each possesses the “full data” covariance matrix, and may perform a variety of statistical
analyses of the integrated data, butwithout the data ever actually having been integrated! To effect this
computation, it is necessary that the agencies to align their common data subjects in the same order. We
assume each agency possesses a primary key, for example social security numbers, that is shared to facilitate
this ordering. Possibly inexact record linkage and the consequences of the resulting error is an intriguing
problem and is the subject of active research.

In the interest of fairness to each participating agency, and to encourage trust among the agencies, we
desire a protocol for secure matrix products that is symmetric in the amount of information exchanged. That
is, the agencies should learn roughly the same amount about each other’s data from the information shared
in the protocol. Moreover, the protocol should, ideally, be optimal in the sense that neither agency learns
more about the other’s data by using the protocol than it would learn if an omniscient third party were to tell
it the result.

A protocol that achieves both these goals, at least approximately, is described by following procedure:

1. AgencyA generates a set ofg = b (n− p)/2c orthonormal vectors{Z1, Z2, . . . , Zg : Zi ∈ <n} such
thatZT

i Xj = 0 for all i, j. AgencyA then sends the matrixZ = [Z1, Z2, . . . , Zg] to AgencyB.

2. AgencyB computesW = (I−ZZT )Y, whereI is an identity matrix, and then sendsW to Agency
A.

3. AgencyA calculatesXTW = XT (I− ZZT )Y = XTY sinceXT
j Zi = 0 for all i, j.

The vector dot-product protocol is a special case of the matrix product. A method for generatingZ is
presented in the Appendix.

It might appear that AgencyB’s data can be learned exactly since AgencyA knows bothW andZ.
However,W has rank(n− g) = (n− 2p)/2, so that AgencyA cannot invert it to obtainY.

2.2 Degree of Protection

The degree of protection in any protocol is a function of the number of constraints on the data values
known to each agency. The smaller the number of known constraints relative to the number of unknown
data elements, the better the protection of the data elements. Symmetric protocols have the feature that
the agencies know similar numbers of constraints. For any matrix product protocol whereXTY is learned
by all agencies, including protocols that involve trusted third agencies, at minimum each agency knowspq
constraints,i.e., those ofXTY.

In many semi-honest data integration settings, the number of data subjects is much greater than the
number of terms in the cross-products matrix; that is,n � pq. We assume this to be the case for evaluating
the protection afforded by the protocol, although this is not required for the algorithm to work. We also
assume thatn is large enough so that a vectorX ∈ <n is considered secure even if others know thatX ∈ S,
whereS is a subspace of<n with dim(S) ≈ n/2. That is, knowingn/2 equations forX does not pin down
X with sufficient accuracy. Again, in many data integration settings the sample sizes are large enough for
this assumption to be realistic.
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We need to consider the knowledge of AgencyA aboutY and of AgencyB aboutX. AgencyA knows:

• Thepq constraints onY in XTY.

• Theg ≈ n/2-dimensional subspacethat theYi lie in, as given byW = (I − ZZT )Y.

Thus, AgencyA has a total ofg + pq constraints onY. Assumingn � pq, we can say that AgencyA
knows the approximatelyn/2-dimensional subspace that theYi lie in. For largen, AgencyB’s data may be
considered safe in the semi-honest setting.

Correspondingly, AgencyB knows:

• Thepq constraints onX in XTY.

• The(n− g) ≈ n/2-dimensional subspace that theXi lie in. This is the subspace orthogonal toZ.

Thus, AgencyB has a total ofn−g+pq constraints onX. Assumingn � pq and thatg ≈ n/2, we can say
that AgencyB knows the approximatelyn/2-dimensional subspace that theXi lie in. For largen, Agency
A’s data may be considered safe in the semi-honest setting.

Since both AgencyA and AgencyB can place the other’s data in an approximatelyn/2-dimensional
subspace, the protocol is approximately symmetric in the information exchanged. At higher (in terms of
structure of the data) levels, though, symmetry can break down. For example, in a regression setting (see
Section 3), if AgencyA holds the response, but none of its other attributes is a good predictor, whereas the
attributes of held by AgencyB are good predictors, then arguablyA learns more aboutB’s data thanvice
versa.

The protocol is not optimal in the sense of each agency’s learning as little as possible about the other’s
data. FromXTY alone, AgencyA has onlypq constraints onY , rather than the approximatelyn/2 con-
straints described above. The symmetry, however, implies a minimax form of optimality: the total amount
of information that must be exchanged isn (Consider the extreme case that AgencyA transmits its data
to AgencyB, which computesXTY and returns the result toA.), and so each agency’s transmittingn/2
constraints on its data minimizes the maximum information transferred.

2.3 Potential for Breaches of Confidentiality

The protocol is not immune to breaches of confidentiality if the agencies do not cooperate in a semi-honest
fashion. For example, suppose AgencyA sends to AgencyB aZ such that(I−ZZT ) contains one column
with all zeros except for a non-zero constant in one row. AgencyA then learns the value of AgencyB’s data
for the data subject in that row throughXTW. Other bogusZ could yield similar disclosures.

Even when the agencies are semi-honest, disclosures might be generated because of the values of the
attributes themselves. As a simple example, supposeX includes a variable that equals zero for all but one of
the data subjects. Even with a legitimateZ, theXTY will reveal that subject’s value ofY. Similar problems
could arise when someXi contains non-zeros for only a small number of records, particularly when reliable
prior information on those records’ values of someYj is known. For example, suppose two firms are the
only ones in a certain industry in a certain city, with one being large and the other being small. LetXi

be an indicator with ones for those two firms and zeros for other firms. LetYj be some sensitive attribute
positively correlated to the size of a firm. TheXT

i Yj equals the sum of the two firms’ values, but most of
that sum is contributed by the large firm. Thus,XT

i Yj may be sufficiently close to the one firm’s value ofYj

as to be a disclosure.

4



Disclosures resulting from subject matter considerations can be difficult to prevent. If AgencyB does
not know that AgencyA has a variable like theXi above, there is almost no way for AgencyB to prevent
disclosing some values in the matrix multiplications. A related problem occurs if one agency has attributes
that are nearly linear combinations of the other agency’s attributes. When this happens, accurate predictions
of the data subjects’ values can be obtained from linear regressions built from the securely computed matrix
products.

3 Linear Regression with Arbitrary Subsets of Attributes

In this section, we apply the secure matrix product protocol to conduct secure linear regression analyses. We
also discuss how the protocol can be used to do stepwise regression, ridge regression, and model diagnostics.

3.1 Secure Linear Regression

Let the matrix of all variables in the possession of the agencies beD = [D1, · · · , Dp], with

Di =

 di1
...

din

 , 1 ≤ i ≤ p . (1)

The data matrixD is distributed throughK agencies:A1, A2, · · · , AK . Each agency,Aj , possessespj

disjoint columns ofD, where
∑

K pj = p.
A regression model of some response attribute, sayDi ∈ D, on a collection of the other attributes, say

D0 ⊆ D \ {Di}, is of the form
Di = D0β0 + ε0 (2)

whereε0 ∼ N(0, σ2
0). Typically, the model includes an intercept term. This is achieved by including a

column of ones inD0. Without loss of generality, we assume thatDT
1 = (1, 1, . . . , 1) and that it is owned

by AgencyA1.
Our goal is to regress anyDi on some arbitrary subsetD0 using secure computation. It is well known

that the maximum likelihood estimates ofσ2
0 andβ0, as well as the standard errors of the estimated co-

efficients, can be easily obtained from the sample covariance matrix ofD, for example using the sweep
algorithm (Beaton, 1964; Schafer, 2000). Hence, the agencies need only the elements of the sample covari-
ance matrix ofD to perform the regression. Each agency computes and shares the block-diagonal elements
of the matrix corresponding to its variables, and the agencies use secure matrix computations to compute
the off-diagonal elements, thus completing the sample covariance matrix.

3.2 Model Diagnostics

Estimated regression coefficients are of limited value when the regression model does not describe the data
adequately; hence, model diagnostics are essential. The types of diagnostic measures available in vertically
partitioned data settings depend on the amount of information the agencies are willing to share, as discussed
below.
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Diagnostics based on residuals require the predicted values,D0β̂0. These can be obtained using the
secure matrix product protocol, since

D0β̂0 = D0(D0
TD0)−1D0

T Di. (3)

Alternatively, once thêβ0 is shared, each agency could compute the portion ofD0β̂0 based on the attributes
in its possession, and the vectors can be summed across agencies using the secure summation protocol
(Benaloh, 1987).

Once the predicted values are known, the agency with the responseDi can calculate the residualsE0 =
Di−D0β̂0. If that agency is willing to share the residuals with the other agencies, each agency can perform
plots of residuals versus its predictors and report the nature of any lack of fit to the other agencies. Sharing
E0 also enables all agencies to obtain Cook’s distance measures, since these are solely a function ofE0 and
the diagonal elements ofH = D0(D0

TD0)−1D0
T , which can be securely computed. We note that the

diagonal elements ofH can be used to generate standardized and studentized residuals in place ofE0.
The agency withDi may be unwilling to shareE0 with the other agencies, since sharing could reveal

the values ofDi. In this case, one option is to compute the correlations of the residuals with the independent
variables using the secure matrix product protocol. When the model fits poorly, these correlations will be
far from zero, suggesting model re-specification. Additionally, the agency withDi can make a plot ofE0

versusD0β̂0, and a normal quantile plot ofE0, and report any evidence of model violations to the other
agencies. The number of residuals exceeding certain thresholds, i.e. outliers, also can be reported.

3.3 Extensions to Regression

Variations of linear regression can be performed using the secure matrix product protocol. To perform
weighted least squares regression, the agencies first securely pre-multiply their variables byT1/2, whereT
is the matrix of weights, and then apply the protocol as in Section 3.1 using the transformed variables. To
run semi-automatic model selection procedures, like stepwise regression, the agencies can obtain the shared
covariance matrix securely, then select models based on criteria that are functions of the sample covariance
matrix, such as theF -statistic or the Akaike Information Criterion.

It is also possible to perform ridge regression (Hoerl and Kennard, 1970) securely. Ridge regression
shrinks the estimated regression coefficients away from the maximum likelihood estimates by imposing a
penalty on their magnitude. Written in matrix form, ridge regression seeks theβ̂ that minimizes

Ridge(λ) = (Di −D0β̂)T (Di −D0β̂) + λβ̂T β̂ (4)

whereλ is a specified constant. The ridge regression estimate of the coefficients is

β̂R = (D0
TD0 + λI)−1D0

T Di. (5)

SinceD0
TD0 can be computed using the secure protocol,(D0

TD0 + λI)−1 can be obtained and shared
among the agencies. The agencies also can shareD0

T Di securely, which therefore admits the estimated
ridge regression coefficients.

4 Conclusion

Using our linear algebra based approach, it is possible for statistical agencies and other data holders to obtain
matrix products in vertically partitioned data settings. This enables agencies with vertically partitioned data
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to perform linear regressions without sharing their data values. We anticipate that the secure matrix protocol
will be useful for other techniques that depend on sample covariance matrices, such as some forms of cluster
and discriminant analysis. Future research areas include protocols for sharing non-linear analyses securely,
the potential of data encryption in vertically partitioned data, and methods for matching records securely.
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A Generating Z from X

In the secure matrix product protocol, we generate vectors{Z1, Z2, . . . , Zg : Zi ∈ <n} such thatZ ′
iXj = 0

for all i, j. This is readily done using the QR-decomposition ofX. The QR-decomposition of an(n × p)
matrix X decomposes it asX = QR, whereQ is an(n × n) orthonormal matrix, andR is an(n × p)
upper-triangular matrix; see Golub and Van Loan (1996); Press et al. (1992) for details on properties of
and algorithms for the QR-decomposition. The calculation is both fast and numerically accurate. Partition
columns ofQ asQ = [Q1 : Q2] whereQ1 consists of the leftmostp columns ofQ. Thenran(X) =
ran(Q1) andran(X)⊥ = ran(Q2), whereran(M) denotes the range of a matrixM. HenceZ can be
easily obtained by selecting (randomly or informatively) anyg = b(n− p)/2c columns ofQ2. If AgencyA
fears that AgencyB’s knowing that a QR-decomposition was used reveals extra information, then Agency
A can permute the columns ofX before doing the decomposition, and permute the columns ofZ before
reporting it to AgencyB.
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