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Abstract

When several data owners possess data on different records but the same variables,
known as horizontally partitioned data, the owners can improve statistical inferences
by sharing their data with each other. Often, however, the owners are unwilling or
unable to share because the data are confidential or proprietary. Secure computation
protocols enable the owners to compute parameter estimates for some statistical
models, including linear regressions, without sharing individual records’ data. A
drawback to these techniques is that the model must be specified in advance of
initiating the protocol, and the usual exploratory strategies for determining good-
fitting models have limited usefulness since the individual records are not shared. In
this paper, we present a protocol for secure adaptive regression splines that allows
for flexible, semi-automatic regression modeling. This reduces the risk of model mis-
specification inherent in secure computation settings. We illustrate the protocol with
air pollution data.
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1 Introduction

In many contexts, national statistical agencies, survey organizations, busi-
nesses, and other data owners (henceforth all called agencies) with related
databases can benefit by combining their data. Agencies can use more records
or more attributes to fit statistical models when databases are combined than
when databases are analyzed separately. Generally, there are two types of data
integration settings. Horizontally partitioned databases comprise the same at-
tributes for disjoint sets of data subjects. For example, several local educa-
tional agencies might want to combine their students’ data to improve the
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precision of analyses of the general student population. Vertically partitioned
databases comprise the same data subjects, but each database contains dif-
ferent sets of attributes. For example, one agency might have employment
information, another health data, and a third information about education,
all for the same individuals. A statistical analysis predicting health status from
all three sources of attributes is more informative than, or at least comple-
mentary to, separate analyses from each data source.

Often the agencies are not able or willing to combine their databases because
of concerns about data confidentiality. These concerns can be present even
when the agencies cooperate: all may wish to perform integrated analyses,
but no one wants to break the confidentiality of others’ data. In such cases,
the agencies can perform analyses on the combined data without actually
sharing the data by utilizing secure computation techniques. Some of these
techniques include secure linear regression analyses (Du et al., 2004; Karr
et al., 2004b,a), secure data mining with association rules (Kantarcioglu and
Clifton, 2002; Vaidya and Clifton, 2002; Evfimievski et al., 2004), and secure
model based clustering (Vaidya and Clifton, 2003; Lin et al., 2004). The liter-
ature on privacy-preserving data mining (Agrawal and Srikant, 2000; Lindell
and Pinkas, 2000) contains related results.

In this paper, we focus on secure regression with horizontally partitioned data,
i.e. predicting a continuous attribute from multiple predictors when different
subjects are owned by several agencies. The existing protocols for secure re-
gression in this context have a fundamental limitation: they require the agen-
cies to specify the model before starting the protocol. Since the agencies have
no opportunities to explore the combined dataset—doing so requires sharing
the data, which results in breaches of confidentiality—this limitation increases
the risks of model mis-specifications. For example, the agencies may not be
able to determine that polynomial terms or other transformations are needed
to obtain a good fit. Such transformations may not be evident in each agency’s
data, particularly when the agencies’ data are in different regions of the pre-
dictor space.

We propose a protocol for secure regression that uses adaptive regression
splines. Adaptive splines provide a flexible, semi-automatic way of fitting re-
gression models, so that agencies employing secure regression spline protocols
are less susceptible to model mis-specification than those employing secure
linear regression protocols. The paper is organized as follows. Section 2 re-
views secure summation and secure linear regression. Section 3 presents the
protocol for secure adaptive regression splines. Section 4 illustrates an appli-
cation of the protocol and compares its predictive performance with secure
linear regression. Section 5 concludes with a discussion of this approach.
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2 Secure summation and secure linear regression

Various assumptions about the participating agencies are possible, for exam-
ple, whether they use “correct” values in the computations, follow computa-
tional protocols, or collude against one another. We assume the agencies wish
both to cooperate and to preserve the privacy of their individual databases.
We assume that the agencies are “semi-honest:” each follows the agreed-on
computational protocols properly, but may retain the results of intermedi-
ate computations. The results of analyses of horizontally partitioned data
are shared among all participating agencies and possibly disseminated to the
broader public.

2.1 Secure summation protocol

Consider K > 2 cooperating, semi-honest agencies, such that Agency a has
a value va. The agencies wish to compute v =

∑K
a=1 va so that each Agency

a learns only the minimum possible about the other agencies’ values, namely
the value of v(−a) =

∑

6̀=a v`. The secure summation protocol (Benaloh, 1987)
can be used to perform this computation.

Following the presentation in Karr et al. (2004b), let m be a very large
number—which is known to all the agencies—such that 0 ≤ v < m. One
agency is designated the master agency and numbered 1. The remaining
agencies are numbered 2, . . . , K. Agency 1 generates a random number R

from [0, m). Agency 1 adds R to its local value v1 and sends the sum s1 =
(R+v1) mod m to Agency 2. Since the value R is chosen randomly from [0, m),
Agency 2 learns essentially nothing about the actual value of v1.

For the remaining agencies a = 2, . . . , K−1, the algorithm is as follows. Agency
a receives sa−1 = (R+

∑a−1
t=1 vt) mod m, from which it can learn nothing about

the actual values of v1, . . . , va−1. Agency a then computes and passes on to
Agency a + 1 the quantity sa = (sa−1 + va) mod m = (R +

∑a
t=1 vt) mod m.

Finally, agency K adds vK to sK−1( mod m), and sends the result sK to agency
1. Agency 1, which knows R, then calculates v by subtraction, v = (sK −
R) mod m, and shares this value with the other agencies.

For cooperating, semi-honest agencies, the use of arithmetic mod m may be
superfluous. It does, however, provide one layer of additional protection: with-
out it, a large value of s1 would be informative to Agency 2 about the value
of R.

This method for secure summation faces an obvious problem if some agencies
collude. For example, agencies j−1 and j +1 can together compare the values
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they send and receive to determine the exact value for vj. Secure summation
can be extended to work for an honest majority. Each agency divides vj into
shares. The sum for each share is computed individually. However, the path
used is altered for each share so that no agency has the same neighbor twice.
To compute vj, the neighbors of agency j from every iteration would have to
collude.

2.2 Secure linear regression via secure summation

Suppose the K agencies wish to combine their data to fit a pre-specified linear
regression model,

yi = β0 + xi1β1 + xi2β2 + · · ·+ xipβp + εi, (1)

where f(εi|xi1, . . . , xip) = N(0, σ2) for all observations i = 1, . . . , n. The least

squares estimate for β is of course β̂ = (X
′

X)−1X
′

Y , where

X =















1 x11 . . . x1p

...
...

. . .
...

1 xn1 . . . xnp















, Y =















y1

...

yn















. (2)

When the data are horizontally partitioned across K agencies, each agency a

has na records of X,

Xa =















1 xa
11 . . . xa

1p

...
. . .

...

1 xa
na1 . . . xa

nap















, Y a =















ya
1

...

ya
na















. (3)

Using (3) and altering indexes as appropriate, we can rewrite (2) in partitioned
form as

X =















X1

...

XK















, Y =















Y 1

...

Y K















. (4)

To compute β̂, it is necessary to compute X
′

X and X
′

Y . Each agency a can
compute locally its own (Xa)

′

Xa and (Xa)
′

Y a. Since X
′

X =
∑K

a=1(X
a)

′

Xa

and X
′

Y =
∑K

a=1(X
a)

′

Y a, the results can be added entry-wise using secure
summation to yield X

′

X and X
′

Y , which then can be shared among all the
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agencies. This provides all the pieces necessary for each agency to compute β̂.
The estimate of σ2 also can be computed securely.

It is possible to share via secure summation statistics useful for model diag-
nostics, including correlations between predictors and the residuals, the co-
efficient of determination R2, and the hat matrix X(X

′

X)−1X
′

. Values of
residuals are risky to share, since they reveal information about the depen-
dent variable. Karr et al. (2004b) describe an approach for simulating plots
of residuals versus predictors that mimic the real-data plots, based on the
techniques of Reiter (2003), which can be used for model diagnostics without
releasing genuine residuals. When model diagnostics indicate lack of fit, the
secure summation protocol is initiated again with adjusted models. However,
running the protocol repeatedly is computationally expensive and generates
additional confidentiality risks.

3 Secure adaptive regression splines

In many datasets, the initial form of the model used in the secure summa-
tion protocol may not adequately describe the data. It is desirable to use
procedures that can fit a variety of data structures with one round of secure
computations. To do this we develop a protocol for secure computations using
adaptive regression splines (Friedman and Silverman, 1989; Friedman, 1991;
Hastie and Tibshirani, 1990; Hastie et al., 2001).

3.1 Adaptive regression splines

For adaptive regression splines, we assume an additive model relating the
response to the predictors,

yi = f1(xi1) + f2(xi2) + · · ·+ fp(xip) + εi, (5)

where E(εi|xi1, . . . , xip) = 0 for i = 1, . . . , n. The fj are piecewise linear func-
tions joined continuously at points called knots. When the number and loca-
tion of the knots are specified, the model is essentially a linear regression with
predictors corresponding to the piecewise linear functions of X. Arbitrarily se-
lecting the knots, however, can degrade performance of the regression splines:
too few may not capture the relationship and too many may lead to over-
fitting. Therefore, it is common to select the knots based on the data values,
which is the idea of adaptive regression splines.

We utilize multivariate adaptive regression splines (Friedman, 1991), abbrevi-
ated as MARS, to select the knots. To simplify explanation, we do not include
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interactions among predictors, although this is straightforward to implement.
The resulting version of MARS is equivalent to the TURBO procedure of
Friedman and Silverman (1989).

For j = 1, . . . , p, let Xj = {x1j , . . . , xnj} be the vector of data for variable
xj. For i = 1, . . . , n and j = 1, . . . , p, let λij be a vector of length n with
each element equal to xij. We form the collection of all piecewise linear basis
functions,

BF = {(Xj − λij)+, (λij − Xj)+ : i = 1 . . . , n; j = 1, . . . , p}. (6)

The “+” denotes the positive part of the expression, and negative differences
are set to zero.

Given some full rank subset of basis functions B ⊂ BF , the linear predictor
in (5) can be written as

E(y|x1, x2, . . . xp) = β0 +
p

∑

j=1

B′
j(xj)βj (7)

where Bj and βj are, respectively, the vectors of basis functions and parameters
associated with xj. The βj are estimated with (B

′

B)−1B
′

Y .

The key is to select the knots from the very large set BF , which can be done
in a stepwise manner as suggested by Friedman (1991). Beginning with the
intercept-only model, use a forward stepwise selection procedure to select ba-
sis functions from BF until a pre-specified number of terms, T are added. The
value of T is chosen to be large, so that the end model tends to over-fit the
data. Perform backwards elimination steps until returning to the intercept-
only model, dropping the knot at each stage that produces the smallest in-
crease in residual error. This produces a sequence of T estimated models. The
final model is the one that minimizes a generalized cross-validation criterion.

3.2 Secure MARS

For horizontally partitioned confidential data, it is not possible to construct
BF . It requires all observed predictor values, which amounts to the K agencies
sharing and revealing their data values. We propose an approximation to the
stepwise MARS procedure that circumvents this issue.

The protocol is as follows. First, each agency uses the forward and backwards
steps of MARS to determine the optimal set of knots for its own data, {λa},
for a = 1 . . . , K. Second, the agencies share their optimal knot values with
each other, forming the superset of knots Λ = {λ1, . . . , λK}. This can be done
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directly or, for an extra layer of confidentiality, via secure data integration
(Karr et al., forthcoming), which enables agencies to share knots without
revealing the source agency of each knot. Third, each agency constructs its
basis matrix Ba, where

Ba = {(Xa
j − λij)+, (λij − Xa

j )+ : λij ∈ Λ}. (8)

Fourth, using the basis matrices (B1, . . . , BK), the agencies use the secure
regression protocol of Section 2.2 to compute (B

′

B)−1B
′

Y , where

B =















B1

...

BK















, Y =















Y 1

...

Y K















. (9)

Finally, the agencies use a backwards selection to select the final model, for
example using an AIC or BIC criteria that penalizes for the number of knots.
These criteria values can be computed separately by each agency—after they
share Y

′

Y using secure summation—without additional rounds of secure sum-
mation, because the coefficients from any sub-model can be obtained from the
appropriate sub-matrices of B

′

B and B
′

Y .

The protocol requires some additional features to ensure full rank compu-
tations. When two or more agencies come up with a repeated knot value,
only one of them is kept by the collective. Similarly, when any xj is split at
(xj − λij)+ and at (λij − xj)+ by different agencies, only one of these pair-
wise basis functions can be included in B when both pairs of another knot
λhj, h 6= i, are selected for xj. These features can be coded in the backward
elimination algorithm.

Because knot values are released without ties to identifiers, the risks to data
confidentiality from releasing knot values should be low. If any agency fears
that a record could be identified by the release of one of its data values as
a knot, the agency could choose not to release that knot. Releasing nearby
values, or possibly adding fictitious knots to make it hard to determine whether
all released knots are genuine values, may preserve the utility of the regression
spline and protect that record’s confidentiality.

4 Illustrative simulation

We illustrate secure MARS using the ozone data used by Friedman and Sil-
verman (1989). The data comprise measurements on ground level ozone con-
centrations and meteorological variables taken on 330 days in the Los Angeles
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Table 1
Description of variables used in illustrative simulation

Name Description

day the day of the year

dpg the pressure gradient (mm Hg)

hum: the humidity (in percent)

ibh the inversion base height (feet)

ibt the inversion base temperature (degrees F)

temp the temperature (degrees F)

vh altitude at which the pressure is 500 millibars

vis the visibility (miles)

wind the wind speed (mph)

basin in 1976. The inferential goal is to predict ground ozone level from nine
explanatory variables. The predictors are described in Table 1. Their rela-
tionships with the response variable are displayed in Figure 1. Most of the
relationships between the response and the predictors are nonlinear, so that
multiple linear regression using the original explanatory variables is likely to
yield poor predictions.

Although these data were originally collected as one dataset, we use them to
simulate a horizontally partitioned data setting. We create K = 3 agencies,
each of which has 100 randomly partitioned observations. The remaining 30
observations are not used to fit the regressions; rather, we use them as an eval-
uation dataset for comparisons of the methods. We examine the performance
of the secure linear regression of Karr et al. (2004b), the secure adaptive re-
gression spline using both AIC and BIC for backwards elimination, and the
adaptive regression spline obtained from the combined data assuming no confi-
dentiality restrictions. All computations involving MARS are performed using
the mda package in the statistical software R.

Table 2 displays the sum of squared errors based on the training sample and
the evaluation sample for two replications of this simulation, with two different
partitions and evaluation samples. As expected, the secure linear regression
results in the highest prediction errors. The secure regression splines outper-
form the secure linear regression. They even predict reasonably well relative to
using MARS on the combined data. Further replications verified the superior
performance of the secure splines over secure linear regression.
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Fig. 1. Relationships between response and predictors in the air pollution data
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Table 2
Sums of squared errors after using secure regression and secure splines in ozone data

First replication Second replication

Training Evaluation Training Evaluation

Secure linear regression 5638 709 5864 475

Secure splines, AIC 3611 506 3762 369

Secure splines, BIC 3773 510 3899 393

Spline on full data 3870 609 3849 358

5 Discussion

The secure regression spline protocol provides a flexible, semi-automatic way
to implement secure regression in horizontally partitioned data. It reduces
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the reliance on model pre-specification, which can be problematic in secure
contexts because agencies cannot explore the combined dataset to search for
good-fitting models. Hence, when relationships are suspected to be non-linear,
agencies are likely to be better off using secure adaptive regression splines over
secure linear regression.

The approach presented here focuses on point estimates of predictions. Interval
estimates are also desirable. One approach is to generate many bootstrapped
datasets, run the protocol on each dataset, then compute prediction intervals
from the bootstrapped predictions. This requires repeated applications of the
protocol, which are computationally expensive and risky from a confidentiality
standpoint.

Secure regression in the vertically partitioned data setting—when data own-
ers possess different variables on the same subjects—faces similar model pre-
specification dilemmas. Implementing a secure regression spline for vertically
partitioned data is more complicated than for horizontally partitioned data,
as there are no obvious starting points for the knots. Given the existence
of other algorithms for vertically partitioned data, this is a topic worthy of
further research.
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