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Abstract

We present the old-but–new problem of data quality from a statistical perspective, in part with the
goal of attracting more statisticians, especially academics, to become engaged in research on a rich
set of exciting challenges. The data quality landscape is described, and its research foundations in
computer science, total quality management and statistics are reviewed. Two case studies based on an
EDA approach to data quality are used to motivate a set of research challenges for statistics that span
theory, methodology and software tools.

1 Introduction

Data quality is an old problem that has acquired urgent new dimensions. Once it was largely a scientific
issue, with roots in measurement error and survey uncertainty. But for today’s world of massive electronic
data sets and difficult policy decisions, data quality (DQ) problems can create significant economic and
political inefficiencies. Modern research on DQ improvement draws upon multiple disciplines and presents
a rich set of scientific, technological, and process control challenges to statisticians.

DQ merits more attention from the statistical community, especially among academics. Faculty engage-
ment in the problem has been virtually nil. At a National Institute of Statistical Sciences (NISS)-sponsored
session on DQ at the 2002 Joint Statistics Meetings, only two of more than 70 attendees were from univer-
sities, and both of them had prior connection with NISS.

This paper is meant to help stimulate academic attention, in part by framing modern DQ from a statistical
perspective, which becomes increasing quantitative as the paper progresses. In §2, we present a conceptual
overview of DQ, as well a view of DQ as a multi-disciplinary problem that merges ideas from computer
science, quality control, human factors research, and the statistical sciences. In any application, of course,
these all linked by domain knowledge to the specific context of the problem. §3 addresses measurement and
assessment of DQ, but still largely from a conceptual viewpoint.

In §4 we focus on three aspects of the DQ process: preliminary screening for DQ, the role of exploratory
data analysis (EDA), and characterization and improvement of DQ. All of these, but especially EDA, are
illustrated in the case studies presented in §5. In particular, we show how statistical visualization provides
powerful tools for DQ improvement.

Finally, we outline in §6 DQ research challenges for statisticians that range from theory and methodol-
ogy to new software tools.
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2 What is Data Quality?

The organizing principle underlying our views about DQ is that DQ problems and actions aredriven by
decisions based on the data. In some contexts, for example, whether to undertake military action on the
basis of intelligence reports or whether to cease marketing a drug because of reported side effects, both the
nature and the import of the decisions are clear. In others, such as much “basic” scientific research, the
decisions and consequences are more nebulous.

This organizing principle does, however, have tangible implications. In particular, “good” or “improved”
DQ is often not an end in itself, because it is the quality of the decisions, not the data, that ultimately
matters. For instance, as discussed further in §6, data clean-up efforts—especially if they are costly—must
be justified on the basis of better decisions.

Like any principle, this one breaks when taken to extremes. Cleaning up a customer database to remove
duplicates, for example, has economic benefits even in the absence of links to explicit decisions. And good
scientific data are inherently valuable.

2.1 Overview

We begin with a definition that supports our position that DQ should always be embedded in a decision-
theoretic context:

Data quality is the capability of data to be used effectively, economically and rapidly to inform
and evaluate decisions. Necessarily, DQ is multi–dimensional, going beyond record-level ac-
curacy to include such factors as accessibility, relevance, timeliness, metadata, documentation,
user capabilities and expectations, cost and context-specific domain knowledge.

DQ concerns are problems of large-scale machine and human generation of data, the assembly of large data
sets, data anomalies, and organizational influences on data characteristics such as accuracy, timeliness and
cost. The impact of poor DQ and the potential benefit of good DQ have implications beyond the ambit of
standard statistical analyses.

DQ has dramatic implications. Some people blame the U.S. government’s failure to avert the terrorist
attacks of September 11, 2001 on DQ problems that prevented the easy availability of prompt, accurate, and
relevant information from key federal databases. In a different context, the Fatality Analysis and Reporting
System discussed in §5 may not be of sufficient quality—vehicle make-model data were rife with errors—to
support rapid identification of such problems as those associated with Firestone tires on Ford Explorers. At
a more mundane level, nearly every major company loses significant income because of data errors—they
send multiple mailings to a single person, mishandle claims, disaffect customers, suffer inventory shortfall,
or simply spend too much on corrective data processing.

The impetus for improved DQ is especially strong in federal agencies. Managers there are struggling
with declining survey response rates and consequent diminished quality. Simultaneously, Congress and the
executive branch are using the Government Performance Results Act (GPRA) to require clear linkage be-
tween regulation and measurable outcomes. This confluence of a decreasing ability to obtain accurate mea-
surements and increasing management accountability for achieving data-determined goals has compelled
federal managers to address DQ more directly than ever before.

Some federal organizations are trying to formalize aspects of the DQ process. For example, the Bureau
of Transportation Statistics (BTS) has tried to evaluate databases using a data quality report card (DQRC),
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on which a database receives a rating of 2 (good performance ), 1, or 0 (substantial failure) on eight criteria
that span many of the DQ dimensions discussed in §3.

Although the scientific community has developed improved measuring devices, such as automatic sen-
sors that create computer records directly, DQ remains an issue in this setting. Indeed, technological ad-
vances may have created a false sense of security. Nonetheless, DQ in scientific research is a different
problem from DQ in government and industry.

Industries stand between the Federal government and academic research in terms of DQ. While the
quality of their scientific measurements may be generally good, significant problems arise in inventory
management, customer service, billing, and marketing databases. Medical data are a particularly thorny
problem: they are copious, complex, hard to verify, and entered by many uncoordinated hands. Nonetheless,
many problems in industry data have bounded impact (Example: billing errors affect one customer at a time),
and there are feedback mechanisms that can support correction (Example: customers report overcharges and
incorrect addresses).

Even though the goal is remote, we believe that ultimately DQ must be given a decision-theoretic formu-
lation (see §6.1), allowing use of tools based on statistical decision theory. Decisions drive both the generic
need and context-specific requirements for DQ. Decisions are of two kinds: thosebased on the data(Exam-
ple: government policies) and thoseabout the data. Decisions of both types depend on cost, but despite its
importance this has not yet stimulated significant research into the economics of DQ. For example, it would
be good to know:

• What cost is needed to achieve a specified level of DQ;

• What are the financial benefits of improved DQ; and

• What are the costs of poor DQ.

To complicate the problem, note that costs may be shifted among multiple stakeholders (Example: more
burden on survey respondents can reduce clean-up cost of survey data).

Human factors are a challenging part of DQ. People are the key links in many data generation processes,
and the ultimate customers,even if decisions are made on their behalf by another entity. The case studies in
§5 illustrate this.

Domain knowledge is central to DQ. Data can be useless for one purpose but adequate for others, and
domain knowledge is necessary to distinguish these situations. Anomalies in data, a central theme of §5.2,
make no sense in the absence of domain expertise. Possibly the most difficult challenge in creating the data
quality toolkit (DQTK) outlined in §6.3 is to automate generic aspects for characterizing and measuring DQ
but to build in the right “hooks” for domain knowledge.

2.2 DQ as a Multi-Disciplinary Problem

Besides problem-specific domain knowledge, DQ rests on three disciplines, each of which brings its own
perspective. We discuss them in order of increasing familiarity to statisticians.

2.2.1 Computer Science

Ever since organizations started collecting and storing their data electronically, information technology (IT)
departments have served as custodians of the data. Consequently, computer scientists and information tech-
nologists have had considerable exposure to some DQ issues, and they have developed the most mature
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set of technologies to deal with them—from an IT/database perspective. We present a brief sketch of the
computer science perspective on DQ.

Database managementis concerned with ensuring data correctness at the collection or entry stage. The
general approach has been to devise sound database design guidelines and to establish correctness-enforcing
application development practices. This thinking is often incorporated into development environments of
relational database management systems (RDBMSs).

Data Entry. Structured Query Language (SQL) (Date, 1999; Groff and Weinberg, 1999), thelingua
franca of the database community, provides a powerful and flexible syntax to create data tables in
which data type and other constraints on data attributes (from the metadata specification) are enforced.
“Good practice” guidelines exist for designing user-entry forms for data-entry (Kendall and Kendall,
2001). Example: when a person’s contact information is being input, the user should be made to select
an enumerated-type data element such asState only via a menu of allowable choices (eliminating
mis-spellings, spelling variants and other errors).

Database Design.The central question that drives design considerations for relational databases is how the
logical database should be divided physically into separate tables or flat files, as in spreadsheets, in
order to minimize duplication and updating anomalies without information loss (i.e., one must be able
to link data in individual tables in order to answer queries that span the entire logical database). The
theory of “database normalization” provides methodology to address the design problem (Date, 1999).
This theory defines a set of increasingly complex “normal forms” (first normal form, second normal
form, . . .) such that databases in higher normal forms have fewer sources of anomalies. Database
designs that satisfy the third normal form requirements are generally considered adequate.

Transactions and Business Rules.Modern database management systems include powerful features for
ensuring correct and consistent data. For instance, sophisticated On-Line Transaction Processing
(OLTP) systems handle extremely complex transactions and are able to enforce elaborate business
rules and operational constraints. Recent versions ofSQL implement constructs for incorporating
non-trivial rules and constraints (Groff and Weinberg, 1999).

The data warehousingprocess involves assembling data from a variety of sources and consolidating
them into a central data store for future analysis or decision support. Even if the data were all of high
quality, integration from disparate sources (Example: payroll, manufacturing, and laboratory data), each
with their own idiosyncracies and standards, is challenging. The need to incorporate quality checks in
the traditional ETL (Extract, Transform, and Load) process is increasingly recognized, and a number of
commercial software solutions in the form of add-on modules are emerging.

The DQ issues that the warehousing process attempts to address revolve around identifying data el-
ements that areinvalid because they violate physical, logical, or metadata-based constraints that can be
specified independently of the data actually observed. The EDA-based approach described in §4.2 and used
in §5 complements the warehousing process since it is geared toward finding anomalies in possibly valid
data.

Standardization and Duplicate Removal.Free format data (Example: addresses) may require complex
parsing in order to be put into standardized form. Commercial DQ software tools contain procedures
to do this parsing, and also metadata on commonly occurring data types that allow automatic correc-
tion or flagging of some errors. Following standardization, suspected duplicate records which may be
processed manually or in a semi-automated manner, but the current tools are not very powerful.
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Record Matching. Integrating data from multiple sources requires correctly linking each record in one
database with the corresponding record in another. In many cases, the shared attributes in the two
sources are not exactly the same (Example: one database may contain full names and the other only
initials and the last name). Record linkage has received attention from computer scientists as well as
statisticians, and a number of methods that span a range of complexity and applicability have been
devised (Winkler, 2000a,b). Record matching techniques that lie within the IT domain typically rely
on key-generation and string matching. String matching methods of varying levels of complexity
determine if string-valued attributes from the two sources are “close enough” to be declared a match.
The key-generation approach is based on generating a surrogate key for string-valued data that is less
ambiguous than the original, and then using the key for record matching.

2.2.2 Total Quality Management

Statistical quality control has had profound effects on industrial production. Some researchers and practi-
tioners believe that the same ideas and techniques can be applied to DQ. However, inability to model, or
even quantify, costs is one reason why the total quality management (TQM) paradigm may be difficult to
implement for DQ.

The chain of reasoning is straightforward: Data are a product, with producers and customers; therefore
data have both cost and value. In conceptually the same way as physical products, data have quality char-
acteristics resulting from the processes by which they are generated. In principle, DQ can be measured and
improved. Finally, the same financial incentives that lead to high quality products also apply to DQ.

One approach (English, 1999) relates DQ to information quality in a TQM setting: “quality in all char-
acteristics of information, such as completeness, accuracy, timeliness, clarity of presentation” should “con-
sistently meet knowledge worker and end-customer expectations.” A key tenet, which is admirable if not
always attainable, is that DQ should be present from the start, rather than created by re-work. The need to
measure the costs and benefits associated with different levels of DQ is critical in this setting

An alternative approach is called Total Data Quality Management (TDQM). It involves concepts such
as multi-dimensional data quality, data quality metrics, evaluation of the user’s assessment of DQ, and data
production maps (Huang et al., 1999; Wang, 1998; Wang et al., 2000).

2.2.3 Statistics

Statisticians have always worked for better DQ. That is why we worry about outliers and long-range depen-
dence and exploratory methods. It is why we study robust statistics, and stress the need to understand the
science and to talk to domain experts before undertaking an analysis. An indeed, some statistical contribu-
tions to DQ are substantial.

Data Editing. Statistical data editing is the automated process of stepping through the data records and
correcting them if they violate pre-specified constraints. See §4.4 for details.

Probabilistic Record Linkage. Probabilistic approaches to the record linkage problem can be traced to
Fellegi and Sunter (1969) and Newcombe and Kennedy (1962). To link records in fileA with those in file
B, the Fellegi–Sunter framework provides a method for evaluating the likelihood that pairs of records inA
× B are matches, as well as a corresponding optimal linkage rule for specified Type I and Type II errors.
Extensions of the Fellegi–Sunter methods are still being developed (Winkler, 1994, 2000a).
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Measurement Error and Survey Methodology. Statisticians involved with survey data have devoted
enormous attention to DQ (Groves, 1987). In this setting, DQ effects arise from modes of collection
(de Leeuw and van der Zouwen, 1988), interviewers (Groves et al., 1981) and survey design (Tucker, 1992).
DQ concerns for surveys have focused primarily on non-response problems (Hidiroglou et al., 1993), cov-
erage biases, (Duncan and Stasny, 2001) and measurement error (Biemer et al., 1991).

2.3 DQ and Other Problems

The relationship of DQ to other problems provides a way to leverage research on DQ, and raises intriguing
research challenges.

For example, software quality bears a strong resemblance to DQ. Both “products” are electronic rather
than physical, so that quality is a characteristic of a class rather than instances. For both, quality is highly
situational: in the same way that a database may be adequate for one purpose but not another, the same
software may serve adequately in one setting, but not in another. Also for both, humans (data generators and
software developers) are central to the production process as well as an essential source of variability. The
protracted (and still incomplete) effort to produce metrics and standards for software quality (Kan, 1994)
may provide insight into DQ metrics.

Data confidentiality, a long-standing problem for government agencies, is burgeoning in the world of
E-commerce and has dramatic implications for homeland security. The relationship between data confi-
dentiality (DC) and DQ is complementary: the same tools, such as those for record linkage, that increase
DQ threaten DC. Conversely, tools that alter data but allow informative inference (Example: swapping
some attributes between records (Sanil et al., 2003)), or that maximize data utility subject to constraints
on disclosure risk (National Institute of Statistical Sciences, 2004), suggest ways to characterize how much
information can be extracted from low quality data.

3 Measurement and Assessment of DQ

As noted in §1, to become a science DQ must have a foundation built on measurement. This section focuses
mainly on a conceptual scheme for whatshouldbe measured, with less attention tohow.

For the purposes of this discussion, we assume that the data consist of, or are derived from,recordswith
severalattributes. We assume that attributes are type-structured (Examples: numerical values, categorical
responses, dates, times). Existing abstractions and tools for DQ seem to be handle to handle text data only
in highly structured cases such as addresses.

A tableis a collection of records with the same attributes, and adatabaseconsists of one or more related
tables (Example: the Fatality Analysis Reporting System (FARS), which consists of four tables containing
data keyed by accidents, drivers, persons and vehicles). Whether a data are stored in a RBDMS is not
material at this point.

3.1 Dimensions of DQ

Measurement and assessment of DQ are based on a set of conceptual dimensions of DQ. We distill the DQ
literature into a number of dimensions grouped into three hyperdimensions:
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Process: Dimensions of DQ related to the generation, assembly, description and maintenance of data—
Reliability (with several subdimensions),Metadata, Security andConfidentiality. With very
few exceptions, these dimensions can be assessed only qualitatively, and in most cases highly subjec-
tively. As discussed in §3.2, such assessments also require contextual knowledge, and they frequently
are made in the absence of detailed—or possibly any—examination of the data themselves.

Data: Dimensions of DQ specifically associated with the data themselves. At the record/table level, these
compriseAccuracy, Completeness, Consistency andValidity. The database level dimensions
areIdentifiability andJoinability. Only theData hyperdimension seems meaningfully amenable
to quantitative measurement.

User: Dimensions of DQ related to use and users—Accessibility, Integrability, Interpretability, Rec-
tifiability, Relevance andTimeliness. Like theProcess hyperdimension,User seems susceptible
only to qualitative assessment.

None of these is new here. Many appear in sources such as Brackstone (1999) and Wang et al. (2000)
and Federal agencies DQ and information quality (IQ) guidelines (Bureau of Economic Analysis, 2002;
Bureau of Justice Statistics, 2002; Bureau of Labor Statistics, 2002b,a; Census Bureau, 2002; Department of
Education, 2002; Energy Information Administration, 2002; National Agricultural Statistics Service, 2002;
National Center for Health Statistics, 2002; Office of Management and Budget, 2002b).

The Office of Management and Budget (OMB) Guidelines for IQ (Office of Management and Budget,
2002a), which address conclusions drawn from data as well as the data themselves, employ related hyperdi-
mensions of:

Objectivity: “whether disseminated information is accurate, reliable, and unbiased” in terms of both sub-
stance and presentation.

Utility: “usefulness of the information for the intended audience’s anticipated purposes.”

Integrity: “protection of information from unauthorized, unanticipated or unintentional [...] falsification or
corruption.”

We mention the OMB guidelines since many agencies’ guidelines seem to be derived from them.
Specifying DQ dimensions: (1) Facilitates assessment and measurement; (2) Provides a framework for

stipulating guidelines and DQ improvement plans, and (3) Provides a path for actions to improve DQ. Our
dimensions, since they closely follow the “information chain” (Loshin, 2001), are better suited for (1) and
(3). Using our dimensions, DQ may be either assessed and measured either qualitatively or quantitatively.
Qualitative assessments are nearly always categorical (Examples: ratings from 1 to 10), often coarse (Exam-
ple: categories are “Good,” “Fair” and “Poor”) and commonly subjective. Qualitative assessments serve as
an alternative to (currently, weak) quantitative assessments, fulfill administrative requirements, and reflect
simple common sense.

Quantitative measurements are made by means ofDQ metrics. Ideally, measurements would enable
comparison of DQ across databases and quantify improvements (or decreases) over time in DQ, as well as
support prediction of the effects of DQ improvement strategies. Different DQ metrics apply at different
scales—individual records, databases and integrated databases. Some other useful characteristics of DQ
metrics are articulated in Nousak and Phelps (2002): they should not depend on the size of the database;
metrics should reflect users’ needs for the data; different metrics should measure different DQ dimensions;
and the number of metrics employed should not be too large. How any of these can be assured is not clear.
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To date, approaches have been substantiallyad hoc. Moreover, specifics about calculation of any implied
metrics seem to be documented only rarely. Important issues are often downplayed or ignored: for example,
accuracy can be computed only by means of exogenous data, which may have their own DQ problems.

One clear gap is the absence of metrics related toinferencesbased on the data. Although to some degree
the question is unanswerable, at least absent comparable data without DQ problems, one ought to ask: To
what extent are conclusions drawn from the data affected by their quality? For example, when a model is fit
to the data, how does DQ change the model, which can be measured in various ways. Additional discussion
appears in §6.

DQ metrics remain speculative. It is not clear that they can be used even to compare one database at two
different times (to ascertain, for example, whether efforts to improve DQ succeeded), let alone one database
to another. Nor is it clear how to determine what value of a metric is acceptable.

3.2 The Process Hyperdimension

Process dimensions of DQ are, nearly uniformly, conceptualized as application of “best practice” or “state
of the art” methods and reasoning from some field (Examples: statistics, computer security). As a result,
they are assessed only qualitatively, usually categorically, and subjectively, often by means of DQ or other
checklists. Rarely is the assessment finer-grained than ternary (Example: good, poor, unacceptable) and
often it is binary (Example: wasX done or not?).

Quantitative assessment ofProcess dimensions of DQ is beyond the current state of the art. This is yet
another reason why the potential for TQM to affect DQ at an operational level seems limited. TQM works for
physical production becauseprocess controlworks: (1) Processes can be measured and monitored; and (2)
There is scientific and empirical evidence that if the process is “in control,” then product quality necessarily
will be acceptable. Neither of these is currently true with respect to DQ.

Reliability. Both within and outside the federal statistical agencies, reliability is construed as application
of appropriate, justified, state-of-the-art statistical methods. There are three principal subdimensions of
reliability, corresponding to generation, editing and analysis, although the latter is more properly associated
with IQ than DQ.

To a significant extent, for federal statistical agencies, reliability at the data generation stage means
conducting surveys in a manner designed to maximize DQ. Historically, statisticians involved with survey
data have devoted an enormous amount of attention to DQ (Groves, 1987). A significant portion of this
effort has been devoted to understanding the DQ effects that arise from different modes of data collection
(de Leeuw and van der Zouwen, 1988), interviewers (Groves et al., 1981) and survey design (Fowler, 2002).
Survey instrument design—question wording, question sequence, response format, cognitive guidelines—
is a well-researched area (Converse and Presser, 1986). Selection of the data gathering mode is another
established area. This includes guidelines for selection between collection mechanisms such as face-to-face,
telephone, mail or more sophisticated ones such as Computer-Aided Telephone Interviews. Strategies for
minimizing non-response and the processing of data (editing, coding and entry) have also been researched
extensively.

Virtually every federal statistical agency has strong expertise in survey design. The Bureau of Labor
Statistics (BLS), Census Bureau (Census) and National Center for Education Statistics (NCES) design very
complex surveys. Both BLS and Census have units dedicated to cognitive issues. Private sector orga-
nizations such as NORC, RTI International and Westat design and conduct large-scale, complex surveys.
Statistical software packages such as R, SAS, S-Plus and SPSS contain tools for survey design. The Amer-
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ican Statistical Association Section on Survey Research Methods (American Statistical Association, 2002)
provides access to a wealth of information. Both specialized and generic software for survey authoring are
available; see SPSS, Inc. (2002) for example.

Characterization of the effects of data collection methods (especially surveys) on DQ also has a lengthy
history, sound basis and plethora of techniques. Such effects arise from modes of collection, interviewers
and survey design. DQ concerns for surveys have focused primarily on non-response problems (Hidiroglou
et al., 1993), coverage bias (Duncan and Stasny, 2001) and measurement error (Biemer et al., 1991).

Statistical and other approaches to editing of data are discussed in §4.4.2. Imputation provides a wide
variety of methods to deal with missing data attributes, especially for survey data. At the simplest level,
imputation “fills in” missing values, conditional on the values of non-missing attributes, using distributions
derived from the same data(“hot deck imputation”) or other data (“cold deck imputation”) (Little, 1992;
Little and Rubin, 1987; Rubin, 1987).

In a more general setting of IQ, in which disseminated information includes statistical analyses of data,
the analyses themselves are also part of reliability. Examples of strategies include adjustment of uncertain-
ties in statistical estimates to reflect non-response and dissemination of detailed response information with
data, in order to allow users to conduct meaningful analyses.

Metadata address the problem of ensuring that the content, collection process, ownership and reliability
of data are documented clearly, unambiguously and in a form that is conveniently accessed by users.

The quality and accuracy of data documentation critically impact DQ via data usability. Organization-
ally, having a group assigned to review metadata can be an effective and relatively inexpensive strategy. This
group could also formulate guidelines and checklists to be followed at the data recording time. Information
systems analysis and design principles (Kendall and Kendall, 2001) advocate the use of “data dictionaries”
as a formal means for recording metadata. At a more mechanical level, recording metadata is facilitated by
software tools associated with RDBMSs.

A more sophisticated approach is to define precise standards for data documentation, and then cre-
ate software for verification, parsing, processing and generation of metadata. The US Geological Survey
(USGS) metadata initiative for spatial data (US Geological Survey, 2003) is a striking example of this ap-
proach. USGS, recognizing the need for uniform documentation of spatial data required for each of the
several uses, such as spatial and non-spatial analyses, mapping,. . ., has devised comprehensive and widely
accepted standards. USGS also distributes software tools. The USGS metadata standards are perhaps the
only standards that have been widely adopted by a user community, and have taken root to the point that
universities devote courses (or portions of courses) to them. By contrast, the extremely detailed Census
Metadata Repository (G. J. Lestina, Jr. et al., 1997) seems to be used essentially only internally.

The recent development and widespread adoption of the extensible markup language (XML) standard is
likely to provide a powerful tool for developing metadata standards. XML (World Wide Web Consortium,
2004) uses a schema or a Document Type Definition (DTD) that enables one to describe a document or data
set in a precise, structured manner. Representing data by means of XML allows one to bundle the meta-
data with the data such that the data values can be readily accessed and processed (for data integration, for
example) by XML-aware software. The “Dublin Core Metadata Initiative” (DCI) (Dublin Core Metadata
Initiative, 2003) is an open forum of various parties (such as government agencies, library scientists, infor-
mation networkers) engaged in the development of “interoperable online metadata standards that support a
broad range of purposes and business models.” This involves setting up XML-based frameworks, the nec-
essary ontologies and software tools. The DCI is currently in its infancy, but holds great promise for the
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future.
An indirect but key reason for structured and precise metadata is that they are absolutely essential for

successful consolidation and integration of data from various sources (§3.4).

Security. Physical and electronic security lie outside the scope of this paper. We believe that existing
hardware (Example: firewalls) and software tools (Examples: RDBMSs that limit database access and
intrusion detection systems), used properly, are able to cope with the onslaught of attacks.

Confidentiality. Protection of confidentiality by statistical agencies is mandated by regulation, so there
is a clear trade-off between privacy protection and confidentiality on the one hand and user access to high-
quality statistical data on the other (Duncan et al., 1993). At the simplest level, poor DQ may actually
improve confidentiality: for example, adding noise to data (either bias or increased variability) reduces the
probability of re-identification (Fienberg et al., 1997). To some, the error rate of approximately 10% in
the 1990 US Decennial Census gave better protection to Census Bureau releases than data swapping alone
would have provided (Anderson and Fienberg, 2001b).

Conversely, improved DQ threatens DC: decreased error rates of approximately 6% in the 2000 Decen-
nial Census add concerns to the Bureau’s re-examination of its disclosure limitation strategy (Anderson and
Fienberg, 2001a; Census Bureau Executive Steering Committee for Accuracy and Coverage Evaluation Pol-
icy, 2001). Similarly, tools to improve DQ, such as record linkage (§2.2.3), are powerful means of breaking
confidentiality.

There are a voluminous literature and active statistical disclosure limitation (SDL) research community
addressing the problem of ensuring that disseminated data and information do not violate confidentiality, in
which the NISS plays a leading role (National Institute of Statistical Sciences, 2004). For example, theory
and methodology have been developed, and software systems built, that maximize the utility (read “quality”)
of disseminated data subject to risk constraints (Gomatam et al., 2003; Dobra et al., 2002, 2003; Karr et al.,
2001a, 2003; Sanil et al., 2003) or characterizing the effects of SDL on released data (Gomatam et al., 2003,
2004; Lee et al., 2001). Although these methods and techniques have not yet been applied to assess or
measure DQ, there is significant opportunity to do so.

Much less understood is the “front end” interaction between confidentiality and DQ, in which more
protection of confidentiality improves DQ: data subjects who fear that their confidentiality is not protected
adequately may provide false information. Beyond awareness of the problem, little has been done regarding
this important question.

3.3 The Data Hyperdimension

3.3.1 Record/Table Level

Data dimensions are largely binary at the record level (Example: an attribute value is either correct or not)
and summarized at the table level by DQ metrics such as the fraction of data records that are correct.

Accuracy. The literal notion is that a data record is “correct” or not. In some cases this is unambiguous:
a person’s age or income either is or is not reported correctly. In others, such as opinion polls or surveys
about behavior in hypothetical circumstances (“What would you do if. . .”) correctness seems problematic
even conceptually.

Much more important, however, isdeterminationof correctness, which ranges from difficult to impos-
sible. Resort to exogenous data (possibly with their own DQ problems) or repeating the data collection may
be feasible in principle, but are often ruled out by cost considerations. Whether it is cost-effective even to
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measure correctness has never been addressed. The structure outlined in §6.2 provides one path to treat such
questions.

If correctness could be determined at the record level, it would be measured at the table level, for
example as the fraction of records in whichall attributes are accurate. An alternative metric, which we feel
is less insightful, is the fraction, relative to records× attributes, of attribute values that are accurate (Wang
et al., 2000). Comparison across either time (improvement or degeneration) or databases is possible. What
constitutes acceptable accuracy is not clear.

A common concept of accuracy in agency guidelines is statistical correctness of the data—how well do
the data measure what they purport to measure. It is usually characterized by statistical errors associated
with the data such as coverage biases, sampling defects, and nonresponse.

Completeness.This is one dimension that seems essentially unambiguous: each record is either complete—
with no missing values—or not. However, problems can arise, for example with confounding between miss-
ing and legitimate data values. Two metrics are possible: the fraction of records withno missing attribute
values, which we favor, and the fraction of attributes fields containing values (Wang et al., 2000).

Consistencyis an analogue of validity (see below) pertaining tointra-record relationshipsamong at-
tribute values rather than individual attribute values. Examples range from “hard constraints” (in the FARS,
the accident time must precede the EMS arrival time) to “plausible relationships” such as that between driver
height and weight (see Figure 6). Given consistency criteria, each record is consistent or not, and the re-
sultant DQ metric is the fraction of records that are consistent. There is also a notion of consistency across
tables, discussed below. Strategies for dealing with some consistency problems are described in §4.4.2.

Validity is a weakened but more readily measured form of accuracy. Attribute values may be valid
without being correct, but notvice versa. Importantly, validity can be determined from the data table itself,
without need for external data. An attribute value is defined to bevalid if it falls in some exogenously
defined and domain-knowledge dependent set of values. Validity can range from mechanical (Example:
18/19/2002 is not a well-formed and hence not a valid date) to logical (Example: -5 is not a valid age)
to the domain-derived (Example: 1234 pounds is not a valid weight for a person). As always, there are
complications: 16:12 may be a valid time in one database but not in another. Two metrics make sense for
validity: the fraction of records for whichall entries are valid and the fraction of attribute values that are
valid (relative to records× attributes) (Wang et al., 2000).

Multidimensional DQ Metrics. Several attempts have been made to construct metrics that combine
DQ dimensions. Here are representative examples from the disciplines underlying DQ.

From computer science, a conceptual approach to measurement of DQ at the warehousing stage has
been proposed using dimensions of timeliness, verity, semiotic, medium and novelty (Helfert, 2001). TQM
ideas from Huang et al. (1999) are also present in this approach, including strong reliance on subjective
measurement.

TQM ideas may be applied at the data collection phase by monitoring such characteristics as the number
of invalid or nonconforming records generated per day (Loshin, 2001). These can be tracked not only over
time, but also against geography or the amount of money expended to acquire the data.

Two examples from statistics appear in §6.1.
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3.3.2 Database Level

With a databaseIdentifiability andJoinability both address the issue of whether multiple data tables that
should be combined actually can be combined. (Example: in the FARS, the accident time in the one table
and the driver’s age in another, so investigating a possible relationship between the two requires combining
the two tables.) Proper database design using modern RDBMSs effectively precludes problems with either
Identifiability or Joinability.

Identifiability. Each record in a data table must have a unique identifier, which may be either a single
attribute (Example: Social Security number) or a combination of several attributes (Example: in the FARS
accident file, the state, case number and vehicle number within case), known as theprimary key. Potential
problems include lack of a primary key and duplicate keys.

Simplistic metrics have been performed (Example: “the percent of records having a unique identifier”
(Department of Defense, 2002)), but they miss the point.Identifiability assessment is binary at the table
level: either there is or there is not a proper primary key.

Joinability of two data tables requires first that the primary key of one be an attribute in the other (where
it is termed aforeign key) (Ullman and Widom, 1997). LikeIdentifiability, this is a binary assessment. In
addition, tables that ought to be in one-to-one correspondence should be checked to be so, and the extent to
which this is not realized forms a natural DQ metric. To illustrate, attempts to join the driver and vehicle
files available on the now defunct Intermodal Transportation Database (ITDB) version of the FARS (Bureau
of Transportation Statistics, 2002) for 1999 revealed that despite proper keys, there wasno overlapbetween
the two files.

3.4 The User Hyperdimension

All of these operate at multiple levels ranging from IT to human-centric, with such items as human-computer
interfaces in between. At best, they can be assessed qualitatively and subjectively, with strong input from
multiple user communities. Commendably, the federal statistical agencies are acutely aware of the need for
strong data customer relations.

Accessibility. At the IT level, accessibility is physical and structural. Are dissemination systems acces-
sible? Can servers support the traffic? Are file formats modern? Legacy database management systems that
use outmoded software (Example: databases with fixed width attributes still exist) and run on old-fashioned
platforms may be useless. Even systems with modern software may suffer from poorly designed interfaces.

The human-centric aspect of accessibility raises concerns such as diverse user communities (technical,
non-technical, handicapped,. . .), but these are issues of IQ rather than DQ.

Integrability. Integration of multiple databases is increasingly vital and almost invariably difficult.
Issues range from differing attribute definitions (Example: death from an automobile accident must occur
within 30 days, but from a train wreck death can occur up to a year later) to inability to join tables in different
databases because they use different keys. (Example: it is not possible to join data tables from the FARS
and the National Transit Database (NTD) (Federal Transit Administration, 2002), which would be needed
to relate accidents involving transit vehicles to other transit system characteristics.) Tools for integration,
especially RDBMSs and record linkage, are rather well-developed. The impediments to integrability are
often in the databases themselves, at the conceptual and design levels.

Interpretability has multiple components. One, which bridges DQ and IQ, is consistency: if data
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are reported in multiple ways, or if interacting databases use different definitions or if attribute definitions
change over time, then the value of the data to users is reduced.

Another aspect is the ability to extract information from data, which is essential for decisions. Statisti-
cians construe this as “inference,” but a broader perspective is necessary. One strategy is to develop inferen-
tial tools that are resistant to poor quality (§6.1). Adequate metadata and documentation are also necessary.

Rectifiability. The establishment of procedures for users as well as affected parties to request correction
of information made public by statistical agencies is critical to usability, correctness and overall quality of
the data dissemination process. The OMB guidelines emphasize this, and almost all agencies’ IQ guidelines
provide details on how they implement correction processes. Some agencies guarantee a correction/appeals
process and provide unambiguous information on who should be contacted.

In many commercial settings (Examples: customer service, billing, and marketing databases), there is
near-total reliance on customer feedback to correct data errors (Example: customers report overcharges and
wrong addresses). Other than by application of the powerful consistency checks associated with double-
entry bookkeeping, most accounting errors are corrected as the result of feedback from those affected by
them.

Federal agencies are at a clear disadvantage in regard toRectifiability. Few people or organizations
wish to or even can access federal agency data about them; indeed, confidentiality protections may prevent
data providers from recognizing even themselves.

Relevance.This dimension seems as elusive as it is important. At the highest level, relevance addresses
whether the data in the database are the data that users want, as well, perhaps, only the data users want. The
“omission” component of relevance can be assessed only through feedback from users, while the “commis-
sion” aspect (the database contains irrelevant data) might be assessed by checking that each item captured
is needed by some clearly-defined class of customers.

Inertia in data collection processes works against the need for relevant data. As databases age, they often
serve different (or more) purposes from those originally intended, or the problem that drove the initial use
may change.

Timeliness. Outdated data can be worse than no data. For example, they may create false certitude,
or may mask problems and delay necessary action (Example: slow availability of data hampered rapid
identification of such problems as those associated with Firestone tires on Ford Explorers, although in this
case there were also substantial DQ problems). Proposals to quantify timeliness exist (Example: “percent
of data available within specified time” (Department of Defense, 2002; Wang et al., 2000)), but have never
been operationalized usefully. Nor might quantification even be possible: to a significant degree, timeliness
is domain-specific and user-centric, and is therefore categorical and subjective.

3.5 Organizational Issues

The overall commitment of an organization to DQ cuts across all of the dimensions in §3.2–3.4. TQM
advocates of DQ (English, 1999; Huang et al., 1999; Wang et al., 2000) are relentless about this.

Specific manifestations of such commitment range from allocation of adequate human and financial
resources to DQ to review processes to a customer-centric viewpoint of DQ, especially theUser hyperdi-
mension (Examples: data dissemination in multiple formats, help desks).

As with checklists, some aspects of organizational commitment seem more effective at calling attention
to issues than at resolving those issues. For example,Accuracy could be assessed (to some degree) by
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taking a random sample of the records and independently verifying their correctness. Doing so however,
requires that such independent checks be available and affordable, which we believe is often simply not the
case.

Other than isolated examples, we are aware of no attempts to document these issues, let alone assess or
measure their importance.

4 Components of the DQ Process

In this section we highlight four components of the DQ process: preliminary screening for DQ (§4.1), the
use of EDA for assessing DQ (§4.2), identification of anomalous data elements (§4.3) and selected methods
for improvement of DQ (§4.4).

4.1 Preliminary Screening for DQ

One central application of DQ measurements and assessments is preliminary screening for DQ—an initial
determination of the quality of a database

Consistent with §2 and 6.2, we formulate preliminary screening as a decision problem leading to one of
four outcomes ordered by increasing desirability:

Discard the Data (or do not disseminate or use them), on the grounds that DQ is so poor that no sensible
use of them is possible.

Characterize but Do Not (Seek to) Improve DQ,which applies when DQ is not high but the means or re-
sources to improve it are not available or not cost effective. For example, the Toxic Release Inventory
(TRI) data discussed in §5.2 have evident DQ problems, but there is no clear path to resolving them.

Improve DQ, which is feasible when techniques such as those in §4.4 are applicable and commitment of
necessary resources (personnel, money, time) can be justified. Of course such improved DQ must
then also be characterized.

Improvement Not Required, the best but often the least likely outcome. In this case, detailed characteri-
zation of DQ may not be necessary.

Of course, not all outcomes may be feasible in some contexts.
Preliminary screening is especially relevant to organizations with limited control of data generation

and assembly processes, especially theReliability andMetadata dimensions in §3.2. This is because
sufficient attention to such issues usually ensures that data will not need to be discarded.

The decision process is sequential. First, the determination is made whether the data are to be discarded.
In some cases, this decision can defensibly be made on the basis of metadata and domain knowledge alone,
i.e., in effect on theProcess hyperdimension in §3.1. (Example: the response rate in a survey may be so
low that no reliable inference is possible about the population of interest.) In other cases, however, some
examination of the data themselves (Example: exploratory analyses described in §4.2) may be needed.

Second, if data are not discarded, a decision must be made whether only to characterize DQ or to con-
sider expenditure of resources to improve DQ. In some circumstances, basing this decision on theProcess
hyperdimension alone may be justifiable, but we feel strongly that at least some examination of the data is
necessary.1

1Of course, if improvement is impossible or infeasible, then there is no decision to be made.
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The final decision, if improvement is to be considered, of what exactly what improvements are required,
cannot be made absent detailed examination of the data.

Many federal statistical agencies employ some form of DQ checklist, perhaps derived in part from the
OMB Guidelines, for either preliminary screening or elsewhere in the DQ process. For example, BTS has
proposed using a DQRC, on which a database receives a rating of 2 (good performance), 1, or 0 (substantial
failure) on eight dimensions that either coincide with ours (Example: whether the database is compatible
with other databases in the US Department of Transportation—ourIntegrability dimension) or address
organizational issues discussed in §3.5 (Example: whether a database is subject to periodic review by data
managers and suppliers). Reference books on DQ (English, 1999; Loshin, 2001; Wang et al., 2000) often
include prototype checklists.

While clearly useful, checklists are inadequate to cope with all DQ issues. In particular, they usually
lack guidance for assessment, criteria for evaluation and actionable responses. A harsh but not altogether
incorrect summary is that existing DQ checklists are statements of good intentions and admonishments to
pay attention to DQ issues. The statistical standards of the NCES (National Center for Education Statistics,
2004) are a notable exception.

4.2 Exploratory Analyses

Tools from EDA (Tukey, 1977) provide effective means for developing a high-level view of DQ from a
statistical perspective. In particular, as illustrated in §5, EDA strategies with a strong component of visu-
alization, augmented by consideration of issues involving relational databases, are especially effective for
addressing:

Metadata Characteristics, including information about the database, its structure, tables, and attributes,
as well as missing and incomplete values.

Characteristics of Individual Attributes, such as the legitimacy and distribution of their values.

Relationships among Attributes, whose existence may be suggestive of either good or poor DQ. This also
includes consistency checks between attributes, possibly in different relational tables.

Relational Characteristics, within the database, such as primary and foreign keys andJoinability of ta-
bles.

EDA produces useful insights into the data that can improve quality and increase value to the users. It
has a history of success and strong proponents (Tukey, 1977) within the statistics community. Critics raise
concerns over multiplicity (How many uninteresting features are implicitly ignored in the process of finding
one interesting feature?), as well as the need to separate exploration from inference. Neither criticism seems
entirely on-target in the context of DQ.

4.3 Anomaly Detection

When a database is analyzed without access to other, related databases, then arguably the only approach to
DQ is to detect and characterize of anomalous aspects of the data, at multiple levels—attribute, data record
and database.

The rules-based correction strategies and statistical DQ edits described in §4.4.2 implicitly detect anoma-
lies in the process of correction. In many other cases, however, anomalies cannot be fixed, but must be
detected and characterized in order to assess their effects on inferences based on the data.
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Other anomalies are statistical outliers that can be detected and, to some degree, coped with by means of
robust statistical methods; see §6.1. However, real-world data anomalies correspond to error structures that
even robust models seem unable to accommodate, so there is need for alternatives. Visualizations (a form
of EDA) can be effective in some circumstances, as illustrated in Figures 6 and 9. The former, taken from
the FARS driver file, is a scatterplot of driver height and weight, and shows readily a number of anomalous
values. Those equal to999 in fact represent missing data. Others seem simply to be wrong. Figure 9,
derived from the TRI Environmental Protection Agency (2002) of the US Environmental Protection Agency
(EPA), shows facility-level time series of releases of lead. The anomalies there would not be handled by
many time series analyses.

In other cases, the adage LOOK AT THE DATA, especially after the data have been sorted, can be
effective. Figure 10, also based on TRI data, shows anomalies similar to those in Figure 9.

Some data mining techniques could be potentially useful for anomaly detection. For example, a low
depth CART tree (Breiman et al., 1983) fitted to the data and has leaf nodes with sample size of one is a
indication that the leaf node is an outlier. Similarly, singleton clusters produced by clustering algorithms
could be indicators of anomalies. Also, anomalies may be defined relative to “patterns” in the data identified
by application of data mining tools for discovery.

Applicable visualization tools includeAdvizor (Visual Insights, Inc., 2002), JMP, S-Plus and R. These
tools, used manually and guided by domain knowledge can work on a small scale for low-dimensional data.
XGobi (AT&T Labs Research, 2003) has facilities for visualizing higher-dimensional real data, and also
some facilities to automate finding interesting features in the data. Some EDA functionality is provided by
data warehousing add-ons. There are not, however, scalable implementations—targeted to DQ or not—that
work automatically, even to some degree, on large problems.

4.4 DQ Improvement

Here we lay out the state of the art and practice of improving DQ. Appendix A in Karr and Sanil (2003)
contains a tabular version of the same information.

4.4.1 Standardization and Duplicate Removal

Placing free format but structured data (Example: addresses) into standardized form is a ubiquitous need.
Standardization enhances the usability of the data by making the data less ambiguous. It is a crucial step
for data integration. It is also the key to identifying duplicate records—this is of economic significance in
Customer Relationship Management (CRM) systems.

Commercial DQ software tools such asDataflux from SAS (SAS Institute, Inc., 2002),Evoke (Evoke
Software, 2002), andTrillium (Trillium Software, 2002) contain procedures to parse data such as dates and
addresses, with some capability for metadata-based correction; see §4.4.2. Relatively free-format data are
broken down into smaller units to which precise tags can be attached. For example, free-format names that
are parsed into prefix, first, middle, last and suffix,in order to execute much more sophisticated searches,
queries, and matching algorithms based on the individual components.

Following standardization, refined record matching and data integration procedures may be applied more
effectively. Suspected duplicate records can be flagged and then processed manually or in a semi-automated
manner.
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4.4.2 DQ Edits

The purpose of DQ edits is to identify and, if possible, correct inconsistencies among data attributes or
between data values and data definitions.

Different but overlapping approaches arise from computer science and statistics. The computer science
approaches are typically embedded in warehousing tools, and are used to some degree because “they are
there.” Rationales for statistics-based approaches include domain knowledge (of circumstances when they
are effective), logic and experience with other, similar databases.

Commercial can automatically correct or flag some errors. Sophisticated string matching algorithms
can detect very subtle problems (Example: that the street nameFxx Craft in Durham, NC should be
Foxcroft ). The constraint-checking component of the data warehousing process discussed in §2.2.1
verifies that the data domain, type, and numeric range constraints specified in the metadata are satisfied.
Some software tools also allow the user to specify domain-knowledge-based constraints.

Statistical data editing is the automated process of stepping through the data records and correcting them
if they violate pre-specified constraints known as edit rules. There are many, sometimesad hoc, methods
based essentially on sets of if-then-else rules, as in the warehousing approach. A formal framework for
data editing (Fellegi and Holt, 1976) allows one to specify edit rules or constraints to identify invalid data
records (Examples: lists of impossible attribute combinations for discrete data (Winkler, 1995) and sets of
linear inequality constraints on ratios of continuous variables (Greenberg and Petkunas, 1990)). Making
the edits involves first generating all the implied edit rules from the explicitly specified rules and then
solving optimization problems to determine the minimum-change edit for every record that violates some
edit rule. There are formidable computational challenges in implementing an automatic edit system, and the
development of efficient algorithms and heuristics remains an active area of research (Winkler and Chen,
2001).

There also exist less formal, strongly domain-knowledge based approaches to DQ editing, whose princi-
pal practitioners are federal statistical agencies. For example, a medical data record withSex = Male and
Procedure = Hysterectomy might routinely be changed toSex = Female . Manual intervention
is typically required.

Specialized, non-production software is available (Greenberg and Petkunas, 1990; Winkler, 1995; Win-
kler and Chen, 2001); transferability to other contexts is uncertain.

5 Case Studies

Two case studies of DQ undertaken by NISS are described here. The first treats a version of the FARS
once maintained in the ITDB of the BTS, and the second addresses the TRI maintained by the EPA. The
methods used in handling the case studies illustrate the power that modern visualization tools and a statistical
perspective offer for finding, measuring, and correcting DQ problems.

Two case studies cannot span modern DQ in its entirety. Examples of DQ problems encountered by
NISS in other contexts include inconsistencies between documentation and data files; cumbersome data
representations (Example: tables converted to vectors in the NTD Federal Transit Administration (2002));
records in which the attributes in which the cannot be compared (Example: multiple paired attributes of the
form “(Mode, Expenditure),” also in the NTD, such that bus expenditures by different organizations may in
different attributes); and databases with attributes having identical names and meaning (Example: Number
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of Students Enrolled in Second Grade in 2000–01) but different values, because they came from different
data sources at different times.

Building on §4.2, the case studies employ EDA strategies having a strong component of visualization.

5.1 Case Study 1: The ITDB Version of FARS

Background. The FARS (National Highway Traffic Safety Administration, 2002) contains a census of
fatal traffic accidents within the 50 States, the District of Columbia and Puerto Rico. Data for each year,
which are derived from police and emergency medical system (EMS) reports, are in four files:FARS-A,
the accident file,FARS-V, the vehicle file,FARS-D, the driver file, andFARS-P, the person file. The
FARS is assembled and maintained by the National Highway Traffic Safety Administration (NHTSA), and
is available the NHTSA web site. The version analyzed was downloaded from the no-longer-extant ITDB
(Bureau of Transportation Statistics, 2002). As will be seen below, the two versions differ significantly,
possible because “DQ problems are acute when [data] are collected in one organization for use by another”
(Galway and Hanks, 1996).

Metadata Issues.Inconvenient coding and poor data representations are not simply annoyances, but can
inhibit analysis. For example, people who use FARS data in conjunction with a geographical information
system (GIS) would be served better if the geographical attributesState andCounty were coded using
Federal Information Processing System (FIPS) codes rather than General Services Administration (GSA)
codes, which are effectively unintelligible (see Figure 2) without a data dictionary. Similarly, in the ITDB,
time values are coded as 0147 for 1:47 AM, whereas the NHTSA version of FARS treats hours and minutes
as separate attributes. Without correct and cumbersome parsing, subtraction of these values to compute the
time difference between two events produces erroneous results.

A pervasive DQ problem is the failure of documentation to distinguish clearly between “original data”
attributes andderived attributescalculated from original data. At the very least, making this distinction
informs users of what might be redundant (or informative!) consistency checks, and also flags some kinds of
analyses as inappropriate (Example: those where both derived and original attributes are used as predictors
in a regression).

Poor coding of missing and incomplete values, a venerable problem, seriously reduces the usability
of the data. In the ITDB version of FARS, missing values are padded with “0” (but this usually means
“not applicable”), “9” (which usually means “missing”),“*” and blanks. Aggravating this inconsistency,
there are partially missing attributes in the ITDB version of FARS, such as dates of the form10991999;
here the missing month is replaced by “99.” (The NHTSA version of FARS has month, day and year as
separate attributes, and so has no partially missing values.) This again unnecessarily burdens the user to
parse data values correctly. Figure 1 shows the prevalence of these partially missing values in theFARS-P
file for 1999. Moreover, legitimate data values become confounded with the missing value code (Example:
in FARS, Age = 99 years is indistinguishable fromAge = missing). To some degree, these are legacy
problems associated with fixed-width attributes, and would vanish if data were maintained in a modern
RBDMS.

Metadata should address possible systematic influences on missing data. Figure 2 plots the percentage
of missing EMS arrival times by state. A state-to-state effect is apparent; some analyses would be flawed
without accounting for it.

Even such seemingly simple metadata as file sizes can help identify DQ problems. Figure 3 shows the
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(DeathDate, DeathTime) Number of Records
(0,0) 29,701

(MM**1999,*) 29,091
(99991999,*) 188
(99999999,*) 3

( ,*) 643

Figure 1: Summary of various forms of DeathDate in the 1999 FARS.

Figure 2: Bar chart showing missing EMS arrival times by state. Accidents having missing times are shown
in dark gray. There are clear systematic state-to-state effects. Numerical state labels rather than USPS codes
(It is not easy to know that6 = CA!) make the data harder to use.

sizes of the four FARS files available for download on the ITDB. The small sizes of the files for 1989, 1991,
1992, 1993 1998 and 1999 clearly merit investigation and, as discussed inRelational Database Issues
below, signal a dramatic DQ problem. Figure 4 reveals that the problem affects all states.

Single Attribute Analyses.A natural first check is to ensure that data values are legitimate (Examples:
date values should representbona fidedates, and purportedly positive-valued data should indeed be positive).
Consistency of attribute representation must also be checked, especially for databases such as FARSthat are
collected from disparate sources with differing data-collection procedures. Problems do exist: for some
records inFARS-A, the accident time and EMS arrival time have differing representations, usually with one
on a 24-hour clock (1602 Hours) and other on a 12-hour clock (0402 PM).

A simple, effective strategy to find anomalous values of individual attributes consists of three steps.
First, one should sort and list unique values, which reveals suspicious values and can also indicate subtle
DQ problems. To illustrate, looking at extreme values of the derived attributeLTIME in FARS-P, the lag
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Figure 3: Sizes of FARS files downloaded from the former ITDB Web site (Bureau of Transportation Statis-
tics, 2002) for the years 1980–1999. The inexplicable deficiencies for some years clearly require explana-
tion.

Figure 4: Accident counts by year inFARS-A files downloaded from the former ITDB Web site (Bureau of
Transportation Statistics, 2002) for selected states. It is clear that the deficiency problem in Figure 3 affects
all states.
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Figure 5: Bar chart showing distribution accident counts as a function of the number of lanes, fromFARS-
A. Colors (here translated to gray levels) correspond to states. As discussed in the text, at least two (7 =
“≥ 7” and 9 = “Missing”) and possibly three (0) of the seemingly numerical values are actually categorical.

time between accident time and death time, reveals several anomalies. Two of the extreme values ofLTIME
are both 72000 (which means, although this is not obvious, 720 hours and 00 minutes). Closer examination
reveals that both of these are associated with the same accident—inState = 54 havingCase No. = 321—
which took place at 19:27 hrs on 11/7/97. Both fatalities are recorded in theFARS-P file with death date
12/7/97 and death time 19:27. This clear case of a mis-recorded month could not readily have been detected
otherwise.

Second, one can visualize distributions of data values for each attribute. Figure 5 shows the distribution
of the number of lanes on the road on which accidents occurred, taken fromFARS-A. The relatively large
number of zeroes (“not applicable”) might lead to further investigation whether, for instance, “0” and “9”
were both used to denote missing values. The category “7” in Figure 5 actually represents “seven or more,”
which cannot be determined without close reading of the documentation. An analysis that ignored this
would be incorrect. The problem could readily have been avoided simply by using “7+” as the attribute
value, which also prevents the attribute from being treated as a purely numerical quantity.

Third, for multi-year data, one can examine the longitudinal behavior of individual or aggregated values,
which we do repeatedly in §5.2.

Multiple Attribute Analyses. Extending the notion of examining distributions of individual attributes,
one can examine bivariate relationships. Looking at every possible pair of attributes may not be feasible
or meaningful, but two special cases are relevant. Nor need the relationships be “systematic;” for example,
(see Figure 7) variation in one attribute (Example: numbers of lanes associated with accidents by state) may
reflect an “underlying” variation (Example: states’ differing road inventories).

The first case is pairs of attributes for which there is a “physical” basis to expect a positive or negative
relationship. An example is driver height and weight inFARS-D, which are shown in Figure 6, where we
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Figure 6: Scatterplot of driver height and weight, fromFARS-D. As expected, these attributes are positively
correlated. Missing weights, denoted by 999, are visually apparent, but would not be rejected or ignored by
many statistical packages.

see the expected positive relationship. Moreover, outlying and boundary cases are readily visible and can be
investigated further.

The second case concerns relationships based on domain knowledge. For example, data can be checked
for “plausible” and “implausible” correlations. As examples, we present in Figures 7 and 8 visualizations
for pairs of attributes inFARS-A. Both plausible (for example, between state and number of lanes) and
implausible (for example, between state and day of week) pairwise relationships are easily assessed from
the visualizations.

Relational Database Issues.Checking RBDMS properties of the database is essential to appraising its
quality. Principles of RBDMS design (cf. §2.2.1) provide a framework to ensure consistency and to identify
or even resolve many data anomalies. The principal steps are:

Primary Keys: Check if the attributes that are stated to be or logically ought to be primary keys for a given
file actually are. For example, inFARS-A, check thatState andCase No. uniquely determine an
accident record.

Normalization: Check if the database is properly normalized. If not, check that the non-normalized aspects
do not harbor inconsistencies.

Foreign Keys: Verify that there are foreign keys or other attributes that allow files to be joined. For exam-
ple, in FARS, verify that an accident record can be linked with the driver, vehicle, and person records
involved in that accident.

Joins: Perform joins of tables to verify that records can becorrectly linked.

To illustrate, attempts to join the Accident, Driver, Vehicle and Person files in the ITDB version of the
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Figure 7: Bar chart of accident counts showing existence of a relationship between state and number of
lanes. Colors (gray levels) correspond to the number of lanes. (This bar chart is the “transpose” of that in
Figure 5.) This relationship is plausible since the distribution of the number of lanes varies by state.

Figure 8: Plot of accident counts by state (horizontal axis) and day of week (vertical axis), showing no
relationship.
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Vehicle Number Vehicle Number Vehicle Number
State Code Case Number in FARS-D in FARS-V in FARS-P

1 85 2,4,6,7 1,3,5 1,3,5,6,7
1 91 1 2 0,2
1 92 2 1,3 1,3
6 1345 2,3 1 1,2
6 1349 2,3 1 1,1,2,3,3

Table 1: Excerpt from Joins in FARS 1999 downloaded from the ITDB Web site. The vehicle numbers are
those present in each of the files. The driver and vehicle files haveno records in common.

FARS for those years with significantly less data (Figure 3) reveal very serious problems, which explain
the anomalies discussed underMetadata Characteristics. Specifically, for a given accident we would
expect a 1-to-1 correspondence between vehicle records and driver records. However, for 1999 FARS data
downloaded from the ITDB in 2002, there isno overlapbetween the driver and vehicle files! In fact,

#{FARS-V} = 38,268 Key =(CSTATE, CNUM, VNUM)
#{FARS-D} = 18,403 Key =(CSTATE, CNUM, VNUM)

#{FARS-D 1 FARS-V} = 0

where #{A} denotes the number of records in database A andA 1 B represents the linkage of records in
databases A and B. Table 1 shows details of a few of the records. This diagnoses but does not explain the
problem in Figures 3 and 4: no accident record appears in both the driver and vehicle files.

5.2 Case Study 2: The TRI

Background. The TRI database (Environmental Protection Agency, 2002) was established by Federal law
in 1986 to compel industrial and government facilities to disclose releases of any of more than 300 registered
toxic chemicals into the air and water. Reports must be made for any facility that manufactures or processes
more than 25,000 pounds (annually) of a registered chemical. (Starting 2001, the threshold for lead was
reduced to 100 pounds, leading to 9800 additional facilities being required to report.) The TRI is used
by the public and government agencies for purposes ranging from clean-up planning to lawsuits involving
environmental justice.

Two characteristics of the TRI dominate assessment and amelioration of DQ problems. First, the TRI
was created without identifying any specific uses of the data, which militates against user-centric approaches.
Second, TRI data are self-reported, using a complex, five-page form that must be completed forevery facility
and chemicalfor which releases must be reported. There is no strong incentive even to complete the report,
let alone do so accurately, which leads to a variety of data anomalies, most of which are not readily handled
by standard statistical methods. In many cases, the form appears to have been completed by an engineer,
often with substantial substitution of engineering judgement for “hard numbers.”

Rather than repeat all steps of the strategy outlined in §5.1, we focus here on detection and character-
ization of anomalies specific to one plausible use of the TRI data—to estimate regional-level trends. Both
detection and characterization are addressed in the context of data viewed as facility-level time series. The
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data employed were downloaded using the TRI Explorer (Environmental Protection Agency, 2002) and
cover air, water, on-site land, and off-site land releases of lead in “Original Industries” (SIC 20xx–39xx) for
the years 1988–1998. Since the TRI Explorer contains only separate files for each year, time series anal-
yses require addition ofYear attributes to each file, followed by merging of the annual files, a non-trivial
impediment for some users.

Data Anomalies. The most striking characteristic of TRI data is extreme variation and gaps in the
facility-level time series. Figure 9 shows several examples, all of which are both incomplete and exhibit
dramatic year-to-year variability.

There is clear (but sometimes misleading) evidence of systematic constancy in the TRI data. Other
than one aberrant year (a different completer of the form?), the facility at the top of Figure 10 seems to
have constant, albeit suspiciously rounded releases. In fact, the values of “500” are categorical responses
(corresponding to the range 100–999) to Question 5.1 on Form R (Figure??) that appear in the TRI database
as numerical values! Beyond this, multiple measurement methods may be employed by the form-completer,
and while the method used must be entered on Form R, it is not contained in the downloadable data.

There is also evidence of “systematic change:” the facility at the bottom of that figure (in addition to
the isolated 444,000 pound land release in 1990) has examples for which (withRt the release in yeart),
Rt = (2/3) ∗ Rt−1 andRt = (1/2) ∗ Rt−1. In these cases, the completer of Form R seems to have adjusted
the previous year’s values to approximate current releases.

Another human-engendered anomaly is disparities between on-site and off-site releases. Figure 11 il-
lustrates this for several facilities; the same behavior is also present in Figure 10.

These anomalies, whose detection again requires use of visualization methods, have hard-to-model con-
sequences. Most methods for time series analysis, for instance, are not designed to handle the kinds of error
structures encountered above.

Regional-Level Trend.EPA administrators and others are concerned with pollution trends, at local and
more aggregated geographical scales. The capability of TRI to provide useful information about regional
trends, therefore, is one measure of its quality. Even though facility-level latitude and longitude are avail-
able from the TRI Explorer, without a GIS, true geographical aggregation is difficult. A simple approach
aggregates facilities on the basis of the first digit of their Zip codes (the first 5 characters of theTRIFID in
Figure 10), in effect dividing the country into ten regions and pooling releases within region.

This EDA-like strategy again illuminates the central issue. In many cases, the regional sum is effectively
the maximum over facilities in the region. That is, regions are dominated by massive facilities. Therefore,
facility-level anomalies are transferred to the regional level, and there is no error-cancellation from aggrega-
tion. Figure 12 illustrates this point for the regions defined by Zip codes 6**** (Midwest) and 7**** (south
Central).

The TRI exercise shows that simple strategies—visualization and manual examination guided by domain
knowledge—can work on a small scale. It also highlights the need to detect and characterize anomalies in
data, raising in turn the need to characterize the impact of anomalies on inference from the data. Many of
the same questions raised by the analysis of the ITDB arise again: What strategies scale to large problems?
What strategies can be automated? These kinds of issues inform the research challenges described in the
following section.
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Figure 9: TRI Data showing annual air (top) and off-site releases of lead for two representative facilities.

6 Research Challenges

Here we present statistical research challenges associated with DQ, grouped into theory and methodology
(§6.1), a decision-theoretic formulation for DQ (§6.2) and the software tools (§6.3) that are necessary to
address real DQ problems.

Framing these challenges is the need tointegrate generic and problem-specificcomponents into the DQ
system. The case studies in §5 confirm that domain knowledge is an essential component of DQ. This is
necessary at both the theory and methodology and software tools levels. How to do it, however, is not clear.

6.1 Statistical Theory and Methodology

DQ Metrics are necessary for both summary and decision purposes. Here are two initial examples, which
were developed by NISS for BTS (Karr and Sanil, 2001).

First, theIntactnessof a table is the fraction of records that pass completeness, consistency and plausi-
bility checks of the sort described in §5. In general, low intactness is symptomatic of low DQ. Accounting
only for missing values other than latitude/longitude and inconsistent times (Example: EMS arrives before
the time of the accident), the intactness of the 1999FARS-A file is 0.3. Were the latitude/longitude included,
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TRIFID Year Air SurfH2O Land OnSite OffSite Total

07029KRYNS936HA 1989 500 0 0 500 0 500
07029KRYNS936HA 1990 500 0 0 500 0 500
07029KRYNS936HA 1991 156 0 0 156 0 156
07029KRYNS936HA 1992 500 0 0 500 0 500
07029KRYNS936HA 1993 500 0 0 500 0 500
07029KRYNS936HA 1994 500 0 0 500 0 500
07029KRYNS936HA 1995 500 0 0 500 0 500
07029KRYNS936HA 1996 500 0 0 500 0 500
07029KRYNS936HA 1997 500 0 0 500 0 500
07029KRYNS936HA 1998 500 0 0 500 0 500

TRIFID Year Air SurfH2O Land OnSite OffSite Total

38109RFNDM257WE 1988 15300 0 0 15300 22163 237643
38109RFNDM257WE 1989 15300 0 0 15300 148151 164451
38109RFNDM257WE 1990 10200 0 440000 450200 19444 469644
38109RFNDM257WE 1991 3800 0 0 3800 76850 80650
38109RFNDM257WE 1992 1900 0 0 1900 313750 315650

Figure 10: Constancy and systematic changes in TRI data.Top: A facility with one seemingly anomalous
year, which may be misleading because values of 500 actually correspond to the range 10–999.Bottom:A
facility on which yeart air releases appeared to be derived by judgement (Examples: two-thirds and one-half
as much) from yeart − 1 releases.

intactness would be less than one-half of one percent.
Second, given a table withD attributes, theDimensional Efficiency D∗ of D may be defined in both a

simple way, as the number of attributes that are neither constant across all records (and hence contain no
discriminatory or predictive information) nor missing to such an extent that they are useless nor derived from
other attributes, and in a complex way, as the number of dimensions needed to explain a fixed proportion of
the variability in principal components analysis. The latter provides sharper information about the amount
of independent information among the attributes.

Other, yet-to-be-developed metrics must accommodate such DQ characteristics as those laid out in §3.
We also urge, and are engaged in, development of DQ metrics that account explicitly for inferences

drawn from the data. An example is described in §6.2.

Quality Resistant Inference.Despite attractions of the TQM approach to DQ, it will always be neces-
sary to use poor quality data. In light of this, inference procedures are needed that mitigate poor DQ.

One strategy is to use robust estimators. Some procedures (Example:S-estimators (Rousseeuw and
Yohai, 1984; Sakata and White, 1998)), can perform well for single parameters even when just more than
half of the data are correct, giving robust estimates of central tendency, dispersion, and association. (Of
course, one would want to know first that the data are this bad.) These techniques perform less well, of
course, for multivariate parameters such as covariance matrices: breakdown points depend on the dimension,
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Figure 11: Stacked bar chart showing on-site and off-site disparities for selected facilities. Questionable
aspects include Off-Site≡ On–Site, Off-Site oscillating between 0% and 100%.

and most methods cannot accommodate a very large percentage of poor-quality data.
Robust methods can also assist in detecting “outliers” and other data oddities, but as the TRI case study

shows, real-world data anomalies correspond to error structures that even robust models seem unable to
accommodate, so there is much room for innovation.

One specific research issue is that there is no robust procedure for estimating a proportion from survey
data, a ubiquitous issue in federal statistics. The impact would be enormous: estimates of proportions
arguably play a larger role in framing national policy than estimates of location or dispersion.

Crosswalks.Data collection processes are not static, and this introduces a special kind of DQ problem.
For example, the Census Bureau recently changed the way in which race is reported: for many decades,
people could report membership in only a single race, but in 2000 they were permitted to report any com-
bination of six racial categories. Such changes are made for good reasons and are likely to improve DQ in
the long run, but the immediate impact is to make it difficult to characterize trends. Crosswalks are meant to
address such problems. A crosswalk is a plan to collect data by both the new and old methods for a period
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Figure 12: Facility-level distribution (Box plots) and regional totals (lines for Zip codes 6xxxxx (Top) and
7xxxx (Bottom).
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of time, so that the old time series and the new time series can be calibrated (Bradley and Earle, 2001).
There are limits as to how successful a crosswalk can be. Suppose that at timec the process changes,

and that the parallel collection for the crosswalk lasts form time periods after the change. Thus the origi-
nal data collection system capturesX1, . . . , Xc, Xc+1, . . . , Xc+m, while the new collection system captures
Yc, Yc+1, . . .. Suppose that the original data collections were used to produce summary estimates (Example:
the proportion of people whose primary racial identification falls into each of six categories). Denote that
series of estimates bŷθ1, . . . , θ̂c. Then the goal of the crosswalk is to find a functionf (·) that operates upon
theYt to produce estimateŝθt , thereby allowing the analyst to provide comparable estimates for time period
c + 1 and beyond.

The ideal statistical strategy is to ensure that them is large, so that there is extensive overlap in the
crosswalk. That would enable analysts to use nonparametric models such as MARS (Friedman, 1991) to find
the function that best extends the series. However, this ideal is almost never achieved in practice: typically,
because of financial considerations,m ≤ 2. Moreover, only rarely are both systems run at a full level. As
a result, in practice many organizations apply a simple proportional correction, assuming that correction
factor is stable across future survey conditions. For cases such as race in the Census, this assumption is
suspect: people’s attitudes about race are changing at the same time that the racial composition of the US is
changing.

New research ideas are needed to attempt to resolve such multiple effects. Almost inevitably, the models
will be Bayesian, in order to incorporate both prior information and hierarchical structure.

6.2 Decision–Theoretic Formulation

A full-blown decision–theoretic formulation of DQ is a daunting research challenge. For example, when
decisions depend sensitively on factors other than data issues, it may not be worthwhile to improve DQ, but
it might nevertheless be essential to characterize DQ. In other instances, where databases drive decisions
that have enormous consequences, one could, with the right models, make a strong case for significant
investment of resources to improve DQ.

The principal components of such a structure are, of course, models, loss functions and characterizations
of uncertainties. We discuss these in turn, and illustrate with problem of whether application of strategies
to improve DQ, such as those in §4.4, is justified. LetD true be the true database, which of course may exist
only conceptually. LetDpre be the database prior to clean-up. LetSbe a clean-up strategy, and letDpost(S),
which depends on bothDpre andS, be the database resulting from applyingS to Dpre. Many such strategies
Sare in some sense parameterized by a level of intensity, which we denote byθ , and which itself is of course
a decision variable.

Predictive models for DQthat reflect the nature of the processes by which data are generated represent
an immense opportunity for statisticians. The needs encompass modeling the role of people in data produc-
tion processes (Example: Form R for TRI), new kinds of errors (Example: transposition of digits by a data
entry clerk, or the incorrect linkage of records) with unusual dependences (Example: TRI time series), and
novel concepts of “noise.”

To illustrate, to the extent that DQ is a function of the quality of individual elements of a database,
not all elements are equally likely to have poor quality. (Example: the accuracy of a particular item in
a survey depends upon such factors as the complexity of the question, the sensitivity or delicacy of the
information, the burden of the survey, and the demographics of the respondent.) One path would be to build
a logistic regression model that predicts the probability that a data item is correct as a function of suitably
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quantified explanatory variables. These variables are context-specific, but such abstractions as complexity,
sensitivity, and burden are significantly generic. Ultimately, this kind of approach will help in targeting
quality improvement efforts.

Models for changes in data quality under transformations (Examples: aggregation, joins of relational
tables within the same database, and integration of multiple databases) of data are also essential.

In our example, effectiveness of the clean-up strategyS is measured by

Eff(S) = d(Dpost(S), D true), (1)

whered is a DQ metric. Following on comments in §6.1,d should reflect inferences drawn from the data.
To be more specific, letP be an inference procedure that can be applied to the data—eitherDpre or Dpost(S),
and letdP be a function measuring the difference in the results ofP applied to two different databases. For
example, ifP represents a linear regression,dP could measure the difference, for example, theL2-distance,
between the resulting estimates of the coefficients, perhaps with some accounting for differing uncertainties
in the estimates. Of course,dP is not be a true metric; in particular, low values ofdP(D true, Dpre) indicate
thatDpre is closer toD true.

If the true databaseD true were known, then a plausible estimate of the effectiveness of the strategyS
that convertsDpre to Dpost(S) is

Eff(S, P, Dpre) = dP(D true, Dpre) − dP(D true, Dpost(S)). (2)

Positive values of Eff(S, P, Dpre) indicate thatShas improved the data: the conclusions drawn usingP on
Dpost(S) are closer to the truth than those drawn usingP on Dpre. Of course, without knowledge ofD true,
one cannot apply (2) directly, and alternatives would need to be constructed.

The most immediate need, however, is for models of the form that support principled selection of the
parameterθ in a parameterized family{S(θ) : θ ∈ 2} of clean-up strategies. The complication is that
Eff(S(θ)) is known, in the sense that there is data (i.e., a correspondingDpost(S(θ)) for at most a few values
of θ . Thus the need becomes predictive statistical models for effectiveness, which would have form

Êff(θ) = f (θ) + uncertainty. (3)

Such models represent an entirely new set of problems for statistical modeling and estimation. Among
obvious issues are the “form” of the model, the nature of the uncertainties and what data are necessary to fit
the model. It seems inevitable, and desirable, to use a Bayesian approach. Validation of such models will
also be a major challenge.

Quantification of costs and benefitsof DQ is also necessary. The issues are complex: multiple costs
(Examples: costs incurred by data generators, data maintainers, data users and data subjects), elusive costs
(Examples: how much does it cost one to receive duplicate mailings? How much would it cost EPA to
remove anomalies from the TRI? How much does it cost anyone if a person is wrongly suspected of terrorism
on the basis of low quality data?) and elusive benefits (Examples: how much would a telephone operating
company gain if it could link its cellular and landline customers accurately? How much would the public
benefit if TRI were of higher quality?). Given the complexity of the issues, a meaningful starting point is to
conduct cost-benefit case studies similar to those in §5.

Similarly, and linking to cost considerations, regression models could be used to predict the cost of
raising DQ to a given level, at either the item or the database level. Such models, tailored to specific
applications, can also help prioritize resource allocation for quality improvement.
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Returning to the illustration,a cost model would have the form

Cost(θ) = g(θ) [+ uncertainty]. (4)

Given both this and the estimated effectiveness functionÊff(θ) of (3), there are three ways, at least, to
select an optimal valueθ∗. The first of these is to minimize cost subject to a lower bound on effectiveness.
This might be termed a “regulatory” approach, especially if the effectiveness threshold were set externally.
The second approach is to maximize effectiveness subject to an upper bound on cost. This is a resource-
constrained approach, which might be appropriate in many scientific settings. The final approach is to
select a valueθ∗ on the cost-effectiveness frontier, which consists of (Cost, Effectiveness) pairs that are
undominated in the sense that no other value ofθ can produce both lower cost higher effectiveness.

In general, construction or estimation of Cost(θ) in (4) is an extremely difficult problem. At least two
kinds of costs must be accounted for. “Process” costs of implementingS at intensityθ may be accessible
because in some senseθ itself might be a cost. On other hand, “opportunity” costs of poor data quality are,
and seem likely to remain, inaccessible in most organizations.

6.3 Software Tools

A NISS DQ Workshop in 2000 (Karr et al., 2001b) identified as a central research need “Software tools
that solve real data quality problems. Such tools (even in prototype form) can also be used to evaluate
and improve new theory and methodology. Issues include algorithms that cope with complexity of the
techniques as well as the scale of the data and problems of human–computer interaction such as presentation
and visualization.”

Such tools exist already, as discussed in §2 and 4.4, but are oriented more to the computer science
view of DQ than the statistical perspective. To make the challenges concrete, we frame them in terms of
a data quality toolkit—an extensible set of software tools that automates the generic components of the
strategy described in §5, performing both automatic and on-demand computations, including visualizations,
but contains “hooks” for relevant domain knowledge. The DQTK has not yet been built, although NISS has
worked to develop many of its components.

Functionality. At a high level, a DQ evaluation using the DQTK would consist three phases. Impor-
tantly, the DQTK creates a complete log of the process that contains user-entered metadata and results.

The first phase is user metadata entry and characterization. For the database, this includes names of
tables, file names, and formats. For tables, it includes dimensions (records× attributes), and for each
attribute, such information as name, unit of measurement, data type (Examples: numerical, text, date, time,
latitude/longitude, Boolean, “other” with parsing rule), constraints (Examples: “must be positive,” “must be
an integer”), whether the attribute is original or derived, and representation of missing and N/A values.

An essential functionality is to help users understand metadata such as survey response rates and respon-
dent burden (§2). One very intriguing way to do this is to use data collection instruments such as the TRI’s
Form R (Figure??) to visualize such metadata, for example, by coloring items according to the response
rate. This makes not only the collection instrument but also key metadata about the data generation step
immediately accessible to DQTK users.

In the second phase, DQ evaluation uses automatic computations at two stages: following metadata
entry and at the end of the process to calculate DQ metrics. At the first stage, the files are read into the
RBDMS. Then, for each attribute, the DQTK computes the percentages of missing and N/A values, and
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creates one key visualization, based on attribute type (Examples: histogram, bar chart, map). Consistency
checks are then performed, first for user-selected individual attributes. For instance, the DQTK checks for
“illegal values” relative to the attribute type (Example: time = 2585) or relative to bounds specified by user
on the basis of domain knowledge (Example: weight≥ 500 pounds).

In the second stage of the second phase, the DQTK checks inter-attribute consistency (Examples: tem-
poral consistency, mathematical relationships such asA1 ≥ A2 + A15, and logical relationships such as
A1 = (Latitude, Longitude) belongs toA25 = State). Derived attributes are checked as well, with the user
specifying the “formula” to compute a derived attribute from others. The DQTK also checks missingness,
to detect systematic features such as those in Figure 2.

In the third phase, the user follows through EDA DQ strategy, seeing the results of selected automatic
computations and directing the system to perform additional computations. As this process occurs, the user
is provided text and visual summaries of problems, with lists containing details available as one drills down.
All results, including visualizations, are written to the log file.

RDB characteristics are treated similarly. For instance, for each table the user specifies the attribute
meant to be its primary key, and the DQTK provides either a verification or a summary of problems (with
details via drill-down). Joins are performed, with the user specifying which tables are to be joined, the
joining attributes, and attribute filters, and the DQTK returns the cardinality of the join and other summary
information with lists of problematic records as drill-down.

Finally, the DQTK computes automatically DQ metrics (§6.1) for each table in the database.

Structure. The main components of the DQTK are:

User interface (UI), with the look and feel a graphical SQL client, allowing access by means of a standard
Web browser.

Logging engine to record the entire session.

Computational engine to perform necessary calculations, calling as necessary on (1) An RBDMS to access
and manipulate the data, which are converted to relational form by apreprocessor; (2) A GIS for
manipulating and displaying geographical data; and (3) Visualization components to provide graphical
output to the user.

Postprocessorto generate reports from the logs.

Building even a prototype DQTK raises research issues that span the three contributing disciplines of
DQ. Beyond those implicit in the discussion of its core functionality, these include selection of software
and hardware platform, design of the user interface, and incorporation of additional statistical and data
manipulation capabilities. In the long run, an expert system wrapper for the system, which would suggest
analyses to the user on the basis of the results of other analyses, seems very desirable. Making the DQTK
scalable to handle large data sets is a challenge in its own right.

7 Conclusions

Too many organizations run on poor quality data. The appeal of TQM approaches notwithstanding, the error
rates in most databases (with rare exceptions) are so great that it would be prohibitively expensive to attempt
correction. Root cause analyses, although intriguing, seem problematic.
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Instead, organizations have developed informal coping mechanisms that limit the sensitivity of their key
decisions to the influence of bad data. Business managers look to their databases for suggestive trends,
but are skeptical of detailed conclusions. In government, policy is almost never framed solely on the basis
of statistics, or even largely upon statistics, but rather arises from compromises among stakeholders, legal
experts and pragmatists, all of whom are skeptical (perhaps for different reasons) about even their own
experts’ analyses.

Statisticians, in collaboration with computer scientists and domain knowledge experts, have a major
role to play in the process of using data effectively—which is ultimately what DQ is all about. That role
ranges from characterizing DQ to methods of inference that are resistant to poor DQ to cost-benefit analyses
that determine when specific investments in quality improvement pay off. We have attempted to lay the
groundwork through a concrete path of case studies, our EDA approach to DQ metrics and measurement,
and the DQTK. Ultimately, a decision-theoretic formulation of DQ will lead to tools that help managers to
allocate resources to the most urgent, addressable problems.
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