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National statistical agencies (and other organizations) must fulfill two nearly contradictory mis-
sions. On the one hand, they must extract and disseminate—to other agencies, the research commu-
nity and the public—useful information derived from sample surveys and censuses. But they must
also protect the confidentiality of the data and the privacy of data subjects. Protecting confidentiality
may be mandated by law, prescribed by agency practices or promised to respondents. Often, con-
fidentiality must be preserved in order to ensure the quality of the data: respondents do not answer
truthfully if they believe that their privacy is threatened.

In this paper we describe two formulations that balance data quality and disclosure risk. These
formulations can inform the strategies used by agencies to construct microdata releases. The first,
for data swapping, uses explicit quantitative measures of data quality—the utility of the released
microdata— and disclosure risk to produce a risk-utility frontier of undominated candidate releases,
to which the agency can restrict its attention. Given a “utility function” that trades off data quality
for disclosure risk, an optimal release can be identified. The second, and rather different, setting is
integration of distributed databases. There, arguably the quality is zero unless analyses that seem to
but actually do not require integration of the data can be conducted safely.

Other risk–utility formulations have been devised for regressions [7], tabular data [3, 4] and
other settings [5, 6, 12].

Data Swapping

Data swapping [2, 13] is a technique for statistical disclosure limitation (SDL) that protects
confidentiality by modifying a fraction of the records in a database by exchanging a subset of attributes
between selected pairs of records. Data swapping makes it impossible for an intruder to be certain of
having identified an individual or entity in the database, because no record is certain to be unaltered.

Formulated as a decision problem [8], data swapping entails selection of one or more swap at-
tributes and the swap rate, the fraction of records for which swapping occurs. More complex versions
of the problem allow constraints on unswapped attributes. For example, an unswapped attribute may
be forced to remain unchanged—preventing swapping across geographical boundaries, for example—
or forced to change. LetDpre andDpost(R) denote the pre-swap and post-swap contingency tables
associated with the data.

Let R be the set of candidate data releases. To implement the risk–utility formulation, the
agency must define both adisclosure risk measure—a functionDR : R → R with the interpretation
thatDR(R) is the disclosure risk associated with the releaseR, and adata utility measure—a function
DU : R → R with the interpretation thatDU(R) is the utility of the releaseR.

In [8], which treats only categorical data, disclosure risk focuses on small count cells in the
contingency table created by using all attributes in the data. One such measure is derived from the
n-rule, which is widely used in SDL [13]. Disclosure risk is the proportion of unswapped records in
small count cells inDpost(R):

(1) DR(R) =

∑
C1,C2

Number of unswapped records inDpost(R)

Total number of unswapped records inDpost(R)
,



whereC1 andC2 are the cellsDpost(R) with counts of 1 and 2 respectively. Other measures are based
on the ease with which swapped records can be linked to an external database, as in [14].

In [8], data utility is the negative ofdata distortion, the latter given by

(2) DD(R) = d(Dpre, Dpost(R)),

whered is a metric on an appropriate space of distributions. Specific measures include Hellinger
distance, total variation distance and entropy change.

It is also possible [8] to define measures of data utility that account explicitly for quality of
inferences drawn from the data using log-linear models [1]. LetM∗

= M∗(Dpre) be the “optimal”
log-linear model of the pre-swap databaseDpre, according to some criterion, for example, the Akaike
information criterion (AIC) or Bayes information criterion (BIC). Concretely,M∗ can be thought of in
terms of its minimal sufficient statistics—the set of marginal subtables of the contingency table asso-
ciated withDpre representing the highest-order interactions present. LetLM∗(·) be the log-likelihood
function associated withM∗. Then as measure of data utility one can employ the log-likelihood ratio

(3) DUllm(R) = LM∗(Dpost(R)) − LM∗(Dpre);

the llm subscript abbreviates “log-linear model.” The rationale is that higher values ofDUllm(R)

indicate thatM∗ remains a good model forDpost(R).
Given disclosure risk and data utility measures, the decision problem can be solved in two

distinct ways. The first isutility maximization: the optimal releaseR∗ is chosen that maximizes data
utility subject to an upper bound constraint on disclosure risk:

(4)
R∗

= arg maxR∈R DU(R)

s.t. DR(R) ≤ α.

A more flexible method is to definerisk–utility frontiersusing the partial order�RU defined by

(5) R1 �RU R2 ⇔ DR(R2) ≤ DR(R1) and DU(R2) ≥ DU(R1).

If R1 �RU R2, then clearlyR2 is preferred toR1 because it has both lower disclosure risk and higher
greater utility. Only release candidates on the risk–utility frontier of maximal elements ofR with
respect to the partial order (5) need be considered further. Calculation of the frontier can be done
using existing algorithms for finding the maxima in a set of vectors.

Selection of a release on the risk–utility frontier can be done by assessing the risk–utility bal-
ance subjectively or quantitatively, by means of an objective function that relates risk and utility.
Similar approaches have been used in economics to maximize consumer utility for the purchase of a
combination of two commodities.

Data Integration

In a totally different setting, many scientific and policy investigations require statistical analyses
that “integrate” data stored in multiple, distributed databases. But, the barriers to actually integrating
the databases are numerous. One is confidentiality; others are regulation, proprietary data and scale.

Absent the ability to integrate the data, their (joint) quality diminishes. For many analyses it is
not necessary to move the data to a single location. Instead, using techniques from computer science
known generically as secure multi-party computation [15], agencies can share summaries of the data
anonymously, but in a way that the analysis can be performed in a statistically principled manner.

We illustrate for linear regression on “horizontally partitioned data” [9, 10]. There areK > 2
agencies, each with the same numerical data on its ownn j data subjects—p predictorsX j and a
responsey j , and that the agencies wish,without sharing their data with each other or a trusted third
party, to fit the usual linear model

y = Xβ + ε,



to the “global” data

X =

 X1

...

XK

 and y =

 y1

...

yK

 .

We embed the constant term of the regression in the first predictor:X j
1 ≡ 1 for all j .

Several assumptions about agency behavior are necessary. First, the agencies agree to cooperate
to perform the regression, and none of them is specifically interested in breaking the confidentiality
of the others’ data. Second, each reports accurately the results of computations on its own data, and
follows the agreed-on computational protocols, such as secure summation, properly. And finally,
there is no collusion among agencies.

Only one concept from secure multi-party computation is needed, that of secure summation—
the agencies want to sum valuesv j in a manner that lets each agencyj learn only the minimum
possible about the other agencies’ values, namely, the sumv(− j ) =

∑
6̀= j v` = v − v j . The secure

summation protocol is almost more complicated to describe than to implement. Number the agencies
1, . . . , K . Agency 1 generates a very large random integerR, addsR to its valuev1, and sends
the sum to agency 2. SinceR is random, Agency 2 learns effectively nothing aboutv1. Agency
2 adds its valuev2 to R + v1, sends the result to agency 3, and so on. Finally, agency 1 receives
R + v1 + · · · + vK = R + v from agencyK , subtractsR, and shares the resultv with the other
agencies. Here cooperation matters: agency 1 is obliged to sharev with the other agencies.

Returning to the regression problem, to compute the least squares estimatorsβ̂ = (XT X)−1XT y,
it is necessary to computeXT X andXT y. Because of the horizontal partitioning of the data,

XT X =

K∑
j =1

(X j )T X j .

Therefore, agencyj simply computes its own(X j )T X j , which has dimensionsp× p, wherep is the
number of predictors, and these are combined entrywise using secure summation. The same is done
for XT y. Then, each agency can calculateβ̂ from the shared values ofXT X andXT y. Note that no
agency learns any other agency’s(X j )T X j or (X j )T y j , but only the sum of these over all the other
agencies.

It is also possible to compute and share securely a variety of regression diagnostics [10], as well
as deal with alternate problems, such as vertically partitioned data [11].
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RÉSUMÉ

Nous présentons deux methodes pour “trading off” la qualité et la confidentialité du microdata.


