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Università de Valencia, Duke University, General Motors, Universidad de Castilla-La Mancha, Duke

University, Universidad Rey Juan Carlos, General Motors, Technical University of Lisbon, National

Institute of Statistical Sciences, Massey University

November 8, 2006

Abstract

A key question in evaluation of computer models is Does the computer model ade-
quately represent reality? A six-step process for computer model validation is set out
in Bayarri et al. (2005a) (and briefly summarized below), based on comparison of com-
puter model runs with field data of the process being modeled. The methodology is
particularly suited to treating the major issues associated with the validation process:
quantifying multiple sources of error and uncertainty in computer models; combining
multiple sources of information; and being able to adapt to different – but related –
scenarios.

Two complications that frequently arise in practice are the need to deal with highly
irregular functional data and the need to acknowledge and incorporate uncertainty in
the inputs. We develop methodology to deal with both complications. A key part of the
approach utilizes a wavelet representation of the functional data, applies a hierarchical
version of the scalar validation methodology to the wavelet coefficients, and transforms
back, to ultimately compare computer model output with field output. The generality
of the methodology is only limited by the capability of a combination of computational
tools and the appropriateness of decompositions of the sort (wavelets) employed here.

The methods and analyses we present are illustrated with a test bed dynamic stress
analysis for a particular engineering system.
Keywords and phrases: Computer models; Validation; Functional data; Bias; Bayesian
analysis; Uncertain inputs.
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1 Introduction

1.1 Validation Framework

Bayarri et al. (2005a) described a general framework for validation of complex computer
models and applied the framework to two examples involving scalar data. The framework
consists of a six-step procedure to treat the combined calibration/validation process, and
to assess the possible systematic differences between model outcomes and test outcomes
(so-termed biases), by estimating these biases along with uncertainty bounds for these
estimates. The six-steps are (1) defining the problem (inputs, outputs, initial uncertainties);
(2) establishing evaluation criteria; (3) designing experiments; (4) approximating computer
model output; (5) analyzing the combination of field and computer run data; (6) feeding-
back to revise the model, perform additional experiments, etc. Bayarri et al. (2005b)
generalized this work to the situation of smooth functional data, arising within a hierarchical
structure.

This paper is an extension of Bayarri et al. (2005a), motivated by methodological needs
in analyzing a computer model for analyzing stress on an engineering system, a vehicle
suspension system, subject to forces over time (the test bed problem is described in the
following section). This involves the following important – and technically challenging –
problems that greatly widen the applicability of the six-step strategy.

Problem 1 – Irregular Functional Output: In Bayarri et al. (2005a), examples in-
volved real-valued model outputs; in Bayarri et al. (2005b), outputs were smooth
functions that could be handled by the simple device of including the function argu-
ment (time) as an input of the system. In many engineering scenarios with functional
output, functions are not smooth, and adding the function variable to the list of in-
puts can result in a computationally intractable problem. This is so in the test bed
problem, for instance, with typical irregular functional data indicated in Figure1.

Problem 2 – Uncertainty in Inputs: A second ubiquitous problem in engineering sce-
narios is that (unmeasured) manufacturing variations are present in tested compo-
nents; incorporating this uncertainty into the analysis can be crucial.

Problem 3 – Prediction in Altered or New Settings: The point of computer model-
ing in engineering contexts is typically to allow use of the computer model to predict
outcomes in altered or new settings, for which no field data are available. We consider
several approaches to this problem.
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1.2 Background and Motivation

General discussions of the entire Validation and Verification process can be found in Roache
(1998), Oberkampf and Trucano (2000), Cafeo and Cavendish (2001), Easterling (2001),
Pilch et al. (2001), Trucano et al. (2002), and Santner et al. (2003). We focus here on the
last stage of the process: assessing the accuracy of the computer model in predicting reality,
and using both the computer model and field data to make predictions, especially in new
situations.

Because a computer model can virtually never be said to be a completely accurate
representation of the real process being modelled, the relevant question is “Does the model
provide predictions that are accurate enough for the intended use of the model?” Thus
predictions need to come with what were called tolerance bounds in Bayarri et al. (2005a),
indicating the magnitude of the possible error in prediction. This focus on giving tolerance
bounds, rather than stating a yes/no answer as to model validity, is important for several
reasons: (i) Models rarely give highly accurate predictions over the entire range of inputs of
possible interest, and it is often difficult to characterize regions of accuracy and inaccuracy;
(ii) The degree of accuracy that is needed can vary from one application of the computer
model to another; (iii) Tolerance bounds account for model bias, the principal symptom of
model inadequacy – accuracy of the model cannot simply be represented by a variance or
standard error.

The key components of the approach outlined here are the use of Gaussian process
response-surface approximations to a computer model, following on work in Sacks et al.
(1989), Currin et al. (1991), Welch et al. (1992), and Morris et al. (1993), and introduction
of Bayesian representations of model bias and uncertainty, following on work in Kennedy
and O’Hagan (2001) and Kennedy et al. (2002). A related approach to Bayesian anal-
ysis of computer models is that of Craig et al. (1997), Craig et al. (2001), Goldstein and
Rougier (2003) and Goldstein and Rougier (2004), which focus on utilization of linear Bayes
methodology.

1.3 Overview

Section 2 describes the test bed example and associated data. Section 3 has the formulation
of the statistical problem and assumptions that we make for the analysis. In Section 4 we
set down the methods of analysis with the results in Section 5. Most of the details of
computations are relegated to the Appendices.
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2 The Test Bed

The test bed case study is about predicting loads resulting from stressful events on a vehicle
suspension system over time e.g., hitting a pothole. In the initial part of the study there
are seven unmeasured parameters of the system with specified nominal (mean) values xnom

(referred to later on as Condition A) and unknown manufacturing variations, δ∗. There are
other relevant parameters that are known and fixed and hence not part of the experiments.

Field data are obtained by driving a vehicle over a proving ground course and recording
the time history of load at sites on the suspension system. The curves must be registered
(Appendix B) to assure that peaks and valleys occur at the same place.

In addition, there is a computer model aimed at producing the same response. The
computer model is a so-termed ADAMS model, a commercially available, widely used finite-
element based code that analyzes complex dynamic behavior (e.g., vibration, stress) of
mechanical assemblies. The computer model has within it two calibration parametters u∗ =
(u∗1, u

∗
2) quantifying two different types of damping (unknown levels of energy dissipation)

that need to be estimated (or tuned) to produce a matching response.
For proprietary reasons the specific parameters are not fully described – they include

characteristics of tires, bushings and bumpers as well as vehicle mass. In addition, the
values assigned to these parameters are coded on a [0,1] scale and the ouput responses
are also coded. In the coded scale the fixed values of xnom are all 0.50. The uncertainty
ranges for the nine parameters were elicited through extensive discussion with engineers and
modelers; they are given in Table 1, the so-termed Input/Uncertainty map (Bayarri et al.,
2005a). Along with the ranges, prior distributions were elicited for (u∗, δ∗) in section 3.4.

Parameter Type Uncertainty Range

Damping1 Calibration [0.125, 0.875]

Damping2 Calibration [0.125, 0.875]

x1 Nominal+Variation [0.1667, 0.8333]

x2 Nominal+Variation [0.1667, 0.8333]

x3 Nominal+Variation [0.2083, 0.7917]

x4 Nominal+Variation [0.1923, 0.8077]

x5 Nominal+Variation [0.3529, 0.6471]

x6 Nominal+Variation [0.1471, 0.8529]

x7 Nominal+Variation [0.1923, 0.8077]

Table 1: I/U Map. Uncertainty ranges for calibration parameters and parameters subject
to manufacturing variation.
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Field data:
In the initial study with Condition A inputs a single vehicle was driven over a proving

ground course seven times. The recorded field data consist of the time history of load at
two sites on the suspension system. Plots of the output for Site 1 can be seen in Figure
1 for two of the time periods of particular interest. Thus there are seven replicates and a
single xnom in the field data.

Computer model runs:
A typical model run for the test bed example takes one hour, limiting the number of runs

that can feasibly be made. To select which runs to make we adopted the design strategy
used in Bayarri et al. (2005a):

The 9-dimensional rectangle defined by the ranges of the parameters in Table 1 is first
transformed into the 9-dimensional unit cube. We then selected a 65 point Latin Hyper-
cube Design (LHD) using code by W. Welch that finds an approximately maximin LHD.
Appendix A provides the design points as well as a 2-dimensional projection of the design
(the other 2-dimensional projections look alike). In addition, we added a point at the cen-
ter (0.5,...,0.5), the nominal values. One run failed to converge and was deleted from the
experiment leaving a total of 65 design points.

3 Formulation, Statistical Model and Assumptions

3.1 Formulation

Given a vector of inputs, x = (x1, . . . , xd), to a time-dependent system, denote the “real”
response over time t as yR(x; t). Field measurement of the real response has error and we
write the rth replicate field measurement as

yF
r (x; t) = yR(x; t) + εr(t) (1)

where the εr(·)’s are independent mean zero Gaussian processes (described below). Some
inputs may also have error; we take that into account below.

In addition, there is a computer model aimed at producing the same response. The
computer model may have within it calibration/tuning parameters u = (u1, . . . , um) that
need to be estimated (or tuned) to produce a matching response. The model output is then
of the form yM (x, u; t); it is affected by u but the real response, yR, is not. The connection
between model output and reality is then expressed in
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Figure 1: Model output (bottom) and registered field output (top) for Site 1 at Region 1
(left) and Region 2 (right). Vertical lines indicate the reference peak locations.

yR(x; t) = yM (x, u∗; t) + b(x; t) , (2)

where u∗ is the true value of the (vector) calibration parameter; yM (x, u∗; t) is the model
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response at time t and the true value of u; and b(x; t), defined by subtraction, is the
associated bias. In situations where u is a tuning parameter there is no “true value” so u∗

should be thought of as some type of fitted value of u, with the bias defined relative to it.
These two equations, (1) and (2) describe the calibration/validation structure we ad-

dress. Data from the field and from the computer model runs provide information for
estimating the unknowns in equation (1) and (2). The Bayesian analysis we employ takes
note of the fact, as in Bayarri et al. (2005a), that the unknowns u∗ and the bias are not
statistically identifiable and, consequently, specification of their prior distributions is of
particular importance for the analysis.

Inputs: Some inputs may be specified or physically measured with essentially perfect
accuracy. Those that remain fixed for both field data and model runs play no further
role and are not part of x. Other (unmeasured) inputs will have specified nominal values
(generally, they will vary in the experiments) that are subject to manufacturing variation
with specified distributions. We write these as

x = xnom + δ , (3)

where xnom is the known nominal value and the distribution of the manufacturing variation
δ can be specified. In effect this transforms (2) into

yR(xnom + δ∗; t) = yM (xnom + δ∗, u∗; t) + b(xnom + δ∗; t)

where δ∗ is the actual (unknown) value of δ. The parameters δ are like calibration param-
eters in that they are unknown but physically real.

The Unknowns: Prior to making computer runs or collecting field data, the unknowns
in equation (1) and (2) are

(
yM , u∗, δ∗, b, Vε

)
, where Vε is the covariance function of ε. A

full Bayesian analysis would contemplate placing priors on these unknowns and, given field
data and model runs, produce posterior distributions. But the complexity (for example,
of irregular functional output) and high-dimensionality militate against such a strategy
unless simplifications can be made. One such is the use of a basis representation of the
functional data. In particular, to handle the irregular functions, we will consider wavelet
decompositions. Other settings may allow different representations such as Fourier series
or principal components (Higdon et al., 2007).

3.2 Wavelet decomposition

The nature of the functions in Figure 1, for example, suggests that wavelet decomposition
would be a suitable basis representation (see Vidakovic (1999); Müller and Vidakovic (1999)
and Morris et al. (2003) are among other references with applications related to ours).
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The wavelet decomposition (more details are in Appendix B) we use for yM is of the
form

yM (x,u; t) =
∑

i

wM
i (x,u)Ψi(t) (4)

where the wavelet basis functions Ψi(t) are default choices in R wavethresh (Daubechies
wavelets of index 2; for simplicity of notation, we include the scaling function as one of the
basis elements). Similarly, the field curves (rth replicate) are represented as

yF
r (x; t) =

∑

i

wF
ir(x)Ψi(t) . (5)

A thresholding procedure, used to produce a manageable number of coefficients while main-
taining adequate accuracy, leads to the approximations

yM (x,u; t) =
∑

i∈I

wM
i (x,u)Ψi(t)

yF
r (x; t) =

∑

i∈I

wF
ir(x)Ψi(t) . (6)

(The accuracy of the approximations using the reduced set of elements for the test bed
problem is indicated in Figure 2.)

We also assume that reality and the bias function can be accurately represented by the
same basis elements, and write

yR(x; t) =
∑

i∈I

wR
i (x)Ψi(t)

b(x; t) =
∑

i∈I

wb
i (x)Ψi(t) . (7)

Matching coefficients and using equation (1) and (2) we get

wR
i (x) = wM

i (x, u∗) + wb
i (x) ∀i ∈ I , (8)

wF
ir(x) = wR

i (x) + εir ∀i ∈ I . (9)

We assume that the measurements errors, εir, in the wavelet domain are normally dis-
tributed with mean zero and are independent across replications r, a standard assumption.
We also assume that, across i, they are independent normally distributed with mean 0 and
possibly differing variances σ2

i . This independence assumption is imposed so that later com-
putations are feasible. That might seem unrealistic, given that the seven residual functions
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Figure 2: The original curve and wavelet reconstructed curve for the first field-run at Site
1.

(yF
r (x; t)− ȳF

r (x; t)) – shown in the left hand side of Figure 3 – can be seen to be correlated
in time t, suggesting that the εir should be correlated in i. But, as long as the σ2

i differ,
independent normal εir leads to a Gaussian process with mean zero and covariance function∑

i∈I σ2
i Ψi(t)Ψi(t′). The right hand side of Figure 3 gives seven realizations of this process,

with the σ2
i being estimated by the usual unbiased estimates, based on the replicates. The

correlation patterns of the two processes are quite similar.
Our approach is to analyze each of the retained wavelet coefficients, in equation (8) and

(9), and recombine them to obtain estimates and uncertainties for the “original” functions,
in equation (1) and (2).

3.3 GASP Approximation

For yM , the wavelet coefficients are functions of (x, u). Because we cannot freely run the
computer model for every (x, u) we approximate each of the retained coefficients using
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Figure 3: The seven residual field processes (left) and seven simulated error processes (right).

data from computer runs. Formally, we start with a Gaussian process prior distribution
on a coefficient wM

i (x, u). Given computer model runs, yM (xk, uk), where {(xk, uk), k =
1, . . . , K} are the design points in a computer experiment, we extract the data {wM

i (xk, uk)}
and approximate wM

i (x, u) as the Bayes predictor, the posterior mean, of wM
i (x, u) given

the data.
The Gaussian process priors we use are as in the GASP methodology described in Bayarri

et al. (2005a): Let z = (x, u). For each i ∈ I (the set of retained wavelet coefficients), the
GASP assumption is that wM

i (z) is a Gaussian process with mean µM
i , constant variance

1/λM
i , and correlation function

cM
i (z,z′) = exp


−

nM∑

p=1

βM
ip |zp − z′p|2−αM

ip


 ,

where nM is the number of coordinates in z, the β’s are non-negative parameters and the
α’s are between 0 and 1.

Let θM
i = {µM

i , λM
i , αM

ip , βM
ip ; p = 1, . . . , nM} be the collection of the (hyper) parameters

determining the Gaussian prior distribution of wM
i . To produce the Bayes predictor we

have to deal with the θM
i ’s; we do so in section 4.
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3.4 Other prior specifications

Priors for u∗, δ∗ are context specific. Engineering advice led to adopting uniform priors
for u∗ on their ranges in Table 1. For the manufacturing variations of the unmeasured
parameters in Table 1, the advice led to normal priors with standard deviations equal to
1/6 of the ranges of the uncertainty intervals in Table 1. Specifically,

π(u1) = π(u2) = Uniform on [0.125, 0.875]

π(δ1) = π(δ2) ∼ N(0, 0.11112) truncated to [−0.3333, 0.3333]

π(δ3) ∼ N(0, 0.097232) truncated to [−0.2917, 0.2917]

π(δ4) = π(δ7) ∼ N(0, 0.10262) truncated to [−0.3077, 0.3077]

π(δ5) ∼ N(0, 0.049032) truncated to [−0.1471, 0.1471]

π(δ6) ∼ N(0, 0.11762) truncated to [−0.3529, 0.3529]

The σ2
i are given the usual noninformative priors π(σ2

i ) ∝ 1/σ2
i . Priors for the bias

wavelet coefficients, the
(
wb

i

)
’s, will be Gaussian but restricted to depend only on those

coordinates of xnom that vary in the experiments. Because there is only one xnom in the
test bed experiment, we only consider the case where the

(
wb

i

)
’s are constants, though a

similar approach can be taken for more general settings.
In the wavelet decomposition, each i ∈ I belongs to some resolution level, j(i)(in the

test bed – see Appendix B – the levels go from 0 to 12). It is natural and common to model
wavelet parameters hierarchically, according to their resolution level. The priors for the
biases wb

i at resolution level j are

π(wb
i | τ2

j ) ∼ N
(
0, τ2

j

)
j = 0, . . . , 12 . (10)

This is a strong shrinkage prior, shrinking the biases to zero. One might be concerned with
such strong shrinkage to zero, but the computer modeling world is one in which biases are
typically assumed to be zero, so that utilizing a strong shrinkage prior has the appeal that
any detected bias is more likely to be believed to be real in the community than would
bias detected with a weaker assumption. (Of course, there are also statistical arguments
for using such shrinkage priors.)

The hypervariances τ2
j are assigned a variant of a typical objective prior for hypervari-

ances,

π(τ2
j | {σ2

i }) ∝
1

τ2
j + 1

7 σ̄2
j

,

where σ̄2
j = average of σ2

i for i at level j. The σ̄2
j provide a ‘scale’ for the τ2

j and are
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necessary – or at least some constants in the denominators are necessary – to yield a proper
posterior.

4 Estimation and Analysis

We restrict attention, for the most part, to the context of the test bed. It will be clear that
much of what is done can be generalized.

Approximating wavelet coefficients: In Appendix B we find that, for the test bed, there
are 289 wavelet coefficients, wM

i , to be treated. The Gaussian prior for each has 20 hyper-
parameters (coordinates of θM

i ). A full Bayesian treatment would then require treatment
of 5780 parameters, an infeasible task. Instead, we treat each coefficient separately and
estimate each θM

i by maximum likelihood based on the model-run data wM
i = {wM

i (zk)},
using code developed by W. Welch. Recall that z = (x, u) and denote the kth design point
in the computer experiment by zk. For the test bed there are 65 zk’s.

Letting θ̂
M

i = {µ̂M
i , λ̂M

i , α̂M
ip , β̂M

ip ; p = 1, . . . , nM} be the maximum likelihood estimates
of the θ’s, it follows that the GASP predictive distribution of wM

i (z) at a new z is

wM
i (z) | wM

i , θ̂
M

i ∼ N(m̂M
i (z), V̂ M

i (z)) , (11)

where

m̂M
i (z) = µ̂M

i + γ̂M
i (z)′(Γ̂

M

i )−1(wM
i − µ̂M

i 1)

V̂ M
i (z) =

1

λ̂M
i

− γ̂M
i (z)′(Γ̂

M

i )−1γ̂M
i (z) ,

with 1 the vector of ones, Γ̂
M

i (65× 65 in the test bed example) the covariance matrix for
the model-run data wM

i estimated by plugging-in θ̂
M

i , and

γ̂M
i (z) = (1/λ̂M

i )(ĉM
i (z1, z), . . . , ĉM

i (zk,z))′ ,

where ĉ is the estimated correlation function. For the rest of the paper we will use equation
(11) as the definition of the GASP predictive distribution.

Full justification of the use of the plug-in maximum likelihood estimates for the pa-
rameters θM

i is an open theoretical issue. Intuitively, one expects modest variations in pa-
rameters to have little effect on the predictors because they are interpolators. In practice,
“studentized” cross-validation residuals (leave-one-out predictions of the data normalized
by standard error) have been successfully used to gauge the “legitimacy” of such usage (for
examples and additional references see Schonlau and Welch (2005) and Aslett et al. (1998)).
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Only recently, Nagy (2006) has reported simulations indicating reasonably close prediction
accuracy of the plug-in MLE predictions to Bayes (Jeffrey priors) predictions in dimensions
1-10 when the number of computer runs = 7×dimension.

All α’s and β’s are graphed in Figure 4. A β near zero corresponds to a correlation near
one, and hence a function that is quite flat in that variable. An α near zero corresponds to
a power of two in the exponent of the correlation, suggesting smooth functional dependence
on that variable. Interestingly, for most of the pairs (α, β), one or the other is near zero.
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Figure 4: (α, β) for all the wavelet coefficients and for each input variable

The Posterior Distributions: Restricting to the test bed problem we simplify the nota-
tion by referring only to δ, the deviation of x from the nominal inputs xnom, and rewrite
equation (8) and (9), ∀i ∈ I, as

wR
i (δ∗) = wM

i (δ∗, u∗) + wb
i

wF
ir(δ

∗) = wR
i (δ∗) + εir , (12)

where the εir are independent N
(
0, σ2

i

)
.
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The field data can be summarized (and simplified) by using the (independent) sufficient
statistics

w̄F
i =

1
7

7∑

r=1

wF
ir(δ

∗) , s2
i =

7∑

r=1

(wF
ir(δ

∗)− w̄F
i )2 .

(We drop the argument δ∗ for these statistics, since the statistics are actual numbers given
from the data.) Key facts to be retained, using equation (11) and (12) and properties of
normal distributions:

s2
i

σ2
i

| σ2
i ∼ χ2

6 ,

w̄F
i | wM

i (δ∗, u∗), wb
i , σ

2
i ∼ N

(
wM

i (δ∗, u∗) + wb
i ,

1
7
σ2

i

)
,

w̄F
i | δ∗, u∗, wM

i , wb
i , σ

2
i ∼ N

(
m̂M

i (δ∗, u∗) + wb
i , V̂

M
i (δ∗,u∗) +

1
7
σ2

i

)
, (13)

where (11) is used to get the last expression.
Let wb, τ 2, σ2, δ∗, and u∗ denote the vectors of the indicated parameters and write

their prior distribution as

π(wb, τ 2, σ2, δ∗, u∗) = π(wb | τ 2)× π(τ 2, δ∗, u∗ | σ2)× π(σ2) (14)

=
∏

i∈I

π
(
wb

i | τ2
j(i)

)
×




12∏

j=0

π
(
τ2
j | {σ2

i }
) 7∏

i=1

π(δ∗i )
2∏

i=1

π(u∗i )


×

∏

i∈I

π(σ2
i ) .

The data, from field and computer model runs, can be summarized as D = {w̄F
i , s2

i ,w
M
i ; i =

1, . . . , 289}. Using equation (11), (13) (10) and (14), together with standard computations
involving normal distributions, it is straightforward to get the posterior distribution of all
unknowns as

πpost(wM (δ∗, u∗), wb, δ∗,u∗, σ2, τ 2 | D) = πpost(wM (δ∗,u∗) | wb, δ∗, u∗, σ2, D)

×πpost(wb | δ∗, u∗, σ2, τ 2, D)× πpost(δ∗,u∗, τ 2 | σ2, D)× πpost(σ2 | D) , (15)

where

πpost(wM (δ∗,u∗) | wb, δ∗, u∗, σ2, D) ∼
∏

i∈I

N(m1i, V1i) ; (16)

m1i =
V̂ M

i (δ∗,u∗)
V̂ M

i (δ∗,u∗) + 1
7 σ2

i

(w̄F
i − wb

i ) +
1
7 σ2

i

V̂ M
i (δ∗,u∗) + 1

7 σ2
i

(m̂M
i (δ∗, u∗))

V1i =
V̂ M

i (δ∗,u∗) 1
7 σ2

i

V̂ M
i (δ∗, u∗) + 1

7 σ2
i

,
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and

πpost(wb | δ∗,u∗, σ2, τ 2, D) ∼
∏

i∈I

N(m2i, V2i) ;

m2i =
τ2
j(i)

V̂ M
i (δ∗,u∗) + 1

7σ2
i + τ2

j(i)

(w̄F
i − m̂M

i (δ∗, u∗)) ; (17)

V2i =
τ2
j(i)(V̂

M
i (δ∗, u∗) + 1

7σ2
i )

V̂ M
i (δ∗, u∗) + 1

7σ2
i + τ2

j(i)

.

The third factor in (15) is

πpost(δ∗, u∗, τ 2 | σ2, D) ∝ L(wF , s2 | δ∗, u∗,σ2, τ 2)× π(δ∗, u∗, τ 2 | σ2, ) , (18)

where the marginal likelihood, L, found by integrating out wb and wM (δ∗, u∗) in the product
of the full likelihood and π(wb | τ 2), is

L(wF , s2 | δ∗,u∗, σ2, τ 2) =
∏

i∈I

1√
V̂ M

i (δ∗, u∗) + 1
7σ2

i + τ2
j(i)

× exp

{
−1

2

(
(w̄F

i − m̂M
i (δ∗, u∗))2

V̂ M
i (δ∗, u∗) + 1

7σ2
i + τ2

j(i)

)}
.

Finally, the fourth factor in (15) is

πpost(σ2 | D) ∝
[∏

i∈I

1
(σ2

i )3
exp

{
− s2

i

2σ2
i

}]∫
L(wF , s2 | δ∗,u∗, σ2, τ 2) dδ∗ du∗ dτ 2 . (19)

At this point we make an approximation, and ignore the integral in (19); i.e., we simply
utilize the replicate observations to determine the posteriors for the σ2

i . The reason for this
is not computational; indeed, one can include the σ2

i in the posterior in (18) and deal with
them by a Metropolis algorithm. Instead, the motivation is what we call modularization,
which is meant to indicate that it can be better to separately analyze pieces of the problem
than to perform one global Bayesian analysis. The difficulty here is that there is a signifi-
cant confounding in the posterior distribution between the calibration parameters, the bias
function, and the σ2

i and this, for instance, allows bias to be replaced by larger σ2
i . Here we

have seven replicate observations for each σ2
i , so simply utilizing the replicate observation

posteriors and preventing the confounding has intuitive appeal. (Formalizing this argument
is not so easy. The difficulty occurs because part of the model – the modeling of the bias
– is quite uncertain. Better or more robust modeling of the bias may correct the problem

15



within a full Bayesian analysis, but the difficulty of doing so argues for the simpler modular
approach. We will discuss these issues more fully elsewhere.)

Simulating from equation (16) and (17) and the first factor of (19) is, of course, trivial,
but simulating from equation (18) requires MCMC methodology. Given the complexity of
the problem, the MCMC requires careful choice of proposal distributions in order to achieve
suitable mixing. Discussion of these proposals is relegated to Appendix C because of the
level of detail needed to describe them, but we note that these are technically crucial for
the methodology to work and required extensive exploration.

The end result of the simulation is a sample of draws from the posterior distribution in
equation (15): each saved draw from the first factor of (19) is used to generate the MCMC
sample for the third factor, with both being used to generate a draw from the second and
the first factors, using equations (16) and (17). We saved every 200th draw from 200,000
MCMC iterations for the third factor, thereby obtaining a final sample of 1000 draws

{wM,h(δ∗h,u∗h), wbh, δ∗h,u∗h, σ2h, τ 2h;h = 1, . . . , 1000} . (20)

The results below are based on this sample from the posterior.

5 Results

5.1 Estimates of δ∗,u∗

Histograms for δ∗,u∗ (Figure 5) are obtained by forming a histogram for each component
of δ∗, u∗ from the corresponding elements in equation (20). The calibration parameters are
moderately affected by the data but, of the input variables, only x5 and x6 have posteriors
that are significantly different than the priors. The posterior for x5 is piled up at the end
of the allowed range for the variable, which suggests the (undesirable) possibility that this
uncertain input is being used as a tuning parameter to better fit the model; a case could
be made for preventing this by additional modularization.

5.2 Estimation of Bias and Reality

Posterior distributions of the bias and reality curves are obtained by recombining the
wavelets with the posterior wavelet coefficients from equation (20). For instance, the pos-
terior distribution of b is represented by the sample curves

bh(t) =
∑

i∈I

wbh
i Ψi(t); h = 1, . . . , 1000 . (21)
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Figure 5: Histogram of the posterior draws for the input and calibration parameters with
their priors (solid lines).

The posterior mean curve, b̂(t) = 1
1000

∑1000
h=1 bh(t), is plotted as the solid line in Figure 6.

The uncertainty of this estimate of b is quantified by producing upper and lower uncertainty
(tolerance) bounds at each t by, for example, taking the lower α/2 and upper 1 − α/2
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quantiles of the posterior distribution of b(t) i.e.,

Lb(t) =
α

2
quantile of {bh(t);h = 1, . . . , 1000}

U b(t) =
(
1− α

2

)
quantile of {bh(t);h = 1, . . . , 1000}. (22)

These lower and upper bounds are also plotted in Figure 6. It is apparent in Figure 6 that
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Figure 6: The estimate of the bias function (solid line) with 90% tolerance bounds (dashed
lines) for Suspension Site 1 and at Region 1.

the bias function is significantly different from 0 especially in the neighborhood of 8.7 and
9.1.

The bounds in equation (22) are symmetrically defined. Alternative tolerance bounds
can be defined by only requiring that 100α% of the curves lie outside the bounds; a useful
choice would satisfy this condition and minimize the width of the bounds: U b(t)− Lb(t).

Figures 5 and 6 provide marginal distributions of u∗, xnom + δ∗ and the bias, but it is
important to note that these are highly dependent in the posterior. Hence most analyses
involving these quantities must be based on their joint, rather than marginal, distributions.
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Estimating reality with uncertainty bounds is done similarly: take the sample of wavelet
coefficients wRh

i = wMh
i (δ∗h,u∗h) + wbh

i and form

yRh(t) =
∑

i

wRh
i Ψi(t), ŷR(t) =

1
1000

∑

h

yRh(t) ,

LR(t) =
α

2
quantile of {yRh(t);h = 1, . . . , 1000} ,

UR(t) =
(
1− α

2

)
quantile of {yRh(t);h = 1, . . . , 1000} . (23)

We call ŷR(t) the bias-corrected prediction of reality. Figure 7 exhibits the bias-corrected
prediction and associated uncertainty band.

Figure 7 further shows a comparison between bias-corrected prediction and pure model
prediction, the latter being defined as follows:

ŷM (t) =
∑

i

m̂M
i

(
δ̂, û

)
Ψi(t) , (24)

where δ̂ = 1
1000

∑
h δ∗h and û = 1

1000

∑
h u∗h and m̂M

i

(
δ̂, û

)
is the posterior mean of the

wavelet coefficients with plugged-in estimates for the unknown parameters (use equation
(11)).

In practice, it may be that running the computer model after estimating δ∗, u∗ is
feasible. Then an alternative (and preferred) pure model prediction is yM (δ̂, û; t).

Assessing the uncertainty for predicting reality of the pure model prediction (equation
(24)) can be done by considering samples {yRh(t) − ŷM (t)} and forming bounds. If a new
model run producing yM (δ̂, û; t)) is used instead, then the computation should be redone
with this additional model run included, but a typically accurate approximation is to simply
consider {yRh(t) − yM (δ̂, û; t)} and proceed as before. Here it may be useful to consider
asymmetric bounds because the pure model predictions may lie entirely above or below the
realizations of reality. But plots like that of Figure 7 already show the gap between pure
model prediction and reality.

5.3 Predicting a New Run; Same System, Same Vehicle (new run)

In some prediction settings, not necessarily the one of the test bed, there is interest in
predicting a new field run with the same inputs (and the same system). Prediction is
done by adding in draws, εh

i , from a N(0, σ2h
i ) distribution and then following the same

prescription as in equation (23) to form ŷF (t) and corresponding uncertainty bounds. This,
of course, produces wider uncertainty bounds.
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Figure 7: Bias-corrected prediction of reality (solid black line) with 90% tolerance bands
(dashed black lines), pure model prediction (solid grey line), and field runs (solid yellow
lines).

5.4 Extrapolating

There are many follow-on settings where prediction is called for. We single out three such:
(i) the same vehicle except that xnom changes; (ii) same vehicle type but new components
that is, same nominal values and prior distributions for the manufacturing variations but
a new realization of the δ’s from the prior distribution; (iii) new vehicle: different nominal
(x1, . . . , x7) inputs, but the same prior distributions for the δ’s.

Any analysis we perform is severely constrained by the fact that we have limited field
data on one set of inputs measured with error.

5.4.1 Same Vehicle, Different Load

Here the same system was tested with the same vehicle but with added mass. This causes a
known change in xnom, with everything else (including the δ’s) remaining unchanged. The
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effect of a simple change in inputs such as this can be addressed using the difference in
computer model runs at the nominal values of the inputs. More formally, suppose we add
a computer model run at (xnom + ∆, unom) where ∆ is the modest change in the nominal
inputs (∆ has only one non-zero coordinate if the only change is in the mass). Suppose we
also have a run at the old nominals (xnom, unom) ?− if not, use the GASP prediction based
on the existing runs. Our assumption then is that (with x∗ referring to the true unknown
input values for the original system)

yM (x∗ + ∆, u∗; t)− yM (x∗, u∗; t) ' yM (xnom + ∆, unom; t)− yM (xnom,unom; t) ≡ D(t).

We can then make predictions under the new inputs by simply adding D(t) to the old
predictions.

This is illustrated in Figure 8; the given bias corrected prediction and tolerance bands
for the system with the additional mass is simply the results of Section 5.3 translated by
D(t); The grey solid line is pure model prediction. The yellow line is the actual result from
a field test of the system with added mass, and the strategy appears successful in the critical
Region 1.
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Figure 8: Prediction at Site 1 for both Regions 1 (left) and 2 (right) for a run with additional
mass. Solid black line is bias-corrected prediction, dashed black lines are 90% tolerance
bands, grey line is pure model prediction, and the field run is the yellow line.
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5.4.2 New Vehicle of Same Type

In this setting the nominal values xnom remain the same but the new δ’s are random draws
from their prior (population) distribution and are therefore different than those for the
field-tested system. This is of particular interest in practice, in that it is prediction for the
population of vehicles of the given type that is of prime interest, rather than just prediction
for the single system/vehicle tested.

The calibration parameters u∗ do not change; they belong to the model and, if phys-
ically real, are inherently the same for all systems/vehicles of the same type. Denote the
parameters of the new components by znew = (xnom + δnew, u∗). The input parameters
of the computer runs remain zk = (xnom + δk, uk); and z∗ = (xnom + δ∗, u∗) are the true
values for the tested system. Denote the associated model wavelet coefficients for the new
components by wM (znew).

Since δnew is independent of (wb, δ∗,u∗, σ2, τ 2, D), the predictive (posterior) distribu-
tion is (with the Li’s denoting likelihood terms arising from the data)

πpost(wM (znew), wM (z∗), wb, δnew, δ∗, u∗,σ2, τ 2 | D) ∝ π(δnew)× π(wb, δ∗,u∗, σ2, τ 2)

× L1(wM (znew), wM (z∗), {wM
i (zk)} | δnew, δ∗, u∗)× L2({w̄i}, {s2

i } | wM (z∗), wb,σ2)

∝ πpost(wM (znew) | wM (z∗), {wM
i (zk)}, δnew, δ∗, u∗)× π(δnew)× π(wb, δ∗, u∗, σ2, τ 2)

× L3(wM (z∗), {wM
i (zk)} | δ∗,u∗)× L2({w̄i}, {s2

i } | wM (z∗), wb, σ2) . (25)

To sample from equation (25), note that the last three factors in the expression yield
exactly the same posterior for (wM (z∗),wb, δ∗,u∗, σ2, τ 2) as before (with the same mod-
ularization used), so the draws from the previous MCMC can be used in the new com-
putations. Since δnew can be drawn from its prior π(δnew), it only remains to draw from
πpost(wM (z) | wM (z∗), {wM

i (zk)}, δnew, δ∗, u∗). But this is simply the GASP distribution
where wM (z∗) has to be added to the model run data. Therefore one simply determines
the GASP for the augmented runs wM0

i = (wM
i (z1), wM

i (z2), . . . , wM
i (zk), wM

i (z∗)), i.e.

wM
i (znew) | wM0

i , θ̂
M

i ∼ N(m̂M0
i (znew), V̂ M0

i (znew)) , (26)

where θ̂
M

i is as in Section 4 and

m̂M0
i (znew) = µ̂M

i + γ̂M0
i (znew)′(Γ̂

M0

i )−1(wM0
i − µ̂M

i 1)

V̂ M0
i (znew) =

1

λ̂M
i

− γ̂M0
i (znew)′(Γ̂

M0

i )−1γ̂M0
i (znew) ,

where γ̂M0
i (znew) = (1/λ̂M

i )(ĉM
i (z1,znew), . . . , ĉM

i (zk,znew), ĉM
i (z∗, znew))′ and Γ̂

M0

i is ob-
tained by appending the column γ̂M0

i (z∗) and row γ̂M0
i (z∗)′ to Γ̂

M

i . Note that to calculate
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(Γ̂
M0

i )−1, one can utilize the standard updating formula

[
1 a

aT Γ

]−1

=

[
1
q −1

qaT Γ−1

−1
qΓ−1a Γ−1 + 1

qΓ−1aaT Γ−1

]

where q = 1− aT Γ−1a.
Application of these expressions yield draws h = 1, . . . , 1000 from the posterior distri-

bution of the ith wavelet coefficient for the new system as

wFh
i (zh) = wM

i (zh) + wbh
i + εh

i

where εh
i ∼ N(0, σ2h

i ). Figure 9 plots the predictions of the new system with uncertainty
bands. The uncertainty has increased as compare with Figure 7 not only because the prior
for δnew is used rather than the posterior for the tested system, but also because these are
predictions of field runs (instead of reality).

5.4.3 New Vehicle with New Nominals

The primary engineering use of computer models is to extrapolate to a system with new
nominals when there is no new field data. This will require strong assumptions, especially
about the bias. The simplest assumption about the bias, which we make here, is that the
new system has the same bias function as the old system. The calibration parameters u∗

are also assumed to remain the same. We use the joint – and highly dependent – posterior
distribution of the bias and u∗ from the original system extensively in what follows.

The new system has the same I/U map as the original system, but with new nominal
values xB

nom (which we refer to as Condition B). The new δ’s are taken to have the same
priors as for Condition A. The same 65 point design on (δ,u) was used as before with
the addition of one central value. Again one run failed, leaving 65 usable model runs.
Registration of the output curves is unnecessary because there are no field data and the
computer runs are assumed to be inherently registered. The resulting computer runs were
passed through the same wavelet decomposition as before retaining only those coefficients
that appeared earlier. The resulting GASP for the ith wavelet coefficient is

wBM
i (z) | wBM

i , θ̂
BM

i ∼ N
(
m̂BM

i (z), V̂ BM
i (z)

)
(27)

exactly as in equation (11).
This new GASP analysis is done only with Condition B data. A GASP analysis combin-

ing the model runs for Condition B and the model runs for the original system is not used
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Figure 9: Predictions for a new vehicle of the same type. Solid black line is bias-corrected
prediction, dashed black lines are 90% tolerance bands, grey line is pure model prediction,
and yellow lines are field runs.

because the changes in the nominals are too large to safely assume connections between the
computer model runs for the two systems.

The situation now is analogous to that of the previous argument for new vehicles of the
same type with the same nominals. In the current case, again using the independence of δB

from the other unknowns, the predictive (posterior) distribution of the relevant unknowns
can be written as

π(wBM (zB),wb, δB,u∗, σ2, τ 2 | D)

= π(wBM (zB) | wb, δB, u∗, σ2, τ 2, D)× π(δB)× π(wb, u∗, σ2, τ 2 | D)

= π(wBM (zB) | δB,u∗, D)× π(δB)× π(wb,u∗, σ2, τ 2 | D) ;

here π(wBM (zB) | δB, u∗,D) is just the GASP distribution in equation (27) and π(δB)
is the prior for B inputs from the I/U map. Draws of wb,u∗, σ2, τ 2 are made from the
old posterior distribution for the original system. Because wb and u∗ are highly dependent
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in the posterior, they must be jointly sampled for the extrapolation; naive approaches –
such as simply trying to add the bias from Figure 6 to the pure model prediction – will not
succeed.

The “carry-over” assumptions for the bias and the field variances lead to draws from
the posterior distribution of the wavelet coefficients for B to be

wBFh
i (zBh) = wBM

i (zh) + wbh
i + εh

i

where εh
i ∼ N(0, σ2h

i ).
In the left of Figure 10 the prediction for B is presented. Actual field data (8 replicate

runs for B) were afterwards available (not used in constructing the predictions and tolerance
bands) and they are superimposed (in yellow) on the plots in the left of Figure 10; grey
curves represent model runs. The effectiveness of carrying over the assumptions from A to
B is apparent.
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Figure 10: Prediction at Site 1 of a new vehicle under Condition B in Region 1. Left:
additive bias. Right: multiplicative bias. Solid black line is bias-corrected prediction,
dashed black lines are 90% tolerance bands, and grey lines are model runs; the yellow lines
are the field runs later provided and not used in the analysis.

If such strong assumptions, as the constancy of bias, are to be made it is best to be
extremely careful about implementing the assumption. Here, for instance, physics consid-
erations might suggest that an assumption of constant multiplicative bias might be more
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sensible than an assumption of constant additive bias. (Use of a multiplicative bias is men-
tioned in Fuentes et al. (2003)). A standard way of implementing is by analyzing the log of
the output data. A simpler alternative is to transform the additive biases obtained above
into multiplicative biases, and apply these multiplicative biases to the GASP draws under
Condition B. Bias in the additive system can be written

bh(t) = yRh(t)− yMh(t) ;

the corresponding multiplicative representation of the bias is

bh
mult(t) =

yRh(t)
yMh(t)

− 1 ,

which would lead to draws from the posterior for reality under Condition B of

yBRh(t) = yBMh(t)× (1 + bh
mult(t)) .

The right panel of Figure 10 presents the analogue of the left using the multiplicative
bias. The additive and multiplicative predictions are not much different. The next section
discusses another site in the suspension system for which the analysis in the paper was
implemented, called Site 2. For this site, the multiplicative predictions under Condition B
were noticeably better than the additive predictions, as indicated in Figure 11.

6 Site 2 Analyses

Analyses for Site 2 of the system proceed in exactly the same way as those for Site 1. The
posterior distributions for the calibration parameters (u1, u2) as well as for δ are in Figure
12. These are somewhat different than those for Site 1 in Figure 5. These parameters are, of
course, the same for either site, but the limited data available at each site lead to somewhat
different posterior distributions. Also, separately analyzing the sites can result in over-
tuning while accommodating the biases at each site individually. A natural solution is to
do a bivariate functional analysis of the two sites jointly. This is being pursued separately.

Figure 13 presents the estimated bias function and Figure 14 the bias corrected and pure
model predictions, along with the corresponding tolerance bounds. The presence of bias
can be clearly seen, as well as the noticeably improved performance of the bias corrected
prediction over the pure model prediction. Other figures for Site 2 are omitted since, with
the exception of Figure 11, they do not provide further insight.
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Figure 11: Prediction at Site 2 of a new vehicle under Condition B in Region 1. Left:
additive bias. Right: multiplicative bias. Solid black line is bias-corrected prediction,
dashed black lines are 90% tolerance bands, and grey lines are model runs; the yellow lines
are the field runs later provided and not used in the analysis.
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Figure 12: Posterior distributions for the unknown input parameters for Site 2 of the system.
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A Design for the Computer Experiment

The 2-dimensional projection on the first two coordinates of the design for the computer
experiment is in Figure 15. All the two-dimensional projections look alike. The design for
the computer experiment can be found in Table 2.
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Figure 15: The 2-dimensional projection on the first two coordinates of the design.

B Data Registration and Wavelet Decomposition

For the wavelet representations of the output curves it is important that the same wavelet
basis elements simultaneously represent the important features of all curves. In the test
bed problem the heights of the peaks and valleys of the curves from the field data are of
primary importance but their locations are not the same across the curves, due to random
fluctuations in the tests. Thus we first align the curves so that the major peaks and the
major valleys occur at the same location. In other applications, alignment would likely be
based on other key features of the curves. (In the test bed, the timing of the major events
is not of concern - only the forces at these events are of interest. If it were important for
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Table 2: Design for the computer experiment.
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the computer model to accurately reflect timing, as in the analysis of airbag deployment in
Bayarri et al. (2005b), this mode of registration could not be used.)

We did not try to align the curves from the computer model runs, since variation in these
curves could not be ascribed to random fluctuation. (One might think that the computer
model curves would be automatically aligned but, surprisingly, in the test bed they did show
some misalignment, perhaps due to differences in the damping parameters.) We construct
a reference curve (for alignment of the field curves) by averaging the model-run curves and
use piecewise linear transformation to align the peaks and valleys of the field curves to this
reference curve. The details are as follows:

Step 1. Construct a dyadic grid (points of the form j/2q on the interval where the function
is defined. For the test bed, the interval [0, 65] covered the range of importance
and q = 12). For each computer run extract the output values on the dyadic grid.
Construct a pseudo output for points not in the grid by linear interpolation and treat
them as actual outputs.

Step 2. From the K computer runs (there K = 65 in the test bed, define the reference curve
as ȳM (t) = 1

K

∑K
k=1 yM (xk,uk; t).

– For the first major event, located in the region 6 < t < 11, define

∗ A = location (value of t) of the maximum of the reference curve ȳM (t);

∗ AF
r = location of the maximum of yF

r ;

∗ a = location of minimum of ȳM (t);

∗ aF
r = location of minimum of yF

r ;

– For the second major event, located in the region 37 < t < 41, define B,BF
r , b, bF

r

analogously. Assume a < A < b < B.

Step 3. For each r, match aF
r , AF

r with a,A by transforming t in [aF
r , AF

r ] to

t′ = a + (t− aF
r )

A− a

AF
r − aF

r

.

Now define the registered yF
r on the interval [a,A] as registered yF

r (t′) = original yF
r (t),

where t′ and t are connected as above.

Step 4. Assume that b < B. As in Step 3, register yF
r on the interval [AF

r , bF
r ] by mapping

[AF
r , bF

r ] into [A, b] via t′ = A+(t−AF
r ) b−A

bF
r −AF

r
. Similar registrations are done for the

intervals [0, aF
r ], [bF

r , BF
r ] and [BF

r , 65].
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Figure 1 shows the registered data for Site 1 of the suspension system. “Time” in the
figures is not literal time, but is a convenient scaling of the realigned time.

The wavelet decompositions are described in part in Section 3.2. The basis functions are
such that at “level” 0 there is a scaling constant and for level j = 1, . . . , 12 there are 2j−1

basis functions. To balance the need for approximation accuracy with the need to minimize
the number of terms for computational feasibility, we considered each model-run and field
curve and retained all coefficients at levels 0 through 3; for levels j > 3, we retained those
coefficients that, in magnitude, were among the upper 2.5% of all coefficients at all levels
for the given function, according to the R wavethresh thresholding procedure. We then took
the union of all resulting basis functions for all the model-run and field curves. For the test
bed there were 231 retained elements for the output from Site 1 on the system, and 213
for the output from Site 2. The combined (from both sites) number of retained elements
was 289 and we used these for all analyses.The indices attached to these 289 retained basis
elements are denoted by I.

C The MCMC Algorithm

Step 1 For h = 1, . . . , 1000, sample the σ2h
i from the following distribution:

InverseGamma
(

3,
2
s2
i

) (
shape = 3, scale =

2
s2
i

)
.

Step 2: For h = 1, . . . , 1000, make draws δ∗h, u∗h, τ 2h from the posterior distribution in equa-
tion (18). (This is complicated – the process is described last.)

Step 3: Given δ∗h,u∗h, σ2h, τ 2h draw wbh from the distribution in equation (17). (This is
simply done by making a draw, for each i, from a normal distribution with the specified
means and variances).

Step 4: Given δ∗h, u∗h,σ2h, τ 2h, wbh, make a draw of wMh from the distribution in equation
(16). (Again this is simply done by draws from normal distributions).

For Step 2, we use a Metropolis-Hastings scheme to generate the (h+1)st sample. We break
this up into two sub-steps.

Step 2.1 Propose τ 2 by generating from q(τ 2 | τ 2h) =
∏12

i=0 qi(τ2
i | τ2h

i ), where

qi(τ2
i | τ2h

i ) ∝
{

1
τ2
i

if τ2 ∈ [τ2h
i e−0.7, τ2h

i e0.7]

0 otherwise .
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The posterior density of τ 2 is not very spiked, so this type of fairly broad local proposal
works well. Finally, form the Metropolis-Hastings Ratio

ρ =
π(δh, uh, τ 2 | σ2h, D) q(τ 2h | τ 2)
π(δh, uh, τ 2h | σ2h, D) q(τ 2 | τ 2h)

and define τ 2(h+1) = τ 2 with probability min(1, ρ); τ 2(h+1) = τ 2h otherwise.

Step 2.2 Let T δ
k = [aδ

k, A
δ
k] and T u

k = [au
k , Au

k ] denote the intervals on which the prior densities
for the corresponding variables are nonzero, and define

T ∗δh
k = [max(aδ

k, δ
h
k − 0.05), min(Aδ

k, δ
h
k + 0.05)]

T ∗uh
k = [max(au

k , uh
k − 0.05), min(Au

k , uh
k + 0.05)] .

Propose δ, u from

g(δ,u | δh,uh) =
7∏

k=1

(
1
2
U(δk | T δ

k ) +
1
2
U(δk | T ∗δh

k )
) 2∏

k=1

(
1
2
U(uk | T u

k ) +
1
2
U(uk | T ∗uh

k )
)

.

The logic here is that the posterior densities for some of the parameters is quite flat,
so that sampling uniformly over their support (T δ

k or T u
k ) would be quite reasonable

as a proposal. On the other hand, some of the posteriors are quite concentrated, and
for these it is effective to use a locally uniform proposal, centered around the previous
value and with a maximum step of 0.05; this leads to uniforms on T ∗δh

k or T ∗uh
k , which

are the regions defined by the intersection of the local uniforms and the support of
the priors. Since the goal here was to create a procedure that can be automatically
applied for this type of problem, 50-50 mixtures of the two proposals were adopted.

Finally, form the Metropolis-Hastings Ratio

ρ =
π(δ, u, τ 2(h+1) | σ2h, D) g(δh, uh | δ, u)

π(δh, uh, τ 2(h+1) | σ2h, D) g(δ, u | δh, uh)

and set (δ(h+1), u(h+1)) = (δ, u) with probability min(1, ρ), and equal to (δh, uh)
otherwise.

These Metropolis-Hastings steps typically yield highly correlated iterations, so we actually
cycle through them 200 times (with fixed σ2h) before saving the variable values for feeding
into Steps 3 and 4.
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