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1 Introduction

A critical problem for users of the World Wide Web is
that many sites are difficult to navigate, hard to use
and have confusing structure. Examples abound be-
cause the phenomenon is so widespread. Users may
become lost, and they may make (or be forced to
make) large leaps within a Web site (for example,
returning unnecessarily to the home page) that are
inconsistent with its structure. They may rely on
their browser s back button as a navigational tool.
They may be unable to find content and abandon the
site. Obviously site authors do not frustrate their vis-
itors intentionally. It is simply exceedingly difficult
to create easy-to-use sites. A structure that seems
intuitive to an author may be highly confusing to ev-
eryone else. Nor is there is any mechanism for site
authors to understand at any but the most cursory
level how visitors actually use the site. One way to
improve usability is to conduct formal user studies
and measure user performance for specific tasks, but
this is too expensive for all but a few sites. A second
approach is to exploit the rich instrumentation in the
on-line world. This is the approach we adopt here.

Web servers create voluminous log files that record
every hit to every page on the site. By processing the
log files we can create sessions consisting of sequences
of page views for each user. There are both commer-
cial and public domain Web reporting tools that pro-
duce simple reports summarizing site activity. From
these reports, however, it is essentially impossible
to relate site activity to site structure, to correlate
site modifications with activity changes, or to make
stochastic predictions. To address this gap we pro-
pose to construct Bayesian statistical models that re-

late visitor transition patterns to site structure. The
pages are grouped into more meaningful ‘nodes’, and
the website is modeled as a tree, rooted at the home
page, whose vertices are nodes. We apply the model
to a major commerce website. Each user session is re-
duced to the entry page E, and a set of counts for each
node corresponding to the number of each observed
transition type originating from that node. Compu-
tation of the posterior distribution requires Markov
chain Monte Carlo (MCMC) simulation). We find
that grouping pages into nodes effectively deals with
issues of scalability and ease of interpretability. This
set of models is rich enough to support statistical in-
ference about a number of important questions such
as: Are user transitions consistent with the Web site
structure? Are users more likely to go to “special
pages” than take tree-consistent transitions?

In Section 2, we describe the nature of the weblog
data from the commerce website, and in Section 3,
we provide details of our model for the data, and
explain how computation is performed efficiently for
inference based on the model and data. We then de-
scribe the results of the application of these methods
to the commerce data in Section 4, and conclude in
Section 5 with a discussion of our results and direc-
tions for future work.

2 Data

The data consist of user sessions which are described
as sequences of web pages, where each page has a
unique identifier. Data was gathered for a period of
6 months in 2002. The number of visitors to the web-
site during this time was 238,595, and the total num-
ber of sessions was 344,227. 5,575 distinct web pages
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appear in the data set. Note that we have removed all
sequences of length 1, since a user who exits immedi-
ately after entering does not provide useful transition
information (except, perhaps, to identify entry pages
that lead to the most frequent immediate exits).

It is possible to produce a matrix of transition
counts where the (i, j)th entry of the matrix is the
number of observed transitions from page i to page
j for all sessions involving all users. Since our goal
is to study how users navigate the website, a natural
first attempt at summarizing this information would
be simply to divide the number of transitions in a
particular cell by the total number of transitions for
that row, and report this number as TP (i, j), the es-
timated probability of moving from page i to page
j. However, these probabilities fail to capture the
structure of the website in any easily interpretable
manner, especially when the number of pages is very
large. It is also difficult for a website designer to
describe overall design in terms of individual pages,
particularly since individual pages may have been dy-
namically generated (there are potentially an infinite
number of pages that can be dynamically generated.)

Instead, we use information from the web designer
to provide a list of 316 nodes, which represent mean-
ingful groupings of the 5575 pages. The design is then
expressed as a tree containing all such nodes. The
transitions that are consistent with the tree struc-
ture are parent-child (P), child-parent (C), self (R),
and sibling (S). Several nodes are labeled as “spe-
cial”: Homepage(H), FAQ (F), Tutorial (U), Down-
loads (D), Fees (T), Images(I). A transition to a spe-
cial node is also considered to be consistent with tree
structure. Thus, by eliciting relevant information
from the website designer, we now have a basis for
assessing consistency of user behavior with the de-
sign of the website.

2.1 Data Reduction

We describe here how we process the data, as this is
crucial to the formulation of our model:

1. Page sequence data: The raw data is in the form
of several user sessions.Each session simply con-
sists of a sequence of pages. Let a single session

be: p1, p2, . . . , pn, where n is the length of the
session. Since repeated pages are not indicative
of user movement/transition through the website
(and are often simply the result of an automated
process of page ‘refreshes’), we removed any such
sequences of repeats.

2. Node sequence data: The information provided
by the developers maps each of the pages in
the data to a unique node, i.e. for each page,
p, there is a corresponding node, ν. The de-
sign of the website is described in terms of these
nodes; therefore, we translate each page into
its corresponding node and obtain the sequence:
ν1, ν2, . . . , νn.

3. Entry and exit nodes: We use an entry node,
E that represents all pages outside the website
from which the user first entered the website at
node ν1. Similarly, at the end of each session,
we use an exit node, X to represent all destina-
tions outside the website to which the user exits
at the end of a session. The single session is
now: E, ν1, ν2, . . . , νn, X. This is similar to the
method used in Di Scala et al. (2003).

4. Page hierarchy information: we build the min-
imal tree that represents all nodes that appear
in the data by using the page hierarchy informa-
tion provided by the website designers. The tree
is built in the following manner: for each node
in the data, add the node and its parent node, if
these nodes are not already in the tree, and add
the corresponding link. Based on this tree, it
is now possible to ascertain if the transition be-
tween nodes u and v represents a parent-child,
child-parent, or sibling transition. A designed
transition that does not qualify as one of these
tree-transitions, may be either a self (repeat)
transition or a transition to one of the special
pages. A transition that does not fit into any of
these categories is simply categorized as ‘other’.

5. Transition matrix data: Using the page hierar-
chy information, we can classify a transition from
any node to another node as one of 12 possible
transitions: parent-child (P), child-parent (C),



self/repeat (R), sibling (S), to FAQ page (F),
to homepage (H), exit (X), Tutorial (U), Down-
loads (D), Fees (T), Images(I), or to “other”
(O). By counting the number of transitions of
each type, it is possible to generate a transition
matrix with rows corresponding to each of the
nodes, and columns corresponding to the node-
type transitions.

Note that there are some features of this problem,
and the data processing that are unique:
(1) The node hierarchy information provides a clearly
defined design associated with the website.
(2) The pages that appear in the data set are mapped
to “nodes”. This framework allows several closely re-
lated, and possibly dynamically generated pages, to
belong to the same node. Therefore, by translating
the page sequence data into node sequence (Step 2)
above, user behavior on this website is more readily
related to the organization of the website. Some ad-
vantages of this approach are:
(a) The designers can describe their design in a more
meaningful and abstract fashion - they can avoid hav-
ing to specify a possibly contrived tree-like structure
that accounts for all pages. Instead, they can sim-
ply describe the structure of the website in terms
of nodes, which are more intuitive and meaningful
‘units’ of the tree.
(b) We can greatly reduce the dimensionality of the
problem, thereby improving scalability of any tech-
niques used to model or study such data. Where
a transition matrix summarizing the original pages
without any page hierarchy information would have
been of dimension np × np(5575× 5575 in our case),
we can now reduce the number of columns to 12 node
types, and the number of rows to nt nodes, and there-
fore a nt × np matrix (316 × 12 in our case). Such
reductions may be even more dramatic and there-
fore even more crucial when dealing with scalability
issues for larger websites, which have orders of magni-
tude larger number of pages. Since our primary goal
is to understand the usage of the website in terms
of the design of the website, we believe that a ma-
trix of probabilities of nodes and their correspond-
ing transition-types is a more meaningful summary
of web usage than a large matrix of page to page

transition probabilities.
It is important to note that the tree structure of

the page hierarchy information serves as an intuitive
means to describe the site design; however, in the
way in which we use it here, the tree information
essentially represents an efficient lookup table. For
any pair of nodes (u, v), we see if it fits into any one
of the tree-defined relationships: parent-child, child-
parent, or sibling. If not, we look to see if u = v, or
if v is one of the specially designated pages (such as
FAQ, Homepage etc.)

3 Model

Denote the probability of a type j transition from
some node i by πi,j , and the transition probability
from entry node to node i by πE,i, where i ∈ S.
The likelihood for observing a particular sequence of
nodes (as translated from the page sequence) is sim-
ply taken as the product of the probabilities of ob-
serving the transition-types associated with the se-
quence. For instance, for the sequence ν1, ν2, ν3, if
the transition from ν1 to ν2 and ν2 to ν3 were of type
k and l respectively, the probability of observing the
sequence would be π1,kπ2,l.

Let S be the set of ns (316) nodes that appear in
the data. Let T = {P,C,R, S,H, F, U,D, T, I, X, O}
be the set of nt node types, and the subsets D =
{P,C,R, S}, the tree-based designed transitions, and
A = {H,F, U, D, T, I,X}, the designed transitions
to special pages. The likelihood of the data, U , given
the parameters, Θ, is described as

L(U|Θ) =
∏
i∈S

π
TC(E,i)
E,i

∏
i∈S,j∈T

π
TC(i,j)
i,j (1)

Denote πE,i for i ∈ S by πE and πi,j for j ∈ T , i ∈ S
by πi. We place a Dirichlet prior on the entry page
probabilities, πE .

πE ∼ Dir(0.5, . . . , 0.5)

Similarly, we place a Dirichlet prior on each set of
node-type transition probabilities, (πi). We model
these Dirichlet distributions as arising from a com-
mon set of parameters,

πi ∼ Dir(αP , αC , αS , αR, . . . , αX , αO) (2)



where α0 =
∑

j∈T αj . We complete the Bayesian
formulation by placing a prior on the parameters of
the Dirichlet distribution for the node-type transition
probabilities. The prior distribution is:

p(αP , . . . , αX) = |I(αP , . . . , αX)|1/2, (3)

where |I(αP , . . . , αX)|1/2 is Jeffrey’s prior for Dirich-
let parameters (Yang and Berger (1996)), which un-
der certain conditions (cf. Kass and Wasserman
(1996)) represents ‘non-informativeness’ over trans-
formations of the parameters.

3.1 MCMC Computations

Due to the high dimensionality and intractability
of the posterior (4120 dimensions), it is natural to
use Markov chain Monte Carlo (MCMC) methods
(Gelfand and Smith (1990), Tierney (1994)) for infer-
ence about the posterior distribution. For the entry
page parameters, we can easily calculate the param-
eters of the Dirichlet posterior. For the parameters
of the other posterior distributions, the MCMC algo-
rithm alternates between the following two steps:
(i)Sample from the full conditional Dirichlet distri-
butions of page transition probabilities. This is done
for each page, i (one vector at a time).
(ii) Draw from the common parameters of the Dirich-
let distribution (αj ’s) by Metropolis-Hastings steps.

4 Results

As a consequence of our MCMC inference, we obtain
posterior distributions for node transition probabili-
ties, along with 12 parameters (αs) that represent the
common part of their Dirichlet distributions. Many
questions can be answered by using these samples,
but we will limit ourselves to describing a few here;
there is a related discussion in Subsection 4.1.

Since our primary goal is to understand how well
the user behavior on the website matches the design
of the site, we are most interested in learning about
how likely the user is to follow the design of the web-
site. The odds of taking a non-designed transition
transition versus a designed transition from node νi

is πiO/(1 − πiO). Using the samples, we can eas-
ily construct 95% credible interval for the posterior
πiO|U ; let the interval be (l, u). If 0.5 < (l, u), νi is
a poorly designed node, and if (l, u) < 0.5, νi is a
well designed node. Studying credible intervals over
all nodes, we find that 12.6% of all nodes are poorly
designed, while 42.4% of all nodes are well designed
(there is not enough evidence to make either claim
about the rest of the nodes.) Thus, our results sug-
gest that, while the users are behaving in a manner
that is often consistent with the design, the design-
ers should redesign the website, targeting the poorly
designed nodes.

Nodes that had the highest median value for πiO

are considered to be the worst nodes, and these
tended to be fairly low in the node hierarchy (deep
in the node tree), and generally had few children and
many siblings. Using a separate model (which we
do not describe here for the sake of brevity), we in-
vestigated the relationship between consistency with
design for a node and the description of the node ac-
cording to the web designers. We found that only the
number of siblings had a significant (and negative) ef-
fect on how well user behavior for the node matched
the design - perhaps a design and implementation
where nodes have fewer siblings would help make the
website more usable. The best nodes were typically
related to downloads and simulations, which is not
surprising, given that both these activities are fairly
sequential.

We also found that for 85% of the nodes,
p

(∑
k∈D πik >

∑
k∈A πik|U

)
> 0.9, so special nodes

appear to be more important destinations than tree-
defined destinations. This high reliance on special
pages suggests that users tend not to follow the tree
design as much as the designers would like. On the
other hand, since designed transitions include transi-
tions to special pages, this may not necessarily be an
undesirable result, particularly when the transitions
are to special pages such as “Fees”, “Tutorials” and
“Simulations”.

4.1 Advantages of our approach

Once we obtain the analytic form of the posterior dis-
tribution of the parameters, or are able to simulate



from the posterior distribution, we can compute or
estimate a number of relevant probabilities and other
quantities of interest. We now describe how the ef-
fort required to work on a very general model under
a fully Bayesian framework can yield significant re-
wards by making it possible to answer a number of
important questions in a unified manner
Comparing Structure and Usage. We can better
understand how the web site is being used by exam-
ining appropriate posterior probabilities, and we can
use these as a guide for improving the Web site de-
sign. For example, the question “How likely are visi-
tors not to respect the intended tree structure of the
site?” can be answered by computing the probability,
in light of the data, that a user will jump from any
given node to one of the nodes that is not designated
as a “child”, “parent” or “search”, “help” or “exit”
node. Similarly, the question “Are users more likely
to exit from node A or node B (to exit page, X) ?”
can be answered by calculating Pr(A,X > B, X|U),
the probability that the user is more likely to exit
from page A than from page B, and so on. A related
example was presented in the previous section.
Comparisons and Trend. It is possible to use the
posterior distribution to assess change in usage pat-
terns between time periods, such as after a promo-
tional campaign. For instance, a promotional cam-
paign targeting content featured on page A could be
evaluated as follows. First, obtain the posterior dis-
tribution A,E for page A how likely were users to
enter the site from page A from data collected be-
fore the campaign was launched. Then, obtain the
posterior distribution A,E for page A from data col-
lected after the campaign was launched. Finally, we
can compare the two distributions, either visually by
plotting histograms, or more formally with tests such
as the Kolmogorov Smirnov test. This strategy can
be clearly applied to many other questions of interest,
such as How do usage patterns change between week-
ends and weekdays? or How does usage vary for vis-
itors who come from an on-line campaign from those
who come from an off-line campaign? Importantly,
we can not only detect but also quantify differences,
potentially allowing cost-based evaluation of promo-
tions.
Page Inter-relations. One benefit of the Bayesian

models is that we can readily answer a number of
detailed queries regarding dependence. For example,
the question Are the transitions to parent from pages
A and B correlated? can be answered by obtaining
the joint posterior distribution of A,P and B,P from
the overall posterior distribution and computing their
correlation coefficient, or visualizing the joint distri-
bution. Extending this line of reasoning, a sample of
the parameters of the model from the posterior distri-
bution can be thought of as another (but richer) data
set. It would then be possible to run data-mining
tools [31] to discover interesting aspects of site usage
such as associations between user behavior at various
pages. The advantage is similar to bootstrapping: by
means of resampling, faint effects are amplified to the
point of detectability.
Simulation and Prediction. The posterior distri-
bution of the parameters of this probabilistic model
can be used to simulate realistic user sessions in order,
for example, to test hardware or server capabilities.
This differs from the usual simulation scenario where
the distribution simulated from is taken to be known.
In our case, the simulation requires two steps: The
first samples a set of parameters from the posterior
distribution, which are then used to generate a user
session using the likelihood. An important advan-
tage of this approach is that it enables us to generate
a realistic set of user sessions that incorporates the
uncertainty associated with estimating unknown pa-
rameters. From another perspective, this simulation
procedure can be thought of as based on the model s
predictions and thus it subsumes the issue of predict-
ing user behavior. Such predictions can be applied,
for example, to forecast user demand or the economic
demand of a commercial campaign.

5 Discussion

We have developed a method that uses expert in-
formation to easily reduce the dimensionality of the
problem. The designers are more easily able to de-
scribe their notion of the design of the website, and
their concept of desirable user behavior. By reducing
the dimensionality of the resulting transition prob-
ability matrix, we are able to also increase inter-



pretability; we believe this is even more vital as peo-
ple begin to study usability for much larger websites.

For the commerce data we have analyzed here, it
appears that browsing behavior does not completely
follow the design of the site (as narrowly defined by
the node hierarchy and special pages). However, we
believe that there are still several issues to be resolved
regarding the description of the website. In particu-
lar, it is not always clear that a tree-like structure is
adequate, given the increasing complexity of web de-
signs. There are too many common links appearing
on multiple pages, which makes it difficult to acco-
modate them all as ‘special nodes’. It is also possi-
ble that other characterizations of the web designers’
concept of poor usability would lead to fairly differ-
ent assessments of the website. For instance, if it were
possible to clearly define the notion of a ‘lost’ user, for
eg. someone with frequent transitions to homepage
and exit pages, we could associate high occurrence
of lost users with poor design. Another possibility
would be to try to classify whether a particular user
session was successful - many failures would then im-
ply poor design. However, while this is an attractive
notion for e-commerce, it may be difficult to assess
success for other kinds of web designs.

There are several general options for the web de-
signer to make use of the kind of analysis presented
here. Nodes that are designated as particularly im-
portant origins can be modified in useful fashions to
take advantage of the high traffic. For instance, more
ads can be added to pages belonging to that node,
and other important web pages can be linked from
there as well. A reverse scenario may also be ob-
served: parent-child transitions that have very low
probability of being used suggest that the developers
need to make sure that a prominent, easily-used link
exists from the parent to the child node, or that they
need to rethink their design and figure out if that
parent-child transition truly exists. Finally, special
attention needs to be paid to nodes that appear to
be important destinations, but to which transitions
do not follow any of the standard transition types -
perhaps this represents a gap between their design
and the actual use of the website.
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