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Abstract

When releasing data to the public, statistical agencies and survey organizations typically alter data
values in order to protect the confidentiality of survey respondents’ identities and attribute values. To
select among the wide variety of data alteration methods, agencies require tools for evaluating the utility
of proposed data releases. Such utility measures can be combined with disclosure risk measures to
gauge risk-utility tradeoffs of competing methods. In this paper, we present utility measures focused
on differences in inferences obtained from the altered data and corresponding inferences obtained from
the original data. Using both genuine and simulated data, we show how the measures can be used in a
decision-theoretic formulation for evaluating disclosure limitation procedures.

Key words: Confidentiality, disclosure, disclosure risk, microdata, record linkage, statistical disclo-
sure limitation, utility

1 Introduction

A central mission of many statistical agencies and survey organizations is to disseminate microdata, i.e.,
individual data records, to researchers or the public. Dissemination of microdata greatly benefits society, as
well as facilitates research and advances in economics, public health, sociology, and many other areas of
knowledge. Disseminating microdata—as compared for example to remote access servers (Gomatam et al.,
2005a)—benefits researchers, who may perform a wide variety of analyses.

Usually, however, data disseminators cannot release microdata as collected, because doing so would
reveal respondents’ identities or values of sensitive attributes. Agencies that fail to protect confidentiality
may be in violation of laws such as the recently enacted Confidential Information Protection and Statistical
Efficiency Act of 2002 (Wallman and Harris-Kojetin, 2004) in the U.S. Additionally, if confidentiality is
compromised, organizations may lose the trust of the public, so that potential respondents are less willing to
give accurate answers, or even to participate in surveys.

To reduce disclosure risks, data disseminators typically remove key identifiers and/or alter values of
sensitive attributes before releasing data. For example, they recode variables, releasing ages or incomes in
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aggregated categories. Instead, they may swap data values for selected records, e.g., switching the sexes
of some men and women in the data, in hopes of discouraging users from matching, since matches may
be based on incorrect data. Or, they add noise to numerical data values to reduce the likelihood of exact
matching on key variables or to distort the values of sensitive variables. Indeed, virtually all public use data
releases have undergone some form of statistical disclosure limitation (SDL).

SDL methods can be implemented with differing degrees of intensity. Generally, increasing the amount
of alteration decreases the risk of disclosure, but it also decreases the accuracy of inferences obtainable from
the released data, often referred to as data utility (Willenborg and de Waal, 2001).

While there is a plethora of SDL techniques, there exist few principled methods for selecting which
technique, and with what degree of intensity, to employ in a particular setting. Formally or informally,
most selection methods are based on trading off some notion of disclosure risk for some notion of data
utility, often referred to as data quality (Karr et al., 2006). Such formulations have been described for data
swapping (Gomatam et al., 2005b), regressions (Gomatam et al., 2005a), tabular data (Dobra et al., 2002,
2003; Duncan and Fienberg, 1999; Duncan et al., 2001) and other settings (Domingo-Ferrer et al., 2001;
Duncan et al., 2004; Trottini, 2003).

In a formal risk-utility formulation, each candidate releaseR—which is a function of the original
databaseDorig and possibly exogenous randomness—is characterized by a quantifieddisclosure riskDR(R)1

anddata utility DU(R). The actual releaseDrel can be selected from the candidates in one of two ways.
The first is to maximize utility subject to an upper bound on risk, by solving an optimization problem of the
form

Drel = arg maxR∈RDU(R)

s.t. DR(R) ≤ α
(1)

whereR is the set of all candidate releases.
The second, and more flexible, approach is to definerisk-utility frontiers using the partial order�RU

defined by
R1 �RU R2 ⇔ DR(R2) ≤ DR(R1) and DU(R2) ≥ DU(R1). (2)

WhenR1 �RU R2, theR2 is preferred toR1 because it has both lower disclosure risk and higher utility. Only
candidate releases on the risk-utility frontier of maximal elements ofR with respect to the partial order (2)
need be considered further: for any other candidate, some element of the frontier has lower riskandhigher
utility. Calculation of the frontier can be done using existing algorithms for finding the maxima in a set of
vectors (Kung et al., 1975).

While there has been much work on developing measures of disclosure risk (e.g., Duncan and Lambert,
1986, 1989; Lambert, 1993; Fienberg et al., 1997; Skinner and Elliot, 2002; Reiter, 2005a), there has been
comparatively little work on developing measures of data utility, and so this paper outlines a framework for
defining and comparing measures of data utility. In §2 we outline the problem, and define utility measures
that range from the very specific but very narrow—focused on one analysis of the data—to the very broad,
but correspondingly blunt. In §3.2 we present, in effect, a case study in using utility measures to select
SDL methods. Because a particular database may not yield generalizable insights, in §3.3, using simulated
data, we show how the utility measures can be used to evaluate the characteristics of SDL methods across
differing data structures. A concluding discussion is in §4.

1Which may be that of either identity or attribute disclosure Duncan and Lambert (1989).
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2 Utility Measures

We begin with a general discussion of utility measures (§2.1), and then we introduce the three measures
studied in this paper (§2.3 and 2.2).

2.1 Generalities

Data utility measures should be linked to the types of analyses done on the released data, and that at some
level they must measure the fidelity of analyses performed on the released databaseDrel to the same anal-
yses performed on the original databaseDorig. In a purely abstract sense, these measures are of the form
d(Drel,Dorig), whered is some possibly analysis-specific measure of distance or discrepancy.

There arises, then, a fundamental dilemma. On the one hand, a highly specific utility measure may
yield a release tailored to a single analysis (or small class of related analyses), but that release may—
unbeknownst to users—have low utility for other analyses. On the other hand, a broad utility measure may
produce releases that are “pretty good” for a number of analyses, but “really good” for none. Worse yet,
breadth seems almost invariably accompanied by bluntness: a broad measure may not be able to distinguish
between quite different releases.

The principal purpose of this paper is to construct a framework for thinking in a principled way about
these kinds of issues, in the setting of numerical data. Inference-based measures for categorical data are
discussed in Dobra et al. (2002) and Gomatam et al. (2005b). We illustrate our framework with:

• Two narrow measures that capture differences in theinferencesbased onDrel and those based on
Dorig. As elaborated in §2.2, they are based on linear regression models for numerical data.2

• One broad measure–the Kullback–Liebler divergencedKL (Drel,Dorig) (§2.3).

In some ways, these could not be more different. The former is based ononeparticular model, with one
designated response, but seeks to capture how inferences—not just point estimates of moments—relate. At
the other extreme,dKL (Drel,Dorig) actually is a metric, so that (but only) in principle, ifdKL (Drel,Dorig) is
small, so should be all other reasonable measures of utility.

2.2 Narrow Measures

Data users often wish to fit linear regression models to numerical data. This process produces, of course,
not only point estimates of the coefficients, but confidence intervals as well. Thus, it is clearly desirable
to construct utility measures that indicate when the confidence interval based inferences from regressions
using the released data are close to the corresponding ones using the original data.

We present two such measures. Although formulated for linear regressions, they can be extended, albeit
not necessarily in a straightforward manner, to other analyses. These measures quantify the differences be-
tween inferences for one specific regression model, with the response and predictors designatedin advance
by the data disseminator.3 How utilities for multiple models might be evaluated and combined is discussed
further in §4.

2Their definability and relevance in broader settings are subjects of future research.
3This assumption is not as Draconian as it might seem initially. In many databases, there is one clearly identified response.

Examples are education data in student performance is the response and epidemilogical studies in which survival time is the
response.
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Confidence Interval Overlap. Confidence intervals are the main mechanism of inference in regression
models. Therefore, one measure of utility is the degree of overlap between confidence intervals obtained
from the same regressions fit using theDrel andDorig. The greater the overlap, the higher the utility.

Consider a prescribed regression, with specified response and predictors. Let(L rel,k,Urel,k) be the 95%
confidence interval for the regression coefficientβk obtained fromDrel, and let(Lorig,k,Uorig,k) be the cor-
responding interval obtained fromDorig. Let frel,k and forig,k be the estimated posterior distributions ofβk

computed underDrel andDorig, respectively. Specifically,forig,k is the usualt-distribution onn − p degrees

of freedom with mean̂βorig,k and variance thekth diagonal element in̂σ 2
orig

(
X

′

origXorig

)−1
, whereσ̂ 2

orig is the

estimated residual variance obtained from fitting the regression ofYorig on the associatedn × p matrix of
predictors,Xorig, which includes a vector of ones for the intercept.

We define the probability overlap in the confidence intervals for anyβk to equal:

Ik =
1

2

[∫ Urel,k

Lrel,k

forig,k(t)dt +

∫ Uorig,k

Lorig,k

frel,k(t)dt

]
(3)

and the interval overlap measureIO as

I =
1

p

p∑
i =1

Ik, (4)

wherep is the dimension of the predictor variable matrix, including the intercept.
By design, 0≤ Ik ≤ 0.95 (as is the case forI ), with effectively no overlap corresponding toIk = 0 and

perfect overlap corresponding toIk = 0.95. Averaging the two integrals in the definition ofIk helps deal with
cases where(Lorig,k,Uorig,k) ⊆ (L rel,k,Urel,k), or vice versa. For an illustrative example, consider the case
where(Lorig,k,Uorig,k) = (8,10), and for two different proposed releases the(L rel1,k,Urel1,k) = (−12,30)
and(L rel2,k,Urel2,k) = (3,15). From a utility perspective, the second release is clearly preferable over the
first release. TheIO as defined favors the second release. A criterion that just equals

∫ Urel,k
Lrel,k

forig,k(t)dt
does not clearly distinguish the releases, since this integral for both procedures is essentially one. Similar
examples can be constructed to show the inadequacy of using

∫ Uorig,k

Lorig,k
frel,k(t)dt alone.

The IO does not distinguish among intervals that haveIk essentially equal to zero, some of which may
be “less worse” than others. To adjust for this, the measure can be modified by adding some distance-based
penalty whenI is essentially zero, or perhaps even whenIk is essentially zero for somek, where distance is
defined as some function of the|β̂rel,k − β̂orig,k| or of min

{
|L rel,k − Uorig,k|, |Lorig,k − Urel,k|

}
.

An alternative measure is the overlap in the interval lengths. Let(Lover,k,Uover,k) be the overlap in these
intervals, defined as

{
b : b ≥ Lorig,k,b ≥ L rel,k,b ≤ Uorig,k,b ≤ Urel,k

}
. Then, the average relative overlap

in the confidence intervals for anyβk equals:

Jk =
1

2

[
Uover,k − Lover,k

Uorig,k − Lorig,k
+

Uover,k − Lover,k

Urel,k − L rel,k

]
. (5)

The interval overlap measure then could be defined asJ = (1/p)
∑p

i =1 Jk.

Ellipsoid Overlap. The IO measure considers each interval separately, effectively using all the condi-
tional distributions of the coefficients rather than their joint distribution. Some analysts may be interested in
simultaneous intervals, which are defined by multidimensional ellipsoids. We therefore create an ellipsoid
overlap measure,EO. Higher values ofEO mean greater utility.

To constructEO it is convenient to consider posterior probabilities of regions defined by ellipsoids, that
is, to use a Bayesian perspective. Generically, letβ̂ be the maximum likelihood estimate ofβ, the p × 1
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vector of true coefficients in the regression ofY on X, and letσ̂ 2 be the estimated residual variance for that
regression. Under the standard linear regression assumptions and assuming standard non-informative prior
distributions forβ andσ 2, the(1 − α)100% joint highest posterior density ellipsoid forβ is defined by all
the values ofβ such that

(β − β̂)T (XT X)(β − β̂)

pσ̂ 2
≤ F(α; p,n − p)

whereF(α; p,n− p) is the critical value from theF distribution withp andn− p degrees of freedom. The
ellipsoid from theDorig, which we callEorig, is obtained by settinĝβ = β̂orig, σ̂ 2

= σ̂ 2
orig, andX = Xorig.

The ellipsoid from theDrel, which we callErel, is obtained by settinĝβ = β̂rel, σ̂ 2
= σ̂ 2

rel, andX = Xrel.
The utility measureEO is the average of two posterior probabilities: 1) the probability ofEorig computed

using the posterior distribution ofβ based onDrel, and 2) the probability ofErel computed using the posterior
distribution ofβ based onDorig. To determine these probabilities, we use Monte Carlo simulations. For the
first probability, we draw values ofβ from its posterior conditional onDrel which is ap-variate t-distribution
with meanβ̂rel and covariance matrix̂6rel = σ̂ 2

rel(X
t
relXrel)

−1 with n − p degrees of freedom. We then
calculate the percentage of these drawnβ that lie withinEorig. A similar process is used to obtain the second
probability by drawing from the posterior ofβ givenDorig and finding the percentage of these that lie inside
Erel. As with IO , theEO can be extended to any parameters whose distribution is well-approximated by a
multivariate normal distribution.

2.3 Broad Measures

At the opposite end of the utility spectrum, one can employ broad measures of the overall difference between
Drel andDorig, of which the broadest are metrics on some set of distributions.

In this paper, we focus on the Kullback-Liebler divergence between (the empirical distribution of)Drel

and that ofDorig, which we denote bydKL (Drel,Dorig). SinceDrel andDorig are discrete distributions,
calculation ofdKL (Drel,Dorig) entails two computationally onerous steps:

1. Construction of density estimatorŝfrel and f̂orig.

2. Approximation of

dKL (Drel,Dorig) =

∫
log

[
f̂rel/ f̂orig

]
f̂rel (6)

by numerical quadrature.

In high (in practice, three or more) dimensions, both of these may be infeasible.
When bothDrel andDorig have multivariate normal distributions,dKL (Drel,Dorig) can be calculated in

closed form. The resultant expression (15), which is used in §3.3, is derived in the appendix.

3 Illustrative Applications of the Utility Framework

In this section, we present two applications of the utility framework. The first illustrates the risk-utility
framework using “real data” from the Current Population Survey (CPS). The second uses a simulation study
to explore the properties of utility measures and SDL procedures as a function of the size and correlation
structure of the original data.
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In both applications, we use a representative set of SDL methods investigated by Oganian (2003), which
are described in §3.1. This should not be construed as endorsing these methods—indeed, one of them seems
to have rather undesirable properties, nor should it be construed as disparaging other methods.

To measure disclosure risk, following the example of Yancey et al. (2002), we determine the percentage
of records inDrel that we can match correctly to records inDorig using standard record linkage techniques
(Felligi and Sunter, 1969; Jaro, 1989). For simplicity, we do not consider other measures of identity dis-
closure risk, nor measures of attribute disclosure risk, although we believe that data disseminators should
consider such measures.

3.1 Disclosure Limitation Methods

In a taxonomy of SDL methods that release microdata, the highest-level distinction is whether they are
record-level or database-level. For record-level methods, the released data are

Drel = { f (r ) : r ∈ Dorig}, (7)

wherer is a record inDorig and f is a function that does not depend onDorig, but may involve exogenous
randomness. That is, records are simply altered individually, for example by addition of noise. Database-
level methods are more complex: in effect, the functionf in (7) is replaced byf (D0

orig(r )), whereD0
orig(r ) is

a subset ofDorig that in general depends onr and often involves exogenous randomness. Microaggregation
and data swapping are of this nature. In the extreme case of synthetic data (Raghunathan et al., 2003; Reiter,
2005b),D0

orig(r ) = Dorig for all r . We consider both record-level and database level methods.
Virtually all SDL methods can be implemented with differing degrees of intensity. For example, one can

add large or small amounts of noise to data. Hence, we write each SDL method as a function of the parameter
that can be varied. Since our purpose is to illustrate the utility measures framework, in our experiments we
select only one value of the parameter for each method. In future work, we plan to utilize the risk-utility
framework to assess the sensitivity of SDL procedures to different parameter values.

3.1.1 Additive Noise

Additive noise (Brand, 2002; Duncan and Pearson, 1991; Kim, 1986; Little, 1993; Sullivan and Fuller,
1989; Tendik and Matloff, 1994) consists of adding random noise to the original data. Generally, the noise
distribution has mean zero, to preserve, on average, the sample means. The variance of noise distribution can
be generic, although most commonly it reflects either complete independence or the correlation structure of
the original data.

In §3.2 and 3.3, we employ Gaussian noise with the same correlation structure as the original data.
Specifically, letX be original multivariate data set with covariance matrix6orig. The corresponding masked
data are generated as

X′
= X + E (8)

E ∼ N(0, c6orig) (9)

where the constantc is defined by the data disseminator. When adding noise with the same correlation
structure asDorig, thec is the parameter that defines the procedure. We setc = 0.16 in the simulations. We
abbreviate this SDL method asNoise(.16) .
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3.1.2 Rank Swapping

Rank swapping is a form of data swapping (Dalenius and Reiss, 1982). It was originally designed for ordinal
variables (Moore, 1996), but works equally for numerical variables. To implement rank swapping, we first
rank the values of variableXi in ascending order. Each ranked value then is swapped with another ranked
value randomly chosen within a restricted range. This process is repeated for each variable.

Typically, the swaps are defined by setting a parameterp so that the ranks of two swapped values are
not allowed to differ by more thenp percent of the total number of records. In the example above,p = 10%
corresponding to swapping with the next ordered value. Large values ofp lead to greater distortions in
the data whereas the smaller ones to higher disclosure risk. In Domingo-Ferrer and Torra (2001), Oganian
(2003), and Domingo-Ferrer et al. (2001),p = 15% was reported as one of the best parameter choices for
rank swapping. We therefore used this parameter value in our simulations. We abbreviate this method as
Rank(.15) .

3.1.3 Microaggregation

Microaggregation involves clustering records into small aggregates or groups of size at leastk. Rather than
releasing the original value ofXi for a given record, the disseminator releases the average of the original
values ofXi for a group of records. Classical microaggregation requires that all groups, except perhaps one,
be of sizek, wherek is selected by the data disseminator (Defays and Nanopoulos, 1993).

We examined several variants of microaggregation in our simulations, each a function of which and how
many variables and records are grouped together. These include: 1) individual ranking, in which each vari-
able is grouped independently of other variables; 2) multivariate ranking, in which the variables are grouped
by similarity of values for subsets of variables; and 3)z-scores projection and principal components projec-
tion (Anwar, 1993; Defays and Nanopoulos, 1993; Defays and Anwar, 1995), in which the multivariate data
first are ranked by projecting them onto a single axis, using either the sum ofz-scores or the first principal
component, and then are aggregated into groups of sizek, except possibly for one group of larger size (from
k + 1 to 2k − 1).

Microaggregation methods are functions of the number of variables used in the similarity measures (v),
and the group sizes (k). We set values forv and p according to the research done by Domingo-Ferrer and
Torra (2001) and Oganian (2003). For individual ranking, we used all variables in the similarity measures
(v = p) and ten records per group (k = 10). This method is abbreviated asMicir(p,10) . For multi-
variate ranking, we considered several approaches. First, we used all variables in the similarity measures
and three records per group. This method is abbreviated asMicm(p,3) . Second, we used three variables
at a time in the similarity measures—e.g., replace variablesX1 throughX3 with a group average, then re-
place variablesX4 throughX6 with an independently formed group average, etc.—and seven records per
group. This method is abbreviated asMicm(3,7) . Finally, for both forms of microaggregation on pro-
jected data, we used all variables in the projection scores and three records per group. These are abbreviated
asMicp(p,3) for principal components projection andMicz(p,3) for z-scores projection.

3.1.4 Resampling

Resampling is a generic term, but here we mean a specific approach to protecting data that involves elements
of bootstrapping. This version was used by Domingo-Ferrer and Mateo-Sanz (1999) and Heer (1993). Let
X1 be the first variable in a data set withn records. We give each row a ranking based on its value ofX1,
which is determined by its position in an ascending sort ofX1. We then drawn values from the data in
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X1, with replacement, and order them consistent with the ordering of the row ranks to obtain a bootstrap
sampleV11. This process is repeated independentlyt times, resulting in bootstrap samplesV11, . . . ,V1t . The
releasedX1 is V̄1 = (1/t)

∑t
k=1 V1k. We repeat this process independently for eachXi , for i = 1, . . . , p,

by ranking the rows in ascending order of theXi and bootstrapping to obtainVi 1, . . . ,Vi t . The released data
set is(V̄1, V̄1, . . . , V̄p).

For resampling, the parameter ist , the number of bootstrap samples, and we uset = 3. This method is
abbreviated asResamp(3) .

3.2 Application 1: Risk-Utility Tradeoffs on CPS Data

Utility measures must be assessed in combination with disclosure risk measures to quantify the risk-utility
tradeoffs of various SDL procedures. Here, we illustrate such quantifications using microdata extracted from
the 1995 CPS. The data comprise 1080 records containing twelve numerical variables, including adjusted
gross income (agi), employer contribution for health insurance (emcontrb), business or farm net earnings
(ernval), federal income tax liability (fedtax), social security retirement payroll reduction (FICA), amount
of interest income (intval), total person earnings (pearnval), total other persons income (pothval), total
person income (ptotval), state income tax liability (statetax), taxable income amount (taxinc), and total
wage and salary (wsalval). These variables are highly correlated; in fact, the income variables contain a
perfect linear combination.

We quantify disclosure risk as the percentage of records inDrel that can be linked correctly to their
“parent” records inDorig, assuming that the intruder knows the exact values for six variables in the data
set—fedtax, agi, emcontrb, ptotval, taxinc and statetax, and that these values equal the corre-
sponding values inDorig. These six were chosen because each alone uniquely identified all individuals in
the data set, so that they are the “riskiest” set of six variables one could know in these data. In general, data
disseminators can assess disclosure risk under a variety of assumptions about intruders’ knowledge, as was
done for example in Fienberg et al. (1997) and Reiter (2005a).

For the model-specific utility measures, the regression of interest is

agi = β0 + β1 emcontrb + β2 fedtax + β3 taxinc + β4 ptotval + β5 statetax + ε (10)

We fit the regression using bothDorig and theDrel resulting from the various SDL strategies.
Figure 1 displays (risk,utility) scatterplots of the values ofIO and EO (x-axis) and disclosure risk

(y-axis) for each of the SDL strategies in §3.1. We do not calculate the Kullback-Liebler divergence
dKL (Drel,Dorig) of (6) becauseDorig does not follow a multivariate normal distribution. In all cases,
EO ≤ IO ; for some measures the drop is precipitous.

The risk-utility frontiers associated with (2), in order of decreasing utility, are:

For IO, Micz(p,3) , Noise(.16) , Micp(p,3) , Rank(.15) .

For EO, Micz(p,3) , Noise(.16) , Micz(p,3) , Micp(p,3) , Rank(.15) .

Not surprisingly, the former is a subset of the latter. The data disseminator can ignoreMicm(3,7) ,
Micm(p,3) andResamp(3) for both utility measures.

The choice among the SDL methods lying on the risk-utility frontier lies with the data disseminator.
To illustrate the first approach described in §1, if the risk threshold were 10% (in some settings, not a very
conservative value), then according to eitherIO or EO, Noise(.16) would be the preferred SDL method.
It is also clear from Figure 1 that compared toMicz(p,3) or Noise(.16) , Micir(p,10) produces
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Figure 1: Risk-utility plots for the 1995 CPS data.Left: IO measure.Right: EO measure. Higher values of
IO andEO represent greater utility.

only a minor increase in utility at an enormous cost in terms of disclosure risk. Similarly,Rank(.15)
yields only a modest improvement in disclosure risk overMicp(p,3) andNoise(.16) , but incurs an
immense penalty in terms of data utility, especially forEO. Thus, it appears that in practice the disseminator
would chooseNoise(.16) or Micp(p,3) for the model in (10).

How data disseminators might examine multiple analyses and multiple SDL strategies in the process of
selectingDrel is discussed in §4.

3.3 Application 2: Properties of SDL Procedures and Utility Measures

In Figure 1, there is no clear difference betweenIO andEO. Moreover, the one case study in §3.2, which
involves only one database, does yield insight into how characteristics ofDorig might affect utility measures
and consequent choice of SDL methods. In this section, we report simulation studies designed to provide
answers to these kinds of questions.

The design for the simulation consists of:

• Six data types constructed by crossing two correlation structures—high and low—with three dimen-
sion structures—three, six, and ten variables. Each simulated data set comprises 10,000 observations
drawn from a multivariate normal distribution.

• Five replicates for each data type, to assess the effects of replicate variability.

• The eight SDL measures from §3.1.

• The two narrow utility measures from §2.2 and the one broad measure from §2.3. For the model-
specific utility measures, we selected one variable as the response4 and regressed it on all other (2, 5,
or 9) variables in the data set.

4This variable is present regardless of the dimension
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Disclosure risk is the percentage of records identified correctly using record linkage on all variables in the
data set.

For the Kullback–Liebler divergence measureKL = dKL (Drel,Dorig), we assume thatDrel has a mul-
tivariate normal distribution (Dorig has one by construction). Equation (15) in the appendix was used to
calculateKL , using maximum likelihood estimators(µ̂orig, 6̂orig) for the mean and covariance ofDorig and
(µ̂rel, 6̂rel) for the mean and covariance ofDrel. The assumption thatDrel is multivariate normal is an ap-
proximation at best. In what follows, it is important to keep in mind that smaller values ofKL indicate
higher utility.

Tables 1 and 2 present the utility and risk values, averaged over replicates, for the low- and high-
correlation data sets. The standard errors of the reported averages are all small enough that observed
differences do not result solely from replicate variability in the simulations. Boldface utility values indi-
cate that the SDL procedure is on the risk-utility frontier for that utility measure; that is, the procedure is not
dominated by other procedures.

Looking at the Tables 1 and 2, differences in risk and utility across methods are larger than differences
due to either dimension or correlation structure.Micir(p,10) typically provides the highest utilities but
also the highest disclosure risks, which is consistent with the results in §3.2.5 Resamp(3) tends to have
the second highest disclosure risk, with relatively high utility. At the “low end,”Rank(.15) typically
has among the lowest disclosure risks and the lowest utilities, because it alters significantly the correlation
structure of the data, greatly distorting regression inferences.Micm(3,7) , which does microaggregation
on three variables at a time, tends to have high disclosure risk and low utility, due to independent aggrega-
tions of different triplets of variables. Among the microaggregation methods that operate on all variables
simultaneously—Micm(p,3) , Micp(p,3) , andMicz(p,3) —Micm(p,3) generally has highest util-
ity, especially for theKL measure, and highest risk.Noise(.16) is characterized by relatively high utility
and low disclosure risk; it is the only method that purposefully preserves the correlation structure of the
data.

The first three columns of Table 3 display, for each of the three utility measures, the number of times—
out of a possible six corresponding to the six database structures—each method is on the risk-utility frontier.

The corresponding column totals indicate that the frontiers for the model-specific measures are smaller
than the frontier forKL . That is, more methods are dominated by others when usingIO andEO. The
results highlightNoise(.16) , Micir(p,10) , Micz(p,3) , andRank(.15) as being on the frontier
most often. As shown in Tables 1 and 2, as well as in §3.2,Micir(p,10) andRank(.15) tend to be at
the extreme ends of the utility or risk portion of the frontier, whereasNoise(.16) andMicz(p,3) lie
in the middle of the frontier.

One advantage of the risk-utility frontier formulation in (2) is that it extends to more than one utility
measure (or more than one measure of risk). If there are multiple utility measuresDU1, . . . ,DUk, then the
partial order is defined by

R1 �RU R2 ⇔ DR(R2) ≤ DR(R1) and DUi (R2) ≥ DUi (R1) for i = 1, . . . , k. (11)

Of course as the number of measures increases, so does the relative size of the frontier, reducing the savings
from restricting attention to the frontier.

The fourth and fifth columns of Table3 show how many times each method is on the joint frontier forIO
andEO and how many times on the joint frontier for all three utility measures. The joint {IO , EO} frontier

5And not surprising—this method usually alters the observed data only slightly.
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is reasonably close to the individual frontiers, while the three-measure frontier is quite different, especially
for proceduresMicm(p,3) andResamp(3) . This reflects the low discriminatory power ofKL .

Tables 1 and 2 also provide some insight into the effects of dimension and correlation structure. For
several methods, the value ofEO is essentially zero, indicating little probability mass in the intersections of
the ellipsoids. BecauseEO measures simultaneous overlap, any substantial disparity between the distribu-
tions of the parameters, even in just one dimension, results in a low value ofEO. This issue also explains
why values ofEO tend to decrease as dimension increases: there are more opportunities for disparities, and
small disparities add up to produce bigger joint differences. A similar behavior applies for theKL measure.
In contrast, theIO measure rarely equals zero, and there is no strong dimension effect. This is becauseIO
averages individual overlaps, so that overlap in several dimensions contribute positive values even when one
dimension is poorly specified.

In general, the differences in the confidence intervals based onDorig andDrel are larger in the high-
correlation data than in the low-correlation data, but this effect is weak relative to that of differing meth-
ods. Some methods, such asNoise(.16) , seem to be essentially unaffected by the correlation structure,
whereas others, such asMicz(p,3) , are strongly affected. Among the utility measures,KL appears most
sensitive to the correlation structure, especially forRank(.15) and some of the microaggregation methods.

We also examined6 the performance of the methods when the analyst fits an incorrect model—one that
excludes important predictors. Some of the SDL methods produced regressions bearing little resemblance
to the corresponding regressions fit with the original data. This was especially true for some of the microag-
gregation methods, which should give pause to disseminators considering use of microaggregation. The
finding also emphasizes the importance of checking several inferences when doing risk-utility analyses.

4 Discussion

As threats to data confidentiality grow, agencies and survey organizations must implement disclosure lim-
itation with increasing intensity. Deciding which procedures to use, as well as how intensely to use them,
can—and, we would argue, should—be framed in the context of a risk-utility analysis. The utility measures
presented here can aid in quantifying that tradeoff.

These measures have strengths and weaknesses. The interval and ellipse overlap measures can be used
for many types of inferences, but they are specific not just to a class of models, but to one model within a
class. One of the attractive features of public use data releases is that a variety of analyses can be performed
on them. This makes it infeasible to predict all inferences that will be attempted, but clearly certain infer-
ences can be identified as more typical, and hence more important to preserve, than others. For example,
predicting income from age is more typical than predicting age from income.

When multiple models are of interest, one approach is to employ multi-dimensional utilities (as, albeit in
a different context, in §3.3), and to define risk-utility frontiers using analogs of (11). In this case, there is one
utility measure per model of interest. When there are many models of interest, this approach is cumbersome
at best, since most or nearly all candidate releases may be on the frontier.7

An alternative is to use a loss function to combine model-specific utilities for a large number of repre-
sentative models that have been identified from existing literature and subject matter expertise. For instance,
a weighted linear combination of model-specific utilities could be used, as in the experimental design liter-
ature, where design points can be selected to optimize for a set of linear regressions.

6But have omitted detailed numerical results.
7Especially if bothIO andEO are to be considered.
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Method Dim EO IO KL Risk
Micir(p,10) 3 .949 .950 3.93E-07 .948

6 .950 .950 2.36E-06 .974
10 .945 .948 3.47E-05 .985

Resamp(3) 3 .780 .916 1.71E-04 .455
6 .622 .843 .001 .735
10 .106 .867 .004 .846

Micp(p,3) 3 .000 1.87E-20 .902 .018
6 .000 .038 2.237 .030
10 .000 .614 4.067 .057

Rank(.15) 3 .000 2.16E-12 .081 .001
6 0 6.01E-05 .334 .004
10 0 .156 .987 .066

Micm(3,7) 3 .761 .83 .001 .110
6 .008 .644 .010 .245
10 .000 .666 .287 .550

Micm(p,3) 3 .930 .933 1.55E-04 .120
6 2.78E-05 .423 .080 .141
10 .134 .738 .449 .238

Micz(p,3) 3 0 .0 .903 .005
6 0 .219 2.260 .005
10 .15 .755 4.129 .009

Noise(.16) 3 .916 .926 .016 .003
6 .907 .929 .031 .017
10 .870 .920 .053 .108

Table 1: Risk and utility values in simulated low-correlation, multivariate normal data. Values inboldface
are on the risk-utility frontier.
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Method Dim EO IO KL Risk
Micir(p,10) 3 .946 .948 4.65E-06 .947

6 .834 .760 .003 .972
10 .763 .735 .027 .985

Resamp(3) 3 .364 .883 .001 .402
6 .000 .873 .018 .664
10 .000 .487 .118 .833

Micp(p,3) 3 .000 .428 .888 .035
6 .000 .602 2.264 .034
10 .108 .811 4.051 .043

Rank(.15) 3 .000 9.23E-15 .720 0
6 .000 .034 2.887 .001
10 .000 .097 5.908 .004

Micm(3,7) 3 .739 .706 .004 .150
6 .000 .150 .387 .155
10 .000 .118 1.736 .419

Micm(p,3) 3 .923 .912 .001 .161
6 .000 .443 .512 .181
10 .539 .843 1.359 .281

Micz(p,3) 3 .000 .694 .930 .015
6 .306 .846 2.267 .021
10 .367 .750 4.072 .032

Noise(.16) 3 .920 .930 .016 .002
6 .871 .921 .031 .011
10 .827 .904 .053 .040

Table 2: Risk and utility values in simulated high-correlation, multivariate normal data. Values inboldface
are on the risk-utility frontier.

Methods EO IO KL JointEO, IO JointEO, IO , KL Total
Noise(.16) 6 6 6 6 6 30
Rank(.15) 5 5 6 5 6 27
Micir(p,10) 4 4 6 4 6 24
Micz(p,3) 2 3 2 3 3 13
Micm(p,3) 2 1 2 2 2 9
Micm(3,7) 0 0 3 0 3 6
Resamp(3) 0 0 3 0 3 6
Micp(p,3) 0 0 1 0 1 2
Total 21 20 31 20 30

Table 3: Numbers of times each SDL method appears on the marginal and joint risk-utility frontiers for the
six simulated data sets.

13



Indeed, as suggested by a referee of this paper, there may be deeper connections between microdata
release and experimental design. To illustrate, random sampling (of records) from a database is a common
SDL strategy because it increases intruder uncertainty about whether a target record is present in the released
data. While choice of a design matrix, as in Chaloner (1984), has no direct parallel in SDL, one intriguing
analog would be to release a set of records that preserve fidelity of a family of regressions. Doing so produces
a formulation very similar toψ-optimality in Chaloner (1984). However, instead of the unconstrained
optimization problem there, one faces a daunting discrete optimization problem because the “design” must
be selected from the underlying database. Of course, the disclosure risk consequences of such a strategy are
completely unclear.

These kinds of approaches, methods of selecting representative analyses, and useful and workable tools
for combining model-specific utilities are topics for future research.

We investigated one broad measure,KL , but it relies on the multivariate normality assumption to be
meaningful. Data disseminators would benefit greatly from the development of computationally feasible
techniques to measure distances between empirical distributions.

Finally, it may be important for data disseminators to evaluate relationship-specific measures of utility,
although we did not illustrate them here. One such measure is the number of substantively important, statis-
tically significant relationships that experience a directional switch, e.g., the estimated regression coefficient
goes from positive to negative, when going fromDorig to Drel. Clearly, a release that involves many direc-
tional switches is undesirable. The rationale is that a change in sign mis-states the direction of an effect. A
related measure is the number of relationships that go from statistically significant to statistically insignifi-
cant, or vice versa: many significance changes are undesirable from a utility perspective. These relationship
measures complement the model-specific measures in the utility evaluation process.
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Appendix: Derivation of the Kullback-Liebler Divergence for Multivariate
Normal Distributions

Let X1 andX2 be p-dimensional random variables with multivariate normal densitiesφ1 = MVN(µ1, 61)

andφ2 = MVN(µ2, 62). Then by (6),

dKL (X1‖X2) = EX1

[
1

2
log(|62|/|61|)−

1

2

[
(X − µ1)

′6−1
1 (X − µ1)− (X − µ2)

′6−1
2 (X − µ2)

]]
=

1

2
log(|62|/|61|)−

1

2
EX1 [T1] +

1

2
EX1 [T2] ,

whereT1 = (X − µ1)
′6−1

1 (X − µ1) and T2 = (X − µ2)
′6−1

2 (X − µ2). Under the distribution ofX1,
T1 ∼ χ2

p, so that
EX1[T1] = p. (12)

Also, we can re-expressT2 as

T2 = (X − µ2)
′6−1

2 (X − µ2) (13)

= (X − µ1)
′6−1

2 (X − µ1)+ 2X′6−1
2 (µ1 − µ2)− µ16

−1
2 µ1 + µ26

−1
2 µ2

= (X − µ1)
′6−1

2 (X − µ1)+ (µ1 − µ2)
′6−1

2 (µ1 − µ2).

Under the distribution ofX1 the quadratic form(X − µ1)
′6−1

2 (X − µ1) has a weightedχ2 distribution
of the form

∑p
i =1 λiχ

2
1 , whereλi are the eigenvalues of616

−1
2 (Guttman, 1982). Hence,

EX1[T2] =

p∑
i =1

λi + (µ1 − µ2)
′6−1

2 (µ1 − µ2) (14)

After noting that12 log(|62|/|61|) = −
∑p

i =1 log(λi ), we obtain from (12) and (14) that

dKL (X1‖X2) =
1

2

[
(µ1 − µ2)

′6−1
2 (µ1 − µ2)−

p∑
i =1

(1 − λi + log[λi )]

]
. (15)
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