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Abstract

We present a method for performing statistical valid linear regressions on the union of
distributed chemical databases that preserves confidentiality of those databases. The method
employssecure multi-party computationto share local sufficient statistics necessary to com-
pute least squares estimators of regression coefficients, error variances and other quantities of
interest. We illustrate with an example containing four companies’ rather different databases.

Key words: Chemical database, distributed data, regression model, secure multi-party com-
putation

1 Introduction

Many scientific investigations require statistical analyses that “integrate” data stored in multiple,
distributed databases. For example, a regression analysis on integrated chemical databases to iden-
tify molecular features influencing biological activity would be more insightful than individual
analyses. At the same time, the barriers to actually integrating the databases are numerous. In

∗Currently at University of Cincinnati, Cincinnati, OH.
†Currently at Bristol-Myers Squibb, Princeton, NJ
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the setting of this paper,1 the proprietary nature of the data is the principal impediment to integra-
tion. Scale is another barrier: despite advances in networking technology, the only way to move a
terabyte of data from point A today to point B tomorrow may be FedEx.

The good news is that for many analyses it is not necessary to move or share individual data
records. Instead, using techniques from computer science known generically assecure multi-
party computation(Goldwasser, 1997; Yao, 1982), the participating organizations—we term them
“companies”—can share summaries of the data anonymously, but in a way that the analysis can be
performed in a statistically valid manner.

In this paper we illustrate linear regression on “horizontally partitioned” data, in which each
company’s database contains the same chemical descriptors for its own set of molecules. The
need for protecting descriptor values is apparent: given the method of descriptor calculation and
descriptor values, it is easy to guess structures through similarity searching over a large database.
The basis of the method is one particular protocol for secure multi-party computation—that of
secure summation, which is discussed in §3.

2 Problem Formulation

We assume that there areK > 2 companies, each with the same numerical descriptors on its own
n j compounds—p predictorsX j (in the example in §5, molecular descriptions) and a responsey j

(in the example, water solubility), and that the companies wish to fit the usual linear model

y = Xβ + ε, (1)

to the “global” data

X =

 X1

...

XK

 and y =

 y1

...

yK

 .

EachX j is n j × p. Horizontal data partitioning forK = 3 companies is illustrated in §4.

We embed the constant term of the regression in the first predictor:X j
1 ≡ 1 for all j . To

illustrate the subtleties of analysis of distributed data, the alternative strategy of centering the pre-
dictors and response at mean values does not work, at least not directly. The means in this case
are the global means, which are not available, but could be calculated with another round of secure
computation.

Under the condition that Cov(ε) = σ 2I , the least squares estimator forβ is

β̂ = (XT X)−1XT y. (2)

In §4 we show howβ̂ can be computed without integrating the companies’ databases.

1As compared to the “official statistics” setting of Karr et al. (2004b), Sanil et al. (2004) and Karr et al. (2004a)
and the homeland security setting of Karr et al. (2005a), where confidentiality of data subjects is paramount.
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Several assumptions about company behavior are necessary. First, the companies agree to co-
operate to perform the regression, and none of them is specifically interested in breaking the confi-
dentiality of the others’ data. Second, each company reports accurately the results of computations
on its own data, and follows the agreed-on computational protocols, such as secure summation,
properly. Finally, there is no collusion among companies. (Otherwise, for example, if there were
three companies participating, two could collude to learn about the data of the third. The protocol
in §4 still prevents them from learning specifics of individual molecules.) We summarize these
assumptions by saying that the companies aresemi-honest.

In addition, the formulation assumes explicitly that the columns of the combined data matrix
X in equation (1) be comparable across companies. In principle, this means that the companies
all use the same predictors calculated in the same way. To the extent that predictors are calculated
differently by different companies, the analysis may be compromised. However, the degree of
compromise is neither increased nor decreased by our approach as compared to literal integration
of the data.

3 Secure Summation

The simplest secure multi-party computation, and the only one needed for secure regression, is
to sum valuesv j held by the companies. Letv denote the sum. The secure summation protocol
described below computesv in a way that no companyj can learn more than the minimum possible
about the other companies’ values—the sumv(− j ) =

∑
` 6= j v` = v − v j .

The secure summation protocol, which is depicted graphically in Figure 1, is straightforward
in principle, although a “production quality” implementation presents challenges. Number the
companies 1, . . . , K . Company 1 generates a very large random integerR, addsR to its valuev1,
and sends the sum to company 2. SinceR is random, company 2 learns effectively nothing about
v1. Company 2 adds its valuev2 to R + v1, sends the result to company 3, and so on. Finally,
company 1 receivesR + v1 + . . . + vK = R + v from companyK , subtractsR, and shares the
resultv with the other companies. Here cooperation matters: company 1 is obliged to sharev with
the other companies.

Figure 1 contains an extra layer of protection. Suppose thatv is known to lie in the range
[0, m), wherem is a very large number, say 2100, known to all the companies. ThenR can be
chosen randomly from{0, . . . , m − 1} and all computations performed modulom.

Here is a simple application: the companies have molecular weight data and wish to compute
the global average weight of their molecules. Letn j be the number of records in companyj ’s
database andWj be the sum of their molecular weights. The quantity to be computed isW̄ =∑

j Wj /
∑

j n j . The numerator
∑

j Wj can be computed using secure summation on theWj ’s,
and whose denominator

∑
j n j can be computed using secure summation on then j ’s. Note that

no company can learn weights of any other company’s individual molecules.
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Figure 1: Values computed at each company during secure computation of a sum initiated by
company 1. Herev1 = 29,v2 = 5, v3 = 152 andv = 187. All arithmetic is modulom = 1024.

4 Secure Regression

In this section, we show how to perform secure regression for horizontally partitioned data.
To computeβ̂ using equation (2), it is necessary to computeXT X and XT y. Because of the

horizontal partitioning of the data, these are additive over the companies:

XT X =

K∑
j =1

(X j )T X j .

Therefore, companyj simply computes its own(X j )T X j , which has dimensionsp × p, where
p is the number of predictors, and these are combined entrywise using secure summation. The
protocol is illustrated withK = 3 in Figure 2. Of course, because of symmetry, only

(p
2

)
+ p

secure summations are needed. Similarly,XT y can be computed by secure, entry-wise summation
of the(X j )T y j .

Finally, each company can calculateβ̂ from the shared values ofXT X andXT y using equation
(2). Note that no company learns any other company’s(X j )T X j or (X j )T y j , but only the sum of
these over all the other companies. It does learn this sum, exactly, however, regardless of whether
it is semi-honest. The concept of partially trusted third parties, currently under development at
the National Institute of Statistical Sciences (NISS) (Karr et al., 2005b), removes this incentive to
“cheat.”

Model diagnostics are used by statisticians to assess the applicability of the linear model in
equation (1). The simplest diagnostic is coefficient of determinationR2, which measures the over-
all “fit” of the model. More sophisticated diagnostics, which are typically based on the residuals—
differences between actual data values and predictions from the model, can reveal other forms of
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Figure 2: Pictorial representation of the secure regression protocol. The dimensions of various
matrices are shown. As in the example in §5, two (in this case) of the companies cannot even
perform the regression because there are more predictors than records in their databases.

model mis-specification. In order for secure regression to be truly useful, therefore, diagnostics
need to be available as well. One approach is to use diagnostics that can be computed using secure
summation from corresponding local statistics. A second approach uses “secure data integration”
(Karr et al., 2004b, 2005a) to share synthetic residuals (Reiter, 2003).

Among diagnostics computable by secure summation areR2 itself, the least squares estimate
S2

= (y − Xβ̂)T (y − Xβ̂)/(n − p) of the error varianceσ 2, correlations between predictors and
residuals, and the so-called hat matrixH = X(XT X)−1XT . The latter can be used to identify
X-outliers.

For diagnosing some types of assumption violations, onlypatternsin relationships among the
residuals and predictors suggestive of model mis-specification are needed, rather than exact values
of the residuals and predictors. (Sharing exact residuals, of course, is tantamount to sharing the
data themselves.) An approach to secure sharing of residuals is outlined in (Karr et al., 2004b), but
such diagnostics have not yet been implemented.

5 Example

We illustrate the secure regression protocol for horizontally partitioned data using a data set con-
taining water solubility of 1318 organic compounds as a function of an intercept and 90X log P
atom types (Huuskonen, 2000). Details of the descriptors are in Wang et al. (2000); their names
appear in Tables 2–4 in the appendix. Figure 3 shows visualizations of several of the compounds
produced using NISS’ PowerMV software (Liu et al., 2005).

To simulate distributed data, the database was split, using the clustering algorithm in JMP (SAS
Institute, Inc., 2005), into four subsets corresponding to companies 1, . . . , 4 and containing 499,
572, 16 and 231 compounds respectively. The effect of the clustering is that there are several
descriptors for which only one company has data.

Tables 1 summarizes some characteristics of the global regression—for all four companies—
and the four companies’ individual regressions. Tables 2–5, in the appendix, contain the full sets
of estimated coefficients. Company 3, of course, cannot even perform the regression on its own,
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Figure 3: Representative compounds in the database analyzed in Huuskonen (2000), visualized
using PowerMV (Liu et al., 2005).

and so is omitted from Tables 2–5.
Tables 2–5 are not easy to digest. Figures 4 contains scatterplots of the regression coefficients

for companies 1, 2 and 4 (y-axis) against those for the global regression (x-axis). Although there
are clear relationships between the regressions for companies 1, 2 and 4 and the global regression,
there are also substantial differences. In particular, each company receives global coefficients for
descriptors not present in its own data, whosey-values in Figure 4 are zero.

Not surprisingly, the extent to which the one-company regressions resemble the global regres-
sion is a function of the relative sizes of their databases. Thus, as shown Figure 4, the company
2 regression is the closest to the global regression. Other than company 3, company 4 has the
smallest database, and Figure 4 confirms that among the companies 1, 2 and 4 its regression differs
most from the global regression.

Given that company 3 only has 16 data points, it is natural to ask whether it is in the interest of
companies 1, 2 and 4 to include it in the process. Figure 5 shows a scatterplot of the coefficients in
the regression involving only companies 1, 2 and 4 (y-axis) against those of the global regression
(x-axis). While there are minor differences, it is arguable that the participation of company 3 does
not change the regression significantly. However, as Table 4 shows, only company 3 has data for
descriptor 69, so without company 3, companies 1, 2 and 4 would learn nothing about its effect on
solubility.
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Figure 4: Scatterplots of regression coefficients, including intercept, for companies 1 (top) 2 (cen-
ter) and 4 (bottom) against those for the global regression. Company coefficients are on they-axes
and the global coefficients on thex-axes.
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Regression R2 RMS Error

Global 0.876 0.717

Company 1 .806 .647
Company 2 .869 .688
Company 3 n/a n/a
Company 4 .936 .573

Table 1: Summary statistics for the global (4-company) regression and the individual regressions
for companies 1, 2 and 4. Company 3 does not possess sufficient data to perform the regression on
its own.

6 Discussion

In this paper we have presented a framework for secure linear regression in a cooperative environ-
ment. The analysis requires only summaries of the detailed molecular structure information from
the companies; there is no sharing of the information about individual molecules. The companies
have a strong incentive to participate: they learn more they can know individually about which
molecular features contribute to biological activity or physical characteristics without revealing
structural details of their own molecules.

A huge number of variations is possible. For example, in order to give the companies flexibil-
ity, it may be important to give them the option of withdrawing from the computation when their
perceived risk becomes too great. To illustrate, companyj may wish to withdraw if its sample
sizen j is too large relative to the global sample sizen. This is the classicalp-rule in the statistical
disclosure limitation literature (Willenborg and de Waal, 2001). But,n can be computed using se-
cure summation, and so companies may then “opt out” according to whatever criteria they wish to
employ. It is even possible to allow the opting out itself to be anonymous. The concept of partially
trusted third parties (Karr et al., 2005b) shows promise in removing incentives for companies not
to be semi-honest.

There are other approaches to this problem for lower risk situations. For example, the NISS
has developed techniques for secure data integration (Karr et al., 2004b, 2005a) that build the
integrated database in such a way that no company can determine the source of any data elements
other than its own, at least under the assumption that the data values themselves do not reveal the
source of records.Anystatistical analysis could then be conducted. Of course, however, the point
of secure regression is to obviate the need for even a securely integrated database.

There is also technology available to handlevertically partitioneddatabases containing differ-
ent sets of attributes for the same compounds. This would arise, for example, if each participating
company had its own set of chemical descriptors, or different responses that might predict one
another, but for the same molecules as the other companies. The goal, again, is to calculate the
least square estimatorŝβ of (2).

Strong assumptions are necessary for vertically partitioned data. First, companies must know
that they have data on the same subjects, or that there must be a secure method for determining
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Figure 5: Scatterplot of regression coefficients, including intercept, for the regression involving
only companies 1, 2 and 4 against those for the global regression.

which subjects are common to all their databases. The second assumption is that companies can
link records without error. Operationally, this requires in effect that the databases have a common
primary key, such as a CAS number.

When only one company holds the response, techniques similar to those in §4 can be used to
calculate the “off-diagonal” blocks of the full data covariance matrix (Karr et al., 2004a, 2005a).
However—and in contrast to the horizontally partitioned case—there is loss of protection: if
there aren data points, each company’s data are known by the other companies to lie in ann/2-
dimensional space. When all companies hold the response, or the holder of the response is willing
to share it, Powell’s method for quadratic optimization problems (Powell, 1964) can be applied to
solve the least squares problem

β̂ = arg min
β

(y − Xβ)T (y − Xβ). (3)

The information loss is much less than for the method based on secure matrix products (Sanil et al.,
2004; Karr et al., 2005a).
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Appendix: Full Regression Results

Tables 2–4 contain the full results for the example in §5 (intercept and coefficients for 90 molec-
ular descriptors) for the global regression (all 4 companies), the regression for company 1 alone,
the regression for company 2 alone, the regression for company 4 alone and the regression for
companies 1, 2 and 4 (but excluding company 3).
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Descriptor Regression Coefficients

Number
Description

(?)
Global

(4 companies)
Company 1 Company 2 Company 4

Companies
1,2,4

Intercept 0.2694 1.0262 0.4066 0.2346 0.2237

sp3 carbon in
1 CH3R (π = 0) -0.4193 -0.4889 -0.4993 -0.2678 -0.4419
2 CH3R (π = 1) -0.1270 -0.2896 -0.1920 -0.1370 -0.1922
3 CH3X 0.2347 -0.2134 0.6251 -0.6557 0.2399
4 CH2R2 (π = 0) 0.4226 0.1654 1.6889 0.2607 0.3375
5 CH2R2 (π = 1) 0.2331 0.3032 0.4665 1.0651 0.3462
6 CH2R2 (π = 2) 0.6835 0.5401 0.9802 1.2322 0.5450
7 CH2RnX2−n (π = 0) -0.2079 -0.3397 0.3102 0.2660 -0.1544
8 CH2RnX2−n (π = 1) -0.0095 -0.4834 -0.0877 0.2149 -0.1518
9 CH2RnX2−n (π = 2) 0.0874 -0.0609 0.4871 -1.1743 0.1438
10 CHR3 (π = 0) 0.7274 0.6610 1.8204 -0.0830 0.7576
11 CHR3 (π = 1) 0.8486 -0.1267 1.1435 0 0.8036
12 CHR3 (π ≥ 2) 0.0168 -0.0941 0.2511 -0.2050 0.0555
13 CHRnX3−n (π = 0) 0.4532 0.1758 0.6223 1.0085 0.2146
14 CHRnX3−n (π = 1) -0.4669 -0.1711 -0.5066 -2.8964 -0.4245
15 CHRnX3−n (π ≥ 2) -0.6945 -0.7253 -1.1392 1.2612 -0.7324
16 CR4 (π = 0) -0.2262 -0.1396 -0.2817 -0.3110 -0.2739
17 CR4 (π = 1) -0.2666 0.6324 -0.4612 0.3388 -0.2632
18 CR4 (π ≥ 2) 0.2566 0.7716 0.9946 0 0.4585
19 CRnX4−n (π = 0) -0.8035 -0.6940 -1.4628 0.0532 -0.8384
20 CRnX4−n (π > 0) -0.5069 -0.4057 -0.6639 -0.7056 -0.4804

sp2 carbon in
21 A = CH2 -0.3555 -0.2123 -0.7735 -0.8327 -0.4067
22 A = CHR (π = 0) -0.2350 -0.2870 -0.4190 -0.2811 -0.2693
23 A = CHR (π = 1) 0.3014 0.0549 0.3973 0.4920 0.2839
24 A = CHX (π = 0) 0 0 0 0 0
25 A = CHX (π = 1) 0 0 0 0 0
26 A = CR2 (π = 0) -0.2688 -0.4086 -0.1087 -0.3213 -0.2662
27 A = CR2 (π > 0) -0.0030 -0.1326 -0.1991 0.6575 -0.0232
28 A = CRX (π = 0) -0.6614 -0.6164 -0.8087 -0.5878 -0.6649
29 A = CRX (π > 0) -0.0421 -0.1081 -0.7344 -0.0593 -0.0515
30 A = CX2 (π = 0) -0.3793 -0.3315 -0.5330 0.1145 -0.3775
31 A = CX2 (π > 0) -0.8619 -0.4366 -1.2388 0.3363 -0.8814

Table 2: Full regression results for the intercept and molecular descriptors 1–31.
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Descriptor Regression Coefficients

Number
Description

(?)
Global

(4 companies)
Company 1 Company 2 Company 4

Companies
1,2,4

Aromatic carbon in
32 C . . . C(H) . . . C -0.5220 -0.6317 -1.4855 0 -0.2949
33 A . . . C(H) . . . N -0.7922 -0.9268 -0.0887 -0.3530 -0.8256
34 C . . . C(R) . . . C -0.4392 -0.4194 -0.4821 -0.2054 -0.4477
35 C . . . C(X) . . . C -0.9804 0 0 -0.2073 -0.9252
36 A . . . C(R) . . . N -0.4573 -0.3379 -0.2752 0.3896 -0.3406
37 A . . . C(X) . . . N 0.0701 -0.0286 0.1256 0.4078 0.0967

sp carbon in
38 R ≡ CH 0.7334 0.7909 1.2111 0 0.7416
39 A ≡ C − A 0.0458 0.2248 -0.2964 0.5783 -0.0289
40 A = C = A -0.6505 -0.5747 -0.8719 -0.2133 -0.6514

sp3 nitrogen in
41 R − NH2 (π = 0) 0.0541 0.1540 0.2312 -0.9457 0.0510
42 R − NH2 (π = 1) -0.1610 -0.0699 -0.6751 0.0890 -0.1422
43 X − NH2 0.2374 0.0103 0 0 0.2814
44 R − NH − R (π = 0) -0.2139 0.1575 -0.7090 -0.9228 -0.3354
45 R − NH − R (π > 0) 0.0498 -0.0986 0.4588 -0.2283 0.0743
46 R − NH − R (ring)c -1.1025 -1.1852 -1.0727 -1.6556 -1.1105
47 A − NH − X 0.0415 0.1070 0.1562 -0.5722 0.1589
48 A − NH − X (ring) -0.7717 0.2356 -0.5285 -1.4208 -0.7800
49 NR3 (π = 0) 0.3698 0.7583 -1.5967 -1.2539 0.3777
50 NR3 (π > 0) -0.2057 -0.1241 -0.1845 0 -0.2054
51 NR3 (ring) -0.6170 -0.2850 -0.7948 -0.6501 -0.6125
52 NRnX3−n 0.0769 -0.6290 -0.4152 0 0.0998
53 NRnX3−n (ring) -0.7652 -0.4574 -0.7552 -0.8866 -0.7470

Amide nitrogen in
54 −NH2 0.2749 -1.2397 -1.4679 0.6689 0.3076
55 −NHR 1.2690 0 0 1.5712 1.2838
56 −NHX 0.1852 0.1885 0.8887 -0.1770 0.2094
57 −NR2 -0.0898 -0.6792 -0.2987 0 -0.1443
58 −NRX -0.3816 -1.0241 0.1612 0 -0.3032

Table 3: Full regression results for molecular descriptors 32–58.
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Descriptor Regression Coefficients

Number
Description

(?)
Global

(4 companies)
Company 1 Company 2 Company 4

Companies
1,2,4

sp2 nitrogen in
59 C = N − R (π = 0) 0 0 0 0 0
60 C = N − R (π = 1) -0.9730 0 0 -0.6759 -0.9543
61 C = N − X (π = 0) 0 0 0 0 0
62 C = N − X (π = 1) -0.1338 0.9293 1.6523 0 -0.0417
63 N = N − R -1.7453 -1.2866 -2.1384 -2.1590 -1.8283
64 N = N − X 0.2233 0.3427 0.5024 -0.5343 0.2674
65 A − NO 0.8069 0.6865 0 0 0.8786
66 A − NO2 -0.0076 0.3031 0.2646 0.0472 0.3239

Aromatic nitrogen in
67 A . . . N . . . Ad 0.3187 0.1887 0.4713 0.5372 0.3331

sp nitrogen in
68 −C ≡ N 0.1069 0.0797 0.0553 0.7148 0.1152

sp3 oxygen in
69 R − OH (π = 0) 0.7056 0 0 0 0.6787
70 R − OH (π = 1) -0.5039 -0.1300 -0.8018 0 -0.4235
71 X − OH -0.5311 -0.3763 -0.5469 -0.9567 -0.4903
72 R − O − R (π = 0) -0.2815 0 -0.3568 0 -0.3980
73 R − O − R (π > 0) 0.3934 0.2139 0.4556 0.7688 0.4391
74 R − O − X -1.0560 -0.8892 -1.1234 0 -1.0395

sp2 oxygen in
75 A = O -0.3861 -0.2067 -0.2683 0.2039 -0.3140

sp3 sulfur in
76 A − SH -0.5518 -0.0413 -0.5404 -1.1424 -0.5094
77 A − S− A 1.9727 2.0870 1.5921 0 1.8749

sp2 sulfur in
78 A = S 0.4549 0.4867 0.3994 0.5200 0.3947

Sulfoxide sulfur in
79 A − SO− A 0.5612 -0.0811 0.3510 0 0.3859

Sulfone sulfur in
80 A − SO2 − A 0.4882 0 1.2170 -1.3501 0.2167

Table 4: Full regression results for molecular descriptors 59–80.
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Descriptor Regression Coefficients

Number
Description

(?)
Global

(4 companies)
Company 1 Company 2 Company 4

Companies
1,2,4

Phosphorus in
81 O = PA3 -0.3088 -0.9665 -0.8287 0 -0.4606
82 S = PA3 -0.2959 -0.2269 -0.4007 -0.0758 -0.2935

Fluorine in
83 −F (π = 0) 0.0726 -0.0472 0.0926 -0.3672 0.0850
84 −F (π = 1) -0.6605 -0.5379 -0.6235 -0.7285 -0.6119

Chlorine in
85 −Cl (π = 0) -0.3651 -0.5859 -0.1896 -0.4058 -0.3547
86 −Cl (π = 1) -0.7165 0 -0.7109 0 -0.6620

Bromine in
87 −Br (π = 0) -0.6630 -0.9264 0.2759 -0.4676 -0.6492
88 −Br (π = 1) -1.2125 0 -1.1810 0 -1.1233

Iodine in
89 −I (π = 0) -0.1282 -0.5625 0 -0.1240 -0.1025
90 −I (π = 1) -0.6353 -0.7882 -0.4176 -0.1545 -0.6167

Table 5: Full regression results for molecular descriptors 81–90.
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