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Abstract

Many scientific, sociological and economic applications present data that are collected on
multiple scales of resolution. One particular form of multiscale data arises when data are
aggregated across different scales both longitudinally and by economic sector. Frequently,
such data sets experience missing observations in a manner that they can be accurately im-
puted using the method we propose known as Bayesian multiscale multiple imputation. This
method borrows information both longitudinally and across different levels of aggregation to
produce accurate imputations of missing observations as well as estimates that respect the
constraints imposed by the multiscale nature of the data. Our approach couples dynamic
linear models with a novel imputation step based on singular normal distribution theory.
Although our method is of independent interest, one important implication of such method-
ology is its potential effect on confidential databases protected by means of cell suppression.
In order to demonstrate the proposed methodology and to assess the effectiveness of dis-
closure practices in longitudinal databases, we conduct a large scale empirical study using
the U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages (QCEW).
During the course of our empirical investigation it is determined that several of the predicted
cells are within 1% accuracy, thus causing potential concerns for data confidentiality.

KEY WORDS: Cell suppression; Disclosure; Dynamic linear models; Missing data; Mul-
tiscale modeling; QCEW.

1(to whom correspondence should be addressed) Department of Statistics, University of Missouri-
Columbia, 146 Middlebush Hall, Columbia, MO, 65211-6100, holans@missouri.edu

2Office of Survey Methods Research, Bureau of Labor Statistics, 2 Massachusetts Avenue NE, Room
1950, Washington, D.C. 20212, Toth.Daniell@bls.gov

3Department of Statistics, University of Missouri-Columbia, 146 Middlebush Hall, Columbia, MO, 65211-
6100, ferreiram@missouri.edu

4National Institute of Statistical Sciences, 19 T.W. Alexander Drive, Research Triangle Park, NC 27709-
4006, karr@niss.org



1 Introduction

Given the public’s concerns about data confidentiality there is an ever-increasing need for

identifying and controlling disclosure risks. Typically, disclosure risks arise in the course of

disseminating microdata on individual units, such as people or establishments, to researchers

or other statistical agencies. In fact, statistical agencies often face conflicting missions. On

the one hand they seek to release data suitable for a wide range of statistical analyses, while

on the other hand they wish to protect the confidentiality of their respondents. Agencies

that fail to protect confidentiality may face serious consequences, including legal action.

Moreover, the statistical agency may lose public trust and thus create an atmosphere in

which respondents are less willing to participate in studies or to provide accurate information

(Gomatam et al. 2005).

To reduce disclosure risk, statistical agencies often alter the data prior to its release. For

example, it is common for agencies to perturb, coarsen or swap data values prior to release

(Willenborg and De Waal 2001). However, decreasing risk necessarily also decreases data

utility, and increasingly statistical disclosure limitation (SDL) techniques are employed that

explicitly account for risk-utility tradeoffs.

One particular path to disclosure is through linkages across multiple databases. In par-

ticular, when agencies release microdata to the public it may be possible for “intruders” to

link records across databases in such a way as to compromise the confidentiality of the data

(Fienberg 2006). Failure to release data in ways that prevent such identifications may be a

breach of law and may discredit the statistical agency involved (Reiter 2005). As databases

become more extensive and record linkage techniques improve, it is possible that releasing

microdata may no longer be feasible. Under these circumstances, a viable alternative is

to release only data summaries. Unfortunately, this type of release is often less useful for

complex analyses and may still suffer from disclosure risks (Dobra, Karr, Sanil and Fienberg

2002; Dobra, Karr and Sanil 2003).

Another approach for protecting against disclosure is to release synthetic data (i.e., sim-
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ulated microdata). Although synthetic data may have low risk of disclosure, they have

correspondingly reduced utility. In this context both risk and utility depend on the model

used for synthesis (see Gomatam et al. 2005 and the references therein).

An alternative framework for protecting against disclosure is to release only the results

of statistical analyses of the data, with no release of microdata. Remote analysis servers

would permit users to submit requests for analyses and be provided some form of output

(for instance, estimated parameters and standard errors) (Keller-McNulty and Unger 1998;

Duncan and Mukerjee 2000; Schouten and Cigrang 2003). Such servers are not free from

risk of disclosure. In fact, it may be possible for intruders to discover identities or other

attributes of interest through “targeted” queries (Gomatam et al. 2005).

Despite the multiplicity of SDL methods available to statistical agencies, it is still com-

mon practice within many surveys to protect against disclosure through the use of “cell

suppression”: cell entries in tables that are deemed risky (usually because they represent

only a few data subjects) are simply suppressed. One example is in the Bureau of Labor

Statistics’ (BLS) Quarterly Census of Employment and Wages (QCEW). In order to pro-

tect against disclosure risks that arise from additive relationships within a table, additional,

“secondary” cell suppressions are required. For a comprehensive discussion regarding data

confidentiality as it pertains to QCEW, see Section 2 and Cohen and Li (2006).

Optimal cell suppression is an NP-hard problem, and most implemented algorithms rely

on heuristics. Assuming that all of the risks of disclosure are accounted for through primary

and secondary cell suppressions is problematic, as unforeseen disclosure risks may remain.

This is especially true for complex data releases where there are both multiscale aggregations

(for example, to both county and state levels, or to both fine- and coarse-grained industry

classifications) and longitudinal data (whether from panels or repeated cross-sectional data

collections). Together these data attributes potentially enable a data intruder to estimate

the values of suppressed cells more accurately than might be anticipated.

In this paper, we propose a method of Bayesian multiscale multiple imputation that uti-
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lizes the additive relationships (multiscale attributes) along with inherent serial correlation

to impute missing values. While the method is of independent interest as a means of im-

puting missing data, this paper focuses on how it can be used to improve understanding

of disclosure risk associated with cell suppression on longitudinal, multiscale data. Possibly

disconcertingly, the framework can be extremely effective. In many instances, we are able

to impute suppressed cells to within 1% accuracy. Moreover, the imputed values simulta-

neously respect the constraints imposed through the multiscale properties of the data. In

addition, the Bayesian framework provides measures of uncertainty for the imputed values,

which might not be true of other methods,

Our approach couples dynamic linear models (DLMs) (West and Harrison 1997) with

multiple imputation techniques through the use of properties for normally distributed ran-

dom variables with singular covariance matrices (Marsaglia 1964). As noted above, the

method proposed here is quite general and can be modified to handle a wide array of mul-

tiscale (constrained) data structures. Our framework produces estimates of missing values

that are close to the true unobserved values, but is also capable of producing estimates of

trend, seasonality and regression effects along with associated measures of uncertainty. Fur-

ther, the method is computationally feasible, and can be implemented in practical situations.

Finally, the method requires no specific unknown “problem-specific” parameters. Instead,

we employ a flexible set of default priors that require little or no subjective specification of

problem specific parameters up to choice of the particular DLM. In fact, the only assumption

made in the prior specification is that the signal-to-noise ratio is moderate.

A related approach proposed by Ansley and Kohn (1983) uses a method for computing the

exact likelihood of a vector autoregressive-moving average process with missing or aggregated

data. The two approaches differ in several respects. Most notably, our approach couples the

flexibility of DLMs with properties of normally distributed random variables with singular

valued covariance matrices. This produces a versatile framework that allows us to take

advantage of, rather than be hampered by, the constraints present in the data. In the
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Ansley and Kohn framework, by contrast, imputation in our context is impossible, at least

without modification of their methodology or substantial bookkeeping on the part of the

practitioner to eliminate redundant information. The multiscale aspect of our approach is

crucial: the singular value covariance matrix allows us to systematically accommodate any

redundant information present in the data in a mathematically rigorous and fully automatic

manner.

The remainder of this paper is organized as follows. Section 2 provides a brief description

of the Quarterly Census of Employment and Wages (QCEW). In Section 3 our method is

formally developed and an illustration to the QCEW is provided. Section 4 quantifies the

performance of our method through a large empirical study. Specifically, we apply our

method to 11 real QCEW data sets. This empirical study demonstrates the effectiveness of

our methodology and in doing so exposes the vulnerability of “cell suppression” as a method

for eliminating disclosure risk in longitudinal databases. Finally, Section 5 concludes.

2 QCEW - Data Structure

The BLS conducts a census that collects data under a cooperative program between BLS

and the State Employment Security Agencies known as the Quarterly Census of Employment

and Wages (QCEW). The data contained in QCEW consist of broad employment and wage

information for all U.S. workers covered by the Unemployment Compensation for Federal

Employee program. Tabulations of QCEW outcomes are available by 6-digit North American

Industrial Classification Systems (NAICS) industry, county, ownership, and size groups under

several formats such as BLS Internet ftp servers. The detailed coverage and easy accessibility

make it especially vulnerable to confidentiality disclosure risks (Cohen and Li 2006). To

protect this tabular data against disclosure risks, Cell Suppression (CS) is imposed. Although

the BLS consistently applies both primary and secondary cell suppressions, additional risks

arise from additive relationships in the table along with serial correlation. As noted in

Section 1, the problem is NP-hard (Kelly 1990), and several solutions have been proposed
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(see Cohen and Li (2006) and the references therein).

As a matter of practice the CS problem and its solutions are addressed contemporane-

ously. This shortcoming increases the data’s susceptibility to attack. In general, the QCEW

data contains many different levels of aggregation and patterns of suppression. For example,

suppose we have six years of quarterly data for three series and the aggregate of the three

series. Let yjt denote the jth sub-series j = 1, . . . , k and tth quarter t = 1, . . . , T . Here

k denotes the number of aggregate sub-series and T denotes the number of quarters; in

our example we have k = 3 and T = 24. In some years two or more quarterly values are

missing (i.e., primary and secondary cell suppressions) for two of the three series, but the

aggregate value is often present for all quarters, so for each quarter t = 1 . . . 24 we have

either the full set of values yt = (y1t, y2t, y3t)
′ or a set where some of the values have been

suppressed, as for example (S, y2t,S) in a quarter where the first and third series values are

suppressed, as indicated by the letter S. In addition, for many series we have annual totals

for all three series. Let qt = y1t + y2t + y3t, t = 1, . . . , T, be the total for quarter t. Further,

let at′ = (a1t′ , a2t′ , a3t′)
′ denote the annual totals for each of the six years, t′ = 1 . . . 6, where

ajt′ = yj (4t′−3) + yj (4t′−2) + yj (4t′−1) + yj (4t′), j = 1, . . . , 3. Then the complete time series is

given by {y1, q1,y2, q2,y3, q3,y4, q4, a1,y5, q5, . . . ,y24, q24, a6}. However, in our case, we do

not have the complete time series because some of the observations have been suppressed;

an example of this is shown in Tables 1 and 2.

It is important to note that the data displayed in Tables 1 and 2 only constitute two

example data sets from QCEW. In many instances the suppressed cells can be an annual

total (i.e. Table 2) or even an aggregate total (not displayed). Additionally, the multiscale

nature can have an aggregate along with k sub-series where k does not necessarily equal

3; in fact, we only require k ≥ 2. Further, each of the k-sub-series can be an aggregate

of lk (lk ≥ 2) additional sub-series. Nevertheless, the framework we propose effectively

accommodates these different data structures.

5



3 Multiscale Multiple Imputation

In recent years, multiple imputation, the practice of “filling in” missing data with plausible

values, has emerged as powerful tool for analyzing data with missing values. More formally,

multiple imputation (MI) refers to the procedure of replacing each missing value by a vector

of imputed values. Upon completion of the imputation, standard-complete data methods

can be used to analyze each data set. In addition, when D ≥ 2 sets of imputation are formed

and constitute repeated draws from the predictive distribution of the missing values under

a specified model then the D complete-data sets can be combined to form one inference

that properly accounts for the uncertainty due to nonresponse under that model. For a

comprehensive discussion see Little and Rubin (2002) and the references therein.

Bayesian approaches to MI have experienced increased popularity due to their usefulness

in complicated realistic problems. Rubin (1987) describes methods for generating MIs using

parametric Bayesian models in the context of simple problems. In general, suppose that

Y = (Yobs, Ymis) follows a parametric model P (Y |θ) where θ has a prior distribution and the

missing data mechanism for Ymis is ignored. Then we can write

P (Ymis|Yobs) =

∫
P (Ymis|Yobs, θ)P (θ|Yobs)dθ.

Imputation for Ymis can be obtained through a two step procedure. The first step is to

sample the unknown parameters from their observed-data posterior θ∗ ∼ P (θ|Yobs). Then

given θ∗, the next step is to sample Ymis from their conditional predictive distribution

Y ∗mis ∼ P (Ymis|Yobs, θ∗).

Typically this approach is facilitated by taking advantage of MCMC algorithms. For further

discussion on MI see Schafer (1999).

Treating the suppressed data as missing and the additive structure as a multiscale prob-

lem provides a powerful environment for conducting multiscale multiple imputation. How-

ever, longitudinal - multiscale data inherently produce redundant information. Thus, to
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systematically accommodate and take advantage of these redundancies, without substantial

bookkeeping on the part of the practitioner, requires innovative methods involving singular

value covariance matrices. This section formally develops the Bayesian multiscale multiple

imputation scheme and provides an illustration by applying our method on two represen-

tative QCEW series. The main point of this illustration is to demonstrate our approach

through two detailed examples. Subsequently we provide a comprehensive assessment of our

methods performance in Section 4.

3.1 The multiscale multiple imputation scheme

The Bayesian multiscale multiple imputation scheme can be viewed as a two stage iterative

procedure. In the first stage all of the sub-series (i.e. all of the series other than the

aggregate series) are modeled individually, conditional on the missing values, using DLMs

(West and Harrison 1997). Thus considering the example series in Section 2 we have 3

DLMs each modeling a series of 6 years of quarterly data (excluding the annual totals). It

is important to note that although we model each series individually our procedure can be

modified in a straight forward manner to include correlation between series. However, this is

typically unnecessary as much of the between series correlation is accounted for through the

multiscale (aggregation) constraints. The second step of our procedure performs imputation

of the missing values for each years worth of data after accounting for all of the additive

constraints.

Formally our procedure proceeds as follows. We assume that the complete data y1, . . . ,yT

follow a general linear state-space model which can be written as (West and Harrison 1997)

yt = F′tθt + εt, εt ∼ N (0,Vt),

θt = Gtθt−1 + ωt ωt ∼ N (0,Wt).

The first equation is known as the observation equation and the second equation is known as

the system equation. In this context θt is the latent process, Ft relates the observations to
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the latent process, Gt describes the evolution of the latent process through time and Vt and

Wt are the observational covariance matrix and covariance matrix of the system equation

innovation respectively. The general state-space model has become commonplace in the time

series literature owing to its versatility in accommodating a wide array of data structures

such as seasonality and regression effects among others. For a comprehensive discussion

on state-space models see Durbin and Koopman (2001), Harvey (1989), West and Harrison

(1997) and the references therein.

Typically Ft, Gt, Vt and Wt are known up to a few hyperparameters as is the case in

the models we employ for illustration. As such estimation can be performed using Markov

chain Monte Carlo (MCMC) (Robert and Casella 2004; Gamerman and Lopes 2006). Each

iteration of the MCMC algorithm is then divided into three blocks: simulation of the un-

known hyperparmeters, simulation of the latent process, and simulation (imputation) of the

missing values. The details of the simulation of the hyperparameters is model-specific while

the latent process can be efficiently simulated using the forward filter backward sampler

(FFBS) (Früwirth-Schnatter 1994; Carter and Kohn 1994).

In our particular case, yt contains k sub-series related to different economic sectors.

In order to model the joint evolution of those sub-series through time, F′tθt may contain

regression terms, seasonality, first- and second-order trends, common latent factors, etc.

However, in our experience, we have noticed that many of those terms are already captured

by the aggregated series and are automatically accounted for when we sample the missing

data conditional on the aggregated series. For this reason, for the remainder of this paper

we assume yjt, j = 1, . . . , k, follow a first-order DLM. Specifically, we have

yjt = θjt + εjt εt ∼ N (0, σ2
j ), (1)

θjt = θj,t−1 + ωjt ωt ∼ N (0,Wj).

This model can be thought of as a first order Taylor approximation of a smooth function

representing the time trend of the series. Typically the variances σ2
j and Wj are strongly

correlated a posteriori. Therefore it is often computationally beneficial to reparametrize Wj
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in terms of a signal-to-noise ratio. In this direction, we define Wj = ξjσ
2
j and as a result,

the hyperparameters σ2
j and ξj will be much less correlated a posteriori. This reduction

in correlation helps both in terms of speed of convergence of the MCMC algorithm and in

terms of choosing a prior distribution for the hyperparameters. Finally, the model (1) is

completed with a prior θ0 ∼ N (a,R), where a and R are user defined and usually taken to

be noninformative.

The next step in estimation is the imputation step. Let zt′ denote the observations and

their aggregates for year t′. Assuming k = 3 then zt′ = (y1,4t′−3, . . . , y1,4t′ , y2,4t′−3, . . . , y2,4t′ ,

y3,4t′−3, . . . , y3,4t′ , q4t′−3, · · · , q4t′ , a1t′ , a2t′ , a3t′)
′. Further, let θ∗t′ = (θ1,4t′−3, . . . , θ1,4t′ , θ2,4t′−3,

. . . , θ2,4t′ , θ3,4t′−3, . . . , θ3,4t′)
′and H denote the matrix that operates on the individual obser-

vations and returns the individual observations and along with the several aggregate totals.

Then it follows, from (1), that

zt′ |θ∗t′ ∼ N (µt′ ,Σ),

where µt′ = Hθ∗t′ and Σ = HVH′, with V = diag(σ2
1, σ

2
1, σ

2
1, σ

2
1, σ

2
2, σ

2
2, σ

2
2, σ

2
2, σ

2
3, σ

2
3, σ

2
3, σ

2
3).

For example, in the case considered in Section 2 (Table 1)

H =


I12

I4 I4 I4

I3 ⊗ 1′4

 ,

where ⊗ denotes the Kronecker product, Im denotes the m ×m identity matrix and 1m is

the vector of ones having length m; thus H has dimension 19× 12.

Typically, several elements of zt′ , either individual or aggregated values, may have been

suppressed; let zt′,o and zt′,m be the observed and missing values of zt′ , respectively. Then,

the covariance matrix Σ can further be partitioned in terms of the missing and observed

values. Specifically, define Σmm, Σmo = Σ′om and Σoo to be the covariance matrix of the

missing data, the missing data with the observed and of the observed data respectively. Then
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the covariance matrix Σ can be written

Σ =

 Σoo Σom

Σmo Σmm

 .

Further, consider the spectral decomposition of Σoo; that is, Σoo = PDP′ where P =

[p1,p2, . . . ,pp] has orthonormal columns given by the normalized eigenvectors of Σoo and

D = diag(d1, . . . , dp), with d1 ≥ d2 ≥ . . . ≥ dp ≥ 0 corresponding to the eigenvalues of Σoo.

In addition, let q denote the number of zero eigenvalues of Σoo. Note that q is equal to the

number of redundancies found in the observed data due to having knowledge about the ag-

gregated values. In order to eliminate these redundancies define D∗ = diag(d1, . . . , dp−q)

to be the diagonal matrix with diagonal equal to the positive eigenvalues of Σoo and

P∗ = [p1,p2, . . . ,pp−q] the matrix of corresponding normalized eigenvectors. Then the

pseudoinverse, also known as the Moore-Penrose inverse (Searle 1992), can be computed as

Σ+
oo = P∗(D∗)−1P∗

′
. Ultimately to impute the missing (suppressed) data we need to find

the conditional distribution of missing values given the observed values. Following Marsaglia

(1964) we have that

zt′,m|zt′,o ∼ N (γt,m,Ωm), (2)

where

γt,m = µt′,m −ΣmoΣ
+
oo(zt′,o − µt′,o) (3)

and

Ωm = Σmm −ΣmoΣ
+
ooΣom. (4)

Remark 1 In the case were Σoo is full rank, (2), (3) and (4) reduce to the familiar formulas

from the standard theory of multivariate normal distributions (Mardia, Kent and Bibby

1979).

Remark 2 Alternatively, one could eliminate the redundant information by eliminating

some redundant elements from zt′,o, but this would require substantial bookkeeping. Con-

versely, our procedure is fully automatic.
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Remark 3 Usually, the covariance matrix Ωm is singular. In order to simulate from (2),

we first compute the spectral decomposition Ωm = PΩDΩPΩ
′. Let r be the rank of Ωm.

Additionally, let D∗Ω be the diagonal matrix with diagonal equal to the positive eigenvalues

of Σoo and PΩ
∗ the matrix of corresponding eigenvectors. The next step is to simulate

u ∼ N (0, Ir). Finally, a vector simulated from (2) is computed as γt,m + PΩ
∗(D∗Ω)1/2u.

Estimation of the model and the multiscale imputation is performed using MCMC in

a fully Bayesian analysis. In this direction we need to assign prior distributions for the

signal-to-noise ratio ξj and variance parameters σ2
j (j = 1, . . . , k) described above. First,

we note that the signal-to-noise ratio parameters ξj are most likely small. Otherwise, the

components of the latent process would vary too much over time and ultimately this would

make it difficult to predict the suppressed cells. As a result, we expect ξj to be significantly

smaller than 1. Therefore we assume that the prior distribution for each ξj is IG(αj, βj)

with density

f(ξj) ∝ ξ
−(αj+1)
j exp

(
−0.5

βj
ξj

)
,

where αj and βj are fixed a priori such that there is high probability that ξj is less than

0.3. Finally, we assume that σ2
j ∼ IG(τj, κj), with τj = κj = .01, j = 1, . . . , k, which is a

noninformative conjugate prior for σ2
j in this context.

In order to explore the posterior distribution, we use the Gibbs sampler (Geman and

Geman 1984; Gelfand and Smith 1990). This requires the full conditional distributions

for ξj and σ2
j , j = 1, . . . , k, which are both of standard form. Specifically, the parameter

ξj|θjt, σ2
j ∼ IG(α∗j , β

∗
j ) where α∗j = αj + (T − 1)/2 and

β∗j = βj + 0.5
T∑
t=2

(θjt − θj,t−1)2/σ2
j ,

and T denotes the length of the series (in our example T = 24). Sampling the parameter

σ2
j is equally straightforward as the full conditional for σ2

j |ξj,yjt,θjt is IG(τ ∗j , κ
∗
j) where
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τ ∗j = τj + (2T − 1)/2 and

κ∗j = κj +
T∑
t=1

(yjt − θjt)2 + .5
T∑
t=2

(θjt − θj,t−1)2/ξj.

Simulation of θjt is performed with the usual FFBS as introduced and described in Carter

and Kohn (1994) and Früwirth-Schnatter (1994). This step is fairly standard, therefore

we omit the exact equations for the sake of brevity. For a comprehensive discussion, see

Gamerman and Lopes (2006).

As we have seen, the overall algorithm for Bayesian multiscale multiple imputation con-

sists of three components. First, conditional on the missing values, we sample the hyper-

parameters associated with each dynamic linear model. Second, conditional on the missing

values, we estimate the latent process using the FFBS algorithm. Finally, we perform mul-

tiscale multiple imputation. In order to start the Gibbs sampler, we transform data from

yearly format z∗jt to yjt (j = 1, . . . , k) and replace any missing cells by their series mean.

After choosing starting values and defining all MCMC parameters, the algorithm can be

summarized as follows:

Step 1: For j = 1, . . . , k, sample the latent process θjt using the FFBS algorithm.

Step 2: For j = 1, . . . , k, sample the hyperparameters ξj and σ2
j from their full conditional

distributions.

Step 3: Transform data from yjt format to z∗t format and sample zt′,m from (2).

Step 4: Transform data back to yjt (j = 1, . . . , k) format and replace any missing cells by

their the values obtained in Step 3.

Step 5: Repeat Steps 1–4.

3.2 Illustration - QCEW

To illustrate the imputation scheme proposed in Section 3.1 we provide a limited case

study. Since the analyses were performed on a confidential version of the QCEW data (in

12



order to compare imputed to true values), we report only measures of performance of our

imputed values. In other words, we can not simultaneously report the estimated values while

providing specific measures of performance though we do impart a qualitative assessment

here. Subsequently, in Section 4, we provide a detailed evaluation on the efficacy of our

approach.

The data used here are the 6 years of quarterly data described in Section 2 and shown in

Tables 1 and 2. As discussed in Section 3.1, for both data sets, at the beginning of the Gibbs

sampler the missing values are imputed using the series mean. Further, for both data sets,

the prior mean and variance for θj0 are set at a = 0 and R = 1010 respectively. In terms of

ξj and σ2
j , αj = 3, βj = .1 and τj = κj = .01 for j = 1, 2, 3. Next, we run a single MCMC

chain for 10,000 iterations discarding the first 5000 iterations for burn in. Convergence of

the MCMC is verified through trace plots of the posterior.

Tables 3 and 4 provide the imputed values along with their associated 95% pointwise

credible intervals. Additionally, Figures 1 and 2 show the aggregate series along with the 3

sub-series being estimated. It is important to note that in the majority of cases these series

contain annual totals; however these totals are not portrayed in Figures 1 and 2.

Although we do not provide a measure of accuracy in this illustration we can see from Fig-

ures 1 and 2 that the imputation seems to have estimated plausible values for the suppressed

data. Moreover, from Tables 3 and 4 it is also apparent that the multiscale (aggregation)

constraints are preserved using our approach. In fact, even though we consider the imputed

values after rounding to the nearest whole dollar the multiscale constraints are still exactly

preserved. Finally, even for the case of the QCEW Data Set 2 (cf. Table 2 and Figure 2)

where we have a substantially higher percentage of missing and less supporting aggregate

information our method appears to provide reasonable performance in spite of what appears

to be a challenging pattern of missingness.
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4 Empirical Study - QCEW

To evaluate the effectiveness of our approach we conducted an empirical study using real

data from the U.S. Bureau of Labor Statistics Quarterly Census of Employment and Wages

(QCEW). Specifically we consider 11 data sets and impute the suppressed cells. Owing to

disclosure practices, the authors outside of BLS have no knowledge regarding the values of

the suppressed data (i.e. suppressed cells) neither before nor after the imputation. In fact,

we apply the Bayesian multiscale imputation method to data that can be readily obtained

by the public via BLS Internet ftp servers. Post imputation, the estimated missing values

are compared at BLS (on site) to determine their accuracy. In other words, the analyses are

conducted using only publicly available data (i.e. under the suppressed conditions) and then

subsequently compared with the complete data by BLS employees in order to quantify the

departures between the imputed and the actual values.

For all of the analyzes considered here the prior mean and variance for θj0 are set at

a = 0 and R = 1010 respectively. In terms of ξj and σ2
j , αj = 3, βj = .1 and τj = κj = .01

for j = 1, 2, 3. Next, we run a single MCMC chain for 10,000 iterations discarding the first

5000 iterations for burn in. Convergence of the MCMC is verified through trace plots of the

posterior.

In keeping with the disclosure practices of the BLS we do not present imputed values and

measures of accuracy simultaneously. Instead we display the cumulative percentage of values

that fall within 1%, 2%, 5% and 10% of their true values (Table 5). Further, the pattern of

missingness is not the same for each data set. Therefore, we present the percentage missing

for each sub-series for each data set (Table 6). In addition, Table 6 also indicates which data

sets have sub-series missing the annual total.

As depicted in Table 5 we are able to impute at least 20% of the suppressed values to

within 1% of their true values in over half of the data sets considered. Additionally, in 5 of

the 11 data sets we are able to impute suppressed values to within 2% of their true value at

least 50% of the time. Similarly, in 7 of the 11 data sets we are able to impute the suppressed
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values to within 5% of their true values over 50% of the time. In fact, in 3 of these 11 data

sets we are able to impute all of the missing values to within 5% of their true values. Finally,

in 8 of the 11 data sets we can impute the data to within 10% of the their true values over

50% of the time. In all cases the 95% credible interval contained the true value.

Of course, we do not expect our method to perform well in all circumstances. For example,

the pattern and/or percentage of missingness may be such that the multiscale nature and

serial correlation of the data may afford little added benefit. One such example is given by

QCEW6 where values are suppressed for years 5 and 6 (including the annual totals) for both

sub-series 2 and 3. In this case, the imputation method is essentially trying to forecast 2 years

ahead (up to 8 steps ahead) based on 4 years of data (16 data points). Moreover, judging by

the spectral decomposition of the observation covariance matrix we are not acquiring much

additional information as a result of the additive relationships.

5 Discussion

The imputation approach that we present provides a natural framework for serially cor-

related multiscale data. The method is flexible and can be applied across a broad array

of multiscale data structures. Further, our method provides estimates of attributes of the

data that may be of interest to the practitioner utilizing the data for applied research. For

example, in addition to accurately imputing “missing” values, our framework can provide

estimates of trend, seasonality and regression effects along with associated measures of un-

certainty.

In addition, the estimates produced by our approach are computationally feasible and

produce estimates sufficiently rapidly to allow imputation in practical situations. In fact, in

our illustrations (Section 3.2) and empirical study (Section 4), we implemented our proce-

dure using the same signal-to-noise prior specification throughout and each analysis ran in a

matter of a few minutes on a laptop computer (MacBook Pro 2.5 GHz Intel Core Duo Pro-

cessor - 4 GB 667 MHz DDR2 SDRAM). Another computational benefit is that our method
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does not require any unknown “problem-specific” parameters. That is, our method requires

little or no subjective specification of problem specific parameters up to the particular choice

of DLM.

Further, we propose an approach to multiple imputation that couples DLMs with nor-

mally distributed random variables having singular valued covariance matrices. This pro-

duces a flexible framework capable of taking advantage of both inherent constraints present

in multiscale (aggregated) data as well as serial correlation. In this context the multiscale

aspect of our approach, in conjunction with the singular value covariance matrix, is critical

as it allows us to effectively capitalize on redundant information in a mathematically rigorous

and fully automatic manner.

In general, no imputation method can be expected to perform well in situations where

the percentage of missingness is excessive. Although in many instances our approach can

overcome a high percentage of missing data by borrowing strength through aggregate re-

lationships. However, there are equally as many cases where the pattern of missingness

precludes such benefit. In those cases, without any additional information a priori, the

performance of our method suffers.

Nevertheless, the effectiveness of our approach is demonstrated through an illustration

(Section 3.2) and an extensive empirical study (Section 4). In particular we apply our

method to 11 QCEW data sets and show that in many instances we are able to impute

suppressed (missing) cells to within 1% accuracy. In doing so we expose the vulnerability of

“cell suppression” as a method for eliminating disclosure risks in longitudinal databases.

Importantly, the approach can be used to assess the vulnerability of longitudinal con-

fidential databases when the method of protection is cell suppression. We envision that it

will be of great importance to federal statistical agencies employing cell suppression. An

agency can implement our approach prior to releasing data to determine if there are any

unsuspected disclosure risks. Releases deemed to have high disclosure risks can be addressed

prior to dissemination. The method is applicable to any multiscale temporal data protected
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under cell suppression and, because of the computational efficiency of our approach, can be

implemented on large scale databases in real time.
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Total Series 1 Series 2 Series 3

wage01-1 399688 49201 197316 153171

wage01-2 714639 S S 479513

wage01-3 688482 54039 233588 400855

wage01-4 447404 S S 198231

wage01-a 2250213 204177 814266 1231770

wage02-1 462232 49039 226622 186571

wage02-2 706801 S 226219 S

wage02-3 679498 S 265220 S

wage02-4 553380 S 216504 S

wage02-a 2401911 150107 934565 1317239

wage03-1 453892 S 235871 S

wage03-2 627605 S 222709 S

wage03-3 492338 28911 260932 202495

wage03-4 488352 29535 224213 234604

wage03-a 2062187 116585 943725 1001877

wage04-1 628245 122516 265484 240245

wage04-2 796096 130296 240055 425745

wage04-3 643023 134871 262762 245390

wage04-4 759910 138567 272218 349125

wage04-a 2827274 526250 1040519 1260505

wage05-1 650100 164995 232009 253096

wage05-2 715893 185907 228384 301602

wage05-3 733692 187186 274578 271928

wage05-4 731393 191415 275615 264363

wage05-a 2831078 729503 1010586 1090989

wage06-1 811330 313003 209979 288348

wage06-2 883901 315194 250611 318096

wage06-3 841881 323209 224255 294417

wage06-4 865273 325835 249976 289462

wage06-a 3402385 1277241 934821 1190323

Table 1: Disclosed QCEW Data Set 1 with suppressed cells denoted by S.



Total Series 1 Series 2 Series 3

wage01-1 35247480 6456128 27555264 1236088

wage01-2 29085928 5638595 22425971 1021362

wage01-3 29331857 6362500 21759797 1209560

wage01-4 32320399 6729254 24490149 1100996

wage01-a 125985664 25186477 96231181 4568006

wage02-1 25233545 6191050 17743550 1298945

wage02-2 22103990 S 15493524 S

wage02-3 23647695 S 16199098 S

wage02-4 27900353 S 19592672 S

wage02-a 98885583 25314368 69028844 4542371

wage03-1 26571054 S 17599297 S

wage03-2 25017823 S 17289908 S

wage03-3 26713862 S 17302366 S

wage03-4 32011096 8794890 S S

wage03-a 110313835 S S S

wage04-1 23082164 8096669 S S

wage04-2 22773180 7932895 S S

wage04-3 23269552 8620975 S S

wage04-4 28673482 9383772 S S

wage04-a 97798378 34034311 S S

wage05-1 21721426 7358822 S S

wage05-2 21716384 7582785 S S

wage05-3 25895877 9134881 15689149 1071847

wage05-4 30344595 9667405 19318854 1358336

wage05-a 99678282 33743893 61309507 4624882

wage06-1 23653708 8605217 13883597 1164894

wage06-2 23924694 9082470 13514676 1327548

wage06-3 21323373 8405353 11707047 1210973

wage06-4 28035179 9988831 16537826 1508522

wage06-a 96936954 36081871 55643146 5211937

Table 2: Disclosed QCEW Data Set 2 with suppressed cells denoted by S.



Total Series 1 Series 2 Series 3

wage01-1 399688 49201 197316 153171

wage01-2 714639 47043 (19086, 75041) 188083 (160085, 216040) 479513

wage01-3 688482 54039 233588 400855

wage01-4 447404 53894 (25896, 81851) 195279 (167322, 223277) 198231

wage01-a 2250213 204177 814266 1231770

wage02-1 462232 49039 226622 186571

wage02-2 706801 48763 (0, 107340) 226219 431819 (373242, 487940)

wage02-3 679498 34427 (0, 89542) 265220 379851 (324736, 433178)

wage02-4 553380 17878 (0, 72974) 216504 318998 (263902, 378480)

wage02-a 2401911 150107 934565 1317239

wage03-1 453892 11872 (0, 58126) 235871 206149 (159895, 261640)

wage03-2 627605 46267 (13, 101578) 222709 358629 (303318, 404883)

wage03-3 492338 28911 260932 202495

wage03-4 488352 29535 224213 234604

wage03-a 2062187 116585 943725 1001877

wage04-1 628245 122516 265484 240245

wage04-2 796096 130296 240055 425745

wage04-3 643023 134871 262762 245390

wage04-4 759910 138567 272218 349125

wage04-a 2827274 526250 1040519 1260505

wage05-1 650100 164995 232009 253096

wage05-2 715893 185907 228384 301602

wage05-3 733692 187186 274578 271928

wage05-4 731393 191415 275615 264363

wage05-a 2831078 729503 1010586 1090989

wage06-1 811330 313003 209979 288348

wage06-2 883901 315194 250611 318096

wage06-3 841881 323209 224255 294417

wage06-4 865273 325835 249976 289462

wage06-a 3402385 1277241 934821 1190323

Table 3: Imputed suppressed cells corresponding to data in Table 1 along with 95% credible
intervals with values rounded to the nearest whole dollar.



Total Series 1 Series 2 Series 3

wage01-1 35247480 6456128 27555264 1236088

wage01-2 29085928 5638595 22425971 1021362

wage01-3 29331857 6362500 21759797 1209560

wage01-4 32320399 6729254 24490149 1100996

wage01-a 125985664 25186477 96231181 4568006

wage02-1 25233545 6191050 17743550 1298945

wage02-2 22103990 5550102 (5323311, 5786374) 15493524 1060364 (824092, 1287155)

wage02-3 23647695 6368924 (6139738, 6597414) 16199098 1079673 (851183, 1308859)

wage02-4 27900353 7204292 (6965088, 7434342) 19592672 1103389 (873339, 1342593)

wage02-a 98885583 25314368 69028844 4542371

wage03-1 26571054 7796647 (7476104, 8097539) 17599297 1175110 (874218, 1495653)

wage03-2 25017823 6602844 (6302386, 6922295) 17289908 1125071 (805620, 1425529)

wage03-3 26713862 8233839 (7912920, 8548211) 17302366 1177657 (863285, 1498576)

wage03-4 32011096 8794890 22044744 (21727171, 22363838) 1171462 (852368, 1489035)

wage03-a 110313835 S S S

wage04-1 23082164 8096669 13824717 (13510783, 14151890) 1160778 (833605, 1474712)

wage04-2 22773180 7932895 13679769 (13362913, 13992710) 1160516 (847575, 1477372)

wage04-3 23269552 8620975 13482879 (13170373, 13796721) 1165698 (851856, 1478204)

wage04-4 28673482 9383772 18108725 (17771926, 18429733) 1180985 (859977, 1517784)

wage04-a 97798378 34034311 S S

wage05-1 21721426 7358822 13268901 (13061204, 13478068) 1093703 (884536, 1301400)

wage05-2 21716384 7582785 13032603 (12823436, 13240300) 1100996 (893299, 1310163)

wage05-3 25895877 9134881 15689149 1071847

wage05-4 30344595 9667405 19318854 1358336

wage05-a 99678282 33743893 61309507 4624882

wage06-1 23653708 8605217 13883597 1164894

wage06-2 23924694 9082470 13514676 1327548

wage06-3 21323373 8405353 11707047 1210973

wage06-4 28035179 9988831 16537826 1508522

wage06-a 96936954 36081871 55643146 5211937

Table 4: Imputed suppressed cells corresponding to data in Table 2 along with 95% credible
intervals with values rounded to the nearest whole dollar.



Data <1% <2% <5% <10%

QCEW1 7.14 42.86 57.14 71.43

QCEW2 0.00 0.00 5.00 50.00

QCEW3 25.00 50.00 100.00 100.00

QCEW4 10.00 50.00 50.00 60.00

QCEW5 48.39 70.97 83.87 93.55

QCEW6 0.00 0.00 0.00 10.00

QCEW7 21.43 28.57 50.00 57.14

QCEW8 30.00 30.00 30.00 50.00

QCEW9 0.00 9.09 13.64 31.82

QCEW10 50.00 87.50 100.00 100.00

QCEW11 62.50 75.00 100.00 100.00

Table 5: Percentage of imputed values within 1,2,5 and 10% of the true values. Note that
QCEW1 - QCEW11 denotes the 11 different QCEW data sets used in this empirical inves-
tigation.
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Percent Missing

Data Aggregate Series 1 Series 2 Series 3

QCEW1 0.00 23.3 6.70 16.7

QCEW2 0.00 0.00 33.3 33.3

QCEW3 0.00 6.70 6.70 0.00

QCEW4* 0.00 0.00 16.7 16.7

QCEW5* 0.00 23.3 30.0 50.0

QCEW6* 0.00 0.00 33.3 33.3

QCEW7* 0.00 0.00 23.3 23.3

QCEW8* 0.00 0.00 33.3 33.3

QCEW9* 0.00 36.7 0.00 36.7

QCEW10 0.00 13.3 0.00 13.3

QCEW11 0.00 0.00 26.7 26.7

Table 6: Percentage of missing values by series within a particular data set. Note that *
indicates that the data set is missing some of the annual totals in addition to the suppressed
disaggregated values. Note that QCEW1 - QCEW11 denotes the 11 different QCEW data
sets used in this empirical investigation.
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Figure 1: Aggregate series along with 3 sub-series corresponding to QCEW Data Set 1. The
circles are the observed data and the triangles are the imputed suppressed cells. The solid
line represents the estimated latent process whereas the horizontal dashed lines and vertical
dashed lines correspond to the 95% point-wise credible interval for the latent process and
imputed suppressed cells respectively.
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Figure 2: Aggregate series along with 3 sub-series corresponding to QCEW Data Set 2. The
circles are the observed data and the triangles are the imputed suppressed cells. The solid
line represents the estimated latent process whereas the horizontal dashed lines and vertical
dashed lines correspond to the 95% point-wise credible interval for the latent process and
imputed suppressed cells respectively.


