NISS

Arctic sea 1ce variability:
Model sensitivities and a
multidecadal simulation

William L. Chapman, William J. Welch,
Kenneth P. Bowman, Jerome Sacks,
and John E. Walsh

Technical Report Number 2
June, 1993

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
WWW.Niss.org



Arctic sea ice variability:

Model sensitivities and a multidecadal simulation

William L. Chapman!, William J. Welch2, Kenneth P. Bowman!, Jerome Sacks3, and John E. Walsh!

June 1993

1 Department of Am;ospheric Sciences, University of Illinois, 105 S. Gregory Ave., Urbana, IL 61801
2 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
3 National Institute of Statistical Sciences, Research Triangle Park, NC 27709



ABSTRACT

A dynamic-thermodynamic sea ice model is used to illustrate a sensitivity evaluation strategy
in which a statistical model is fit to the output of the ice model. The statistical model response,
evaluated in terms of certain metrics or integrated features of the ice model output, is a function of a
selected set of d (= 13) prescribed parameters of the ice model and is therefore equivalent to a
d-dimensional surface. The d parameters of the ice model are varied simultaneously in the
sensitivity tests. The strongest sensitivities arise from the minimum lead fraction, the sensible heat
exchange coefficient, and the atmospheric and oceanic drag coefficients. The statistical model
shows that the interdependencies among these sensitivities are strong and physically plausible. A
multidecadal simulation of arctic sea ice is made using atmospheric forcing fields from 19601988
and parametric values from the approximate mid-points of the ranges sampled in the sensitivity
tests. This simulation produces interannual variations consistent with submarine-derived data on
ice thickness from 1976 and 1987, and with ice-extent variations obtained from satellite passive
microwave data. The ice model results indicate that (1) interannual variability is a major
contributor to the differences of ice thickness and extent observed over timescales of a decade or
less, and (2) the timescales of ice thickness anomalies are much longer than those of ice-covered
area. However, the simulated variations of ice coverage have less than 50% of their variance in
common with observational data, and the temporal correlations between simulated and observed

anomalies of ice coverage vary strongly with longitude.



1. Introduction

Over the past few decades, models have become increasingly useful tools in the study of sea
ice and the high-latitude climate system. Among the advantages offered by sea ice models are @)
information on variables (e.g., ice thickness, ice strength) that are difficult to measure, (2) the
facilitation of diagnostic analyses of the physical and dynamical mechanisms underlying simulated
changes of sea ice, and (3) the potential for coupling to atmospheric and oceanic models for
simulations of interactions with other key components of the climate system. A primary
disadvantage of sea ice models is that their formulation generally involves various algorithms that
introduce a host of parametric sensitivities. Because these sensitivities and their interdependencies
are often difficult to evaluate in a comprehensive manner, they are rarely documented thoroughly
despite the fact that many of the parameters are potentially powerful “tuning knobs” in the sea ice
simulations.

The present paper has two components. First, we use a dynamic-thermodynamic sea ice
model to illustrate a new procedure for the evaluation of multivariate parametric sensitivities. This
procedure provides a means to address the interdependencies of the sea ice model sensitivities.
Second, we illustrate advantage (1) above by using the same model, forced by analyzed fields of
atmospheric variables, to generate a proxy record of sea ice thickness in the Arctic Ocean. This
simulation spans the past few decades, a period for which the few available thickness

measurements need spatial and temporal perspective.

2. Sea Ice Model

The model contains Hibler’s (1979) two-level dynamic formulation and Parkinson and
Washington’s (1979) thermodynamic formulation, together with subsequent modifications
described by Walsh and Zwally (1990). The model has served as the basis of prior model studies
(Ross and Walsh, 1987; Preller and Posey, 1989; Riedlinger and Preller, 1991). While the



formulation has been presented in the earlier papers, we summarize the key elements of the
formulation here in order to highlight the parameters that are varied in the sensitivity analysis.
The dynamic formulation is based on a momentum balance for a mass m of ice within a grid

cell:

m——=7% +7, +mfkxV,-mg VH+F 1)

where Vi is the ice velocity; %a and T, are the wind and ocean stresses on the top and bottom
surfaces of the ice; m £k x Vi is the Coriolis force (f is the Coriolis parameter); m g GH gives the
acceleration due to sea surface tilt (H is the dynamic height of the ocean); and F is the internal ice
stress term. The air and water stresses are computed using prescribed drag coefficients (C, and

C,,) and constant turning angles (¢ and 8):
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where p, and py, are the densities of air and water, Va is the geostrophic wind, Vw is the
geostrophic ocean current, and k is the vertical unit vector. The internal ice stress is evaluated with
the aid of a viscous-plastic constitutive law, which relates the ice stress to the ice deformation rate
and the ice strength. The ice strength, P, is a function of the grid-cell mean ice thickness, h, and

the compactness, A:

P =P* h exp[-C (1-A)] )

where P* and C (= 20) are prescribed constants.

The ice thickness and compactness change in response to advection, convergence or
divergence, thermodynamic growth or melt, and small numerical diffusion terms included for
numerical stability. A key parameter in the treatment of the compactness is a prescribed minimum
lead fraction, MLF = 1 - A, Which limits the compactness to Ap,x. The minimum lead fraction
permits the inclusion of the effect of small-scale motions within a grid cell, since these motions
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tend to maintain a small fraction (several percent) of open water or very thin ice within the pack
even during winter. The small areas of open water and thin ice are extremely important to the
surface mass, energy and moisture budgets because most of the ocean-atmosphere exchanges of
sensible and latent heat occur in these regions, as does much of the new ice growth and salt
rejection.

The model’s thermodynamic component, which provides the rates of ice growth and melt,

has at its core a surface energy budget:
- - K
(L), + R + Dy | V, |(To-To) + Dy Vi |(@a+9o) - €0 T + £ (Tw-To) = 0, (5)

where o is the surface albedo, Fg is the flux of solar radiation reaching the surface, Fy is the
downcoming flux of longwave radiation, D and D, are bulk transfer coefficients for sensible and
latent heat, T, is the air temperature, T, is the ice (surface) temperature, Ty, is the ocean mixed
layer temperature, € is the surface emissivity, ¢ the Stefan-Boltzmann constant, and K is the
thermal conductivity. Given the radiative fluxes (Fg, Fp) and the relative humidity (for qy), B)is
solved for the surface temperature, T,. If T, exceeds the freezing temperature when ice is present,
T, is set to the freezing temperature and the excess energy is used to melt ice. At the bottom
surface of the ice, the rate of ice growth or melt is determined by the imbalance between the
conduction of heat into the ice and the prescribed vertical flux, F,, of oceanic heat into the mixed
layer.

The downcoming fluxes of solar and longwave radiation are both parameterized in terms of
prescribed cloud fractions, C¢ , varying from 0.5 in winter to 0.9 in summer. The shortwave flux

reaching the surface is the daily integral of Zillman’s (1972) expression:

F, = Scos?Z 1-06C ©6)
(cosZ + 2.7)(105 e) + 1.08 cos Z + 0.10

where S is the solar constant, Z is the solar zenith angle, e is the vapor pressure, and B is a

prescribed constant. The downcoming longwave flux reaching the surface is obtained from Idso

and Jackson’s (1969) clear-sky parameterization and an additional contribution proportional to C¢

(Parkinson and Washington, 1979):
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where 7 is a prescribed constant. The sensitivity analysis described in Section 3 includes
systematic variations of the parameters B (over the range 1.0-4.0) and y (over the range 0.1-0.5).

The thermodynamic model includes snowfall at prescribed rates that vary seasonally. In the
sensitivity experiments of Section 3, the prescribed snowfall rates are varied systematically so that
the annual totals span the range 0-5.0 m yr -1. Snow on top of the ice affects the model in two
ways. First, the snow serves as an insulator of the ice through the modification of the conductivity
K in (5). Computationally, K is a depth-weighted mean of the conductivities of snow and ice.
Second, snow has a substantial effect on the absorption of solar radiation through the increase of
the surface albedo from approximately 0.60 to 0.80. In the sensitivity experiments, the albedo of
snow (o) is varied systematically from 0.50 to 1.00, while the albedo of snow-free ice (a) is
varied from 0.30 to 0.80. By contrast, the albedo of the open water fraction of a grid cell (a,,) is
typically about 0.10; the range of values spanned by the experiments described here is 0.00-0.50.

The version of the model used here inéludes the concentrations and thicknesses of two ice
types: multiyear and first-year. Multiyear ice is, by definition, ice that has survived a summer melt
season. Both types of ice are advected, diffused and subjected to changes of thickness at rates
obtained from separate applications of the surface energy budget in (5). Walsh and Zwally (1990)
describe the modifications of the formulation entailed by the distinction of the two ice types.

The model is run with a daily timestep on a 110 km polar stereographic grid (Figure 1). The
forcing consists of corresponding daily grids of surface winds and air temperatures. The winds
are derived from the sea level pressure analyses archived at the National Center for Atmospheric
Research; from 1979 onward, the portions of these analyses for 70°-90°N are replaced with those
of the Arctic Ocean Buoy Program (e.g., Thorndike and Colony, 1980). A linear smoother was
applied to the transition zone 65°-75°N to incorporate the buoy pressure analyses into the composite
pressure grids. The monthly surface air temperature grids from the University of East Anglia
(Jones et al., 1986) are used to obtain daily values by cubic spline interpolation. The daily

radiative forcing is computed from (6) and (7); a spatially invariant relative humidity of 90% is
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used to obtain the vapor pressure in (6). The ocean dynamic topography and hence the ocean
currents are temporally invariant, while the prescribed monthly rates of snowfall are climatological
and spatially invariant. The spatially invariant vertical flux of oceanic heat into the mixed layer
varies over the range 0—5 W m2 in the sensitivity experiments of Section 3. Although the model
contains a mixed layer in which the temperature varies spatially and temporally (when ice is not
present), there is no horizontal heat transport by the ocean currents. As noted in previous studies
(Walsh et al., 1985; Walsh and Zwally, 1990), the absence of ocean heat transport results in an
over-simulation of ice extent during the winter. However, we use the ice model in this uncoupled
state because (1) we wish to illustrate the multivariate sensitivity analysis procedure without the
complications introduced by coupling, and (2) our examination of the simulated variations of ice
thickness will focus on the Arctic Ocean.

The primary sea ice simulation (Section 5) begins on 1 January 1960 and continues through
1988. The model is initialized by an 8-year spin-up using the forcing data of 1960-1963, repeated
twice. The sensitivity experiments of Section 4 use as their initial state the primary simulation’s
fields of ice thickness, concentration and velocity on 1 January 1980. This starting date was
chosen for no other reason except that the simulations would span the years in which the Arctic

buoy sea level pressure analyses were incorporated into the forcing data.

3. Statistical Model and Experimental Design

As the summary of the formulation in Section 2 suggests, the ice model results are potentially
sensitive to many parameters in the ice physics and in the formulation of the atmospheric forcing.
Because the sensitivity tests require simulations of about five years in order to determine the
equilibrium response to a parameter variation, it can be prohibitively expensive to evaluate the
interdependencies of the sensitivities for a complete span of the parameter space. (For example,
sampling five values 6f each of only five parameters would require 55 = 3125 simulations of about
five years each.) Based on a methodology for design and analysis of computer experiments

described by Sacks, Schiller, and Welch (1989), Sacks, Welch, Mitchell, and Wynn (1989), and
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Welch et al. (1992), Bowman et al. (1992) have recently presented a prototype study of a method
for the efficient testing of sensitivities in multi-dimensional parameter space. This method, which
is similar to kriging in the spatial analysis literature, fits a statistical model to the output of a set of
runs of a numerical model (see Appendix for details). The model response, evaluated in terms of
certain metrics or integrated features of the output, is regarded as the dependent variable, while the
model parameters are treated as independent variables. The statistical model postulates that a
response is a realization of a stochastic process; the joint distribution of the statistical model
response depends on several constants, which are fit to the data by using a maximum likelihood
method. The accuracy of the statistical model is measured by cross-validation. The statistical
model is a continuous function of the d parameters to which the sensitivities are to be evaluated, so
the model is equivalent to an d-dimensional surface. This surface indicates the parameters and
corresponding subranges to which the model output is most sensitive.

The sets of input data points (i.e., the values of the parameters) are obtained by Latin
hypercube sampling (McKay et al., 1979). Given an experimental design in which the number of
experiments is n, the input range for each parameter is divided into n equally-spaced values. For
each experiment, the value of each input parameter is chosen randomly from the equally-spaced
values without repeating previous values. (In the case of P*, the values were equally spaced on a
logarithmic scale.) The resulting set of parameter combinations spans the range of all the
individual parameters and distributes the combinations throughout the parameter space. As noted
above, the use of a complete regular grid of parameters is infeasible even in spaces of moderate
dimension (5-10).

Iman and Conover (1982) described how to transform a random Latin hypercube into one
with a desired correlation pattern. By iterating their procedure, near-zero correlations can be
achieved between all pairs of input parameters. This controls the two-dimensional distributions of
points better than a random Latin hypercube.

The number of runs necessary to produce a satisfactory statistical model is difficult to predict
a priori. It depends in large part on the smoothness of the model response throughout the
parameter space of interest. Experience suggests that a number equal to ten times the number of
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important input factors is a good initial guess. The adaptive and sequential nature of the method is
valuable in this regard, since additional runs can be added and the improvement in the statistical
model gauged.

The specific assumptions we make typically endow the data with a Gaussian distribution in
many dimensions. The likelihood or joint distribution of the data under this specification will
depend on several constants. By using the maximum likelihood method to fit the constants of the
statistical model to the data for a particular response, y, we specify the statistical model sufficiently
to predict y by ; For deterministic numerical models, the statistical model we use insists that ; be
an interpolator. Thus the model reproduces the output data directly at the input points.

As described by Wahba and Wendelberger (1980) in the context of spatial interpolation, the
cross-validation method used for measuring accuracy proceeds as follows. An experimental run is
set aside and a statistical model is fit to the remaining data. This model is then used to estimate the
response at the set-aside point, and a comparison is made between the predicted and actual
outcomes produced by the numerical model. The process is repeated for each combination of input
parameter values, and the results are used to obtain an overall measure of accuracy.

On the basis of the sea ice model formulation in Section 2 and our previous experience with
the model, thirteen parameters were chosen as independent variables to be input to the statistical
model. Table 1 lists these variables, together with the range of values over which each was varied.
These ranges should be kept in mind when interpreting the results: sensitivity with respect to a
parameter would tend to decrease if a narrower range is chosen. The first three entries in Table 1
pertain to the model dynamics. C, and C,, determine the strength of the air and water stress for
given values of the wind and ocean currents (relative to the ice). An increase of P* effectively
hardens the ice and tends to reduce the ice motion when the ice is compact. Table 1’s fourth entry,
the minimum lead fraction, affects both the ice dynamics (through A and P¥) and the
thermodynamics (through the albedo and the surface energy budget). In simpler formulations of
sea ice, the minimum lead fraction is indeed a high-leverage parameter (Ledley, 1991a). Items 5-7

in Table 1 are the prescribed albedos for each of the three surface types; the ranges of these



quantities have been chosen to include the observational uncertainties in each. Items 8 and 9, the
surface exchange coefficients, determine the magnitudes of the sensible and latent heat exchanges.
One might expect Item 10, the snowfall rate, to be associated with competing effects. An increase
of the snowfall rate favors thicker ice through the increase of the spring-summer albedo, while it
favors thinner ice through the more effective insulation of the ice during winter. In Ledley’s
(1991b) energy balance model results, the net effect of increased snowfall is a decrease of annual
mean ice thickness. Items 11 and 12 are crude parametric measures of cloud-radiative interactions.
An increase of P decreases the depletion of the solar beam by cloudiness, thus increasing the
incoming solar flux, F, at the surface. An increase of yincreases the downcoming longwave flux,
Fy, in direct proportion to the cloud fraction. Finally, an increase of the oceanic heat flux (Item 13)
will tend to decrease the ice thickness by favoring ice ablation (or retarding ice accretion) on the
underside of the ice.

Four measures of the ice response (the “y” of the Appendix) were explored in the sensitivity
analysis. These were (a) the annual mean ice mass, (b) the annual mean ice-covered area, (c) the
annual mean ice drift speed (averaged over all grid points containing ice) and (d) the annual range
of ice-covered area, i.e., the difference between the maximum and minimum ice covered area

during the year. In all four cases, the response was evaluated from the model output for the fourth

year of a four-year simulation beginning on 1 January 1980.

4. Results of Sensitivity Analysis

Of an initial set of 81 randomly generated experiments, 70 were executed to completion. The
remaining 11 experiments became numerically unstable. Furthermore, one of the stable cases gave
a very extreme value for annual mean ice drift speed and was deleted for all responses. Statistical
models were fitted, one for each response, using the remaining 69 good runs, but cross-validation
accuracy appeared inadequate. Thus, a set of additional experiments was obtained by searching the
original Latin hypercube design for the 50 largest holes in the input parameter space. The points

defining the centers of these data-void regions of parameter space were then used to increase the
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resolution of the analysis. Of the 50 additional simulations, 12 became numerically unstable prior
to completion. Accuracy was judged to be inadequate still, and another 60 runs were chosen in the
same way. Of these, another 10 were unstable, giving a total of 157 good runs from the three
stages. The statistical models fitted to the aggregate data still have mixed degrees of accuracy.
Figure 2 shows the cross-validation predictions versus the true (simulated) values. It can be seen
that mass is fairly well predicted, except for one very discrepant case. Allowing the simulation to
extend four more days proved this case to be unstable as well. Area is also reasonably well
approximated by its statistical model, but drift speed and range of area are clearly inaccurate.
Moreover, further data from the second and third-stage experimental designs did not appreciably
improve the approximations for drift speed and range of area. We speculate below that the
numerical model may be erratic in some regions of the parameter space, and hence unpredictable to
some extent. In any case, collecting further data (at considerable computational cost) appears to
have questionable marginal utility. Given the inaccuracy of the velocity and range-of-area models,
the results below for these responses should be treated with caution. Results for the more useful
mass and area responses appear to be fairly reliable, however. Inspection of the output data
reveals no obvious anomalies. We note, however, that the mass data and drift speed data each
vary over 1-2 orders of magnitude, whereas area and range-of-area show less variability. In this
sense, mass and drift speed are more sensitive responses. We now ascribe these sensitivities to
specific input parameters.

The important estimated single-parameter sensitivities are shown in Figure 3. These are
obtained from the statistical predictor by integrating ; with respect to all input parameters with one
exception; i.e., integrating out all but one parameter and hence isolating its effect. For unimportant
inputs these plots would be fairly horizontal, thus they are omitted. Table 2 quantifies the
sensitivities by apportioning the total variability of each response to the various input parameters.
For example, we see from Figure 3 that MLF and D1 have large effects on ice mass, and Table 2
shows that these two inputs indeed account for an estimated 37.4% and 34.5%, respectively, of

the total variability in ice mass.



Such a decomposition of a response’s variability amongst individual parameters is only valid
if the response function is approximately additive in functions of single input parameters, over the
ranges examined. As outlined in Appendix A, however, we can also identify joint effects of
several inputs together. Such higher-order effects appear to be important only for ice mass. We

now consider each response in detail.
4.1 Ice mass

As already noted, ice mass depends strongly on two inputs--MLF and D1. An increase of D
increases the rate of heat loss from the ice surface during the non-summer months, thereby
increasing the conductive heat loss from the subsurface ice/ocean and increasing the freezing rate.
A larger MLF increases the cold-season loss of sensible heat from the surface of each grid cell by
allowing a larger area of direct contact between cold surface air and the relatively warm underlying
ocean. These two variables work in tandem to modify the surface energy balance in the ice model:
the effect of an increase of the MLF is greater if the sensible heat transfer coefficient is large, and
an increase of the sensible heat transfer coefficient has a greater impact when the MLF is large.
Figure 4a illustrates the effect of this two-parameter interaction by showing the total ice mass as a
joint function of D; and MLF. Although not shown explicitly in Table 2, over 9% of the variance
of the statistical model’s response is explained by the interaction between these two parameters,

over and above their individual additive effects.
4.2 Ice area

Approximately one half of the variance of the ice-area response is determined by the value of
D, , the sensible heat exchange coefficient (Table 2, column 2). The physical mechanism in this
case entails a more rapid loss of heat by the ocean and thus a more rapid cooling to freezing. Some
ocean areas that would not cool to freezing with a small value of D; will do so as D; becomes
large. Similarly, the tendency for ice to be thicker when D; is larger will result in a longer ice

season at most grid points, thus increasing the ice-covered area over time. Table 2 shows that D, ,
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the turbulent exchange coefficient for latent heat, also contributes to the ice-area response, although
to a lesser extent than D, . Physically, greater rates of evaporation (larger D, ) will increase the
rate of heat loss by the surface, thereby enhancing the likelihood that the temperature will drop to

freezing in regions equatorward of the ice boundary.
4.3 Mean Dirift Speed

As Table 2 and the above discussion indicate, the ice mass and ice area generally depend
more strongly on parameters in the thermodynamic formulation than on the parameters in the ice
dynamics formulation. The dependences of the mean drift speed are quite different. Table 2
shows that the drift speed is determined primarily by the atmospheric and oceanic drag coefficients
and secondarily by the ice strength parameter and the minimum lead fraction. The effects of the
surface winds on the ice motion are well known, and in this analysis the atmospheric drag
coefficient is the primary contributor to the response of the ice drift speed. As the atmospheric
drag coefficient is increased, the model’s average ice drift speed increases. In contrast, the
sensitivity analysis shows that the average ice drift speeds decrease with increasing values of the
oceanic drag coefficient. Thus the ocean currents tend to impose a drag on the ice from beneath the
ice, slowing the motion forced by the surface winds from above the ice.

Figure 4b shows the competing effects on ice drift speeds of the drag forces at the top and
bottom surfaces of the ice. The effects are clearly interdependent. For example, in the absence of
oceanic drag, the mean drift speed increases substantially (more than three-fold) as the atmospheric
drag coefficient increases from 0 to .0015. Similarly, the tendency for the oceanic drag coefficient

to decrease the ice drift speed is much greater when the atmospheric drag coefficient is larger.
4.4 Ice range-of-area

As indicated in Table 2, no single parameter dominates the response of the range-of-area
(winter to summer). The percentages of explained variance are spread over more of the input
parameters than in the case of the other response variables. The larger influences do, however,
generally come from the parameters that influence the ice dynamics (i.e., C,, Cy, p* and MLF).
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The interdependencies among these sensitivities are again quite strong. Figure 4c, for example,
shows that the range-of-area depends on the atmospheric and oceanic drag coefficients in a way
that is qualitatively similar to the corresponding dependencies of the ice drift speed (Figure 4b). To
the extent that the ice velocities determine the range-of-area (by expanding the winter ice coverage
through horizontal transport), the interdependencies in Figure 4c are quite plausible.

The interplay between the ice strength and the atmospheric drag coefficient (C,) is shown in
Figure 3d in terms of the response of the range-of-area. The interdependence is quite strong and
systematic in this case. The dependence on ice strength increases from negligible at small values of
C, to quite strong at large values of C,. This dependence is also quite plausible if winter ice
coverage is enhanced by advective transport, since ice strength should have a greater impact on ice

transport when the air stress (the primary motive force) is large.
4.5 Numerical model diagnostics

Almost 20% of the ice model simulations were numerically unstable and therefore did not
contribute a model response at certain input points. Analysis of the locations of these input
configurations, combined with examination of the statistical model to highlight regions where
prediction is apparently difficult, shed some light on the reliability of the numerical model.

The plots in Figure 5 show the relationship between the statistical model cross-validation
residuals or errors, as given by equation (A.10), and the input parameters. For example, Figure 5a
plots the cross-validation errors for ice mass versus oceanic drag. Large statistical-model errors,
including the extreme error already noted in Section 3, tend to occur when oceanic drag is low.
The dots plotted along the bottom of this figure indicate the values of oceanic drag for the 34
unstable runs. This shows that unstable runs also tend to occur when oceanic drag is low.

Inspection of the analogous plots for the other inputs and outputs shows:

o]

Atmospheric Drag tends to be high for the unstable runs.
°  The five biggest absolute errors for the ice-area statistical model all occur when the sensible

heat flux is very close to its lower limit (Figure 5b).
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°  Mean drift speed and range-of-area are inaccurately predicted when the oceanic drag
coefficient is low.

Inaccuracy of a statistical model could imply inadequacy of the modelling strategy. There is
some overlap, however, between regions where errors are large and those where the numerical
model is demonstrably unstable. Thus, we suspect that the responses are inherently difficult to
predict when the oceanic drag coefficient is low and/or atmospheric drag coefficient is high.

Further evidence that the response functions can be erratic (hence difficult to predict) stems
from the following investigation. In an attempt to describe the behavior of the ice model as it
approaches an unstable region of the parameter space, we performed a set of 16 experiments in
which simulations were executed at points along a line connecting the center of the parameter space
to a point found to lie within an unstable region. The unstable point chosen was located at an
extreme of the ranges chosen for both the atmospheric and the oceanic drag coefficients. The
model response for simulations 1-12 varied smoothly and predictably as the input parameters
progressed away from the center of the parameter space. Simulations 13, 15 and 16 were found to
be numerically unstable. The model response for simulation 14, however, appeared to fall
somewhat in line with those for 1-12. Thus it appears that there may be points in the domain
which could appear to have a stable model response but, in fact, lie within an unstable region of the
model parameter space. Due to the nonlinearity of the model and the relatively short simulation
length (4 years), it is apparent that some simulations initialized with points found within an
unstable region of the parameter space may not reveal themselves as such. These points may
contribute to the noise that is apparent in some of the statistical model results, e.g., Figure 4b.

The examples discussed above indicate that the statistical methodology is able to capture the
fundamental physical sensitivities and their interdependencies. In general, the interdependencies
are most apparent and most plausible in the sensitivities to the dynamical parameters. This
tendency may be a consequence of the fact that the ice model generally contains more sophisticated
(and presumably more realistic) formulations of the ice dynamics than of the thermodynamics.

Conclusions about the generality of our findings must therefore await applications to more
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comprehensive formulations of sea ice thermodynamics and the corresponding forcing (e.g., Curry

and Ebert, 1992).

5. Results of Multidecadal (1960-1988) Simulation

The multidecadal simulation, which was intended to provide a framework for an examination
of the temporal variability, used the parameter values listed in the right hand column of Table 1.
All parameter values are from within the ranges used for the sensitivity tests of Section 4. While
we did not use the sensitivity analysis to choose these parameter values (the multidecadal
simulation was performed prior to the sensitivity tests), the sensitivity analysis provides an
excellent tool for determining the subset of combinations of parameter values that will result in a
certain equilibrium. This combination of parameters produced a model climatology that, in some
respects, compares favorably with observational data, especially in the Arctic Ocean (see results
presented below). In other respects, especially in the peripheral seas during winter, the model’s
climatology is biased with respect to observational data. The most notable bias, the excessive sea
ice extent during winter, is consistent with the absence of ocean dynamics and the corresponding
horizontal transport of oceanic heat.

Figure 6 shows the model’s seasonal climatologies of ice thickness and velocity.
Characteristic features are the clockwise gyre of ice motion in the Arctic Basin, the relatively strong
velocities advecting ice through Fram Strait and into the Greenland Sea, and the thickness build-up
offshore of northern Greenland and the Canadian Archipelago. Annual mean ice thicknesses range
from 2-3 meters in the Alaskan Arctic and the Siberian shelves to 5-6 meters north of Greenland
and Baffin Island. Ice extent during the winter and spring is excessive in the North Atlantic and
the Bering Sea for the reason noted above.

On shorter timescales, the model velocities show considerably more variability than can be
deduced from Figure 6. Figure 7 shows the trajectories during 1987 of simulated buoys placed on
the ice initially (January 1, 1987) at the locations of actual buoys monitored monthly by the Arctic
Ocean Buoy Program (Colony and Rigor, 1991). The simulated trajectories, based on the daily

velocities of the ice model, are superimposed on the ice thicknesses and multiyear ice
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concentrations for December 31, 1987. In most cases, the trajectories of the simulated buoys
correspond well to the actual month-to-month buoy displacements (Figure 8), in terms of the net
displacements and the meanders over monthly-to-seasonal timescales. Two buoys are not well
simulated: the motion of the buoy that exits the Arctic through Fram Strait is undersimulated,
suggesting an underestimate of the current-induced component of the motion; and the simulated
buoy near the center of the Beaufort Gyre undergoes a small displacement toward the west rather
than to the north. The motion of the buoys in the Chukchi and Lincoln Seas are reproduced
especially well by the model.

Figure 7a also shows that the simulated ice thickness for December, 1987, is quite similar to
the model’s winter climatological field (Figure 6a). Thc. spatial pattern of the multiyear ice
concentration (Figure 7b) closely resembles the pattern of ice thickness, indicating that the age of
the ice is a key determinant of spatial variations of ice thickness. An unrealistic feature of the
multiyear ice distribution in Figure 7b .is the region of thick multiyear ice along the Siberian coast in
the western Chukchi Sea. The westward wind stress in this region results in an excessive build-up
of sea ice to thicknesses such that the ice does not melt completely during the summer. By
definition, the surviving ice becomes multiyear ice. While such build-ups do not occur in all years,
they occur in a sufficient number of years that they produce noticeable features in the seasonal
mean plots of Figure 6. The excessive component of this build-up appears to result from a variety
of reasons. The coarse resolution of the model domain results in coastal grid points which have
some edges perpendicular to the mean drift pattern of ice in this region. Convergence of ice against
these unrealistic coastal edges may cause the model-derived ice thicknesses to be larger than
observed. Also, the model seems to provide an inadequate representation of the northerly surface
ocean currents and poleward heat treansport through Bering Strait. For longer timescales, this may
also contribute to the excessive build-up of ice in this region.

The annual net ice growth simulated by the model is shown in Figure 9. Because the ice is
advected horizontally by the ice motion, the location in which a sample of ice melts is generally
different from the location in which it originally formed by freezing. The prevailing pattern of ice

drift in Figure 6 is such that the continental shelves of central Asia and the eastern Beaufort Sea are
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regions of net ice formation. The regions into which ice advection occurs (e.g., the Greenland
Sea, the Barents Sea) are regions of net ice melt (negative annual ice growth). This effect of ice
transport is equivalent to a flux of freshwater or, alternatively, a flux of salinity from the regions of
net ice melt to the regions of net ice formation. Figure 9 shows that much of the central Arctic
Ocean is characterized by net annual ice growth of 0.4-0.6 m in the model simulation; this ice
generally forms in areas of ice divergence during the cold season, and the net growth is offset by
advection into the regions of ice melt. Figure 9 also contains several examples of more localized
“conveyor belts” indicative of advection from a zone of ice formation to a zone of ice melt in
peripheral seas: the Bering Sea, Baffin Bay and Hudson Bay. An unrealistic feature of Figure 9is
the net annual ice growth to the west and south of Spitsbergen. The absence of horizontal heat
transport by the ocean into this region results in a situation in which subfreezing water
temperatures are maintained erroneously as ice is advected southwestward from Spitsbergen.

In order to address the timescales of the fluctuations of ice thickness, we have evaluated
anomalies of the simulated ice thickness along a transect that generally parallels the long-term
pattern of ice drift from the Beaufort Sea into and along the Transpolar Drift Stream (Figure 1).
The anomalies are the departures from the model’s monthly means. As shown in Figure 10, the
anomalies of ice thickness are characterized by timescales of several seasons to several years.
When measured along the transect (left-right in Figure 10), the horizontal scales of the anomalies
are typically several hundred to a thousand km. There is some evidence of advection of the
anomalies by a long-term mean drift as the anomalies in various portions of Figure 10 tilt
downward to the right. Anomalies for which this tilt is especially apparent occur in the early
1960s, the late 1970s — early 1980s, and the late 1980s. The positive anomaly that is northwest of
Greenland in the late 1970s generally maintains its identity along the entire transect until its passage
through Fram Strait in 1984.

An intriguing finding based on submarine data is the apparent decrease of ice thickness
between 1976 and 1987 in the region east of northern Greenland (Wadhams, 1990). Although
Wadhams’ submarine data were from slightly different tracks and different calendar months
(October 1976 and May 1987), the data indicate “. . . a significant decrease in mean ice
thickness . ... This thinning amounts to a loss of volume of at least 15% over an area of
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300,000 km2” (Wadhams, 1990, p. 795). A key issue pertaining to the differences between the
two distributions of ice thickness is the representativeness of the “anomalies:” Do the differences
represent interannual fluctuations or are they indicative of a more systematic trend? Wadhams’
examination of buoy drift prior to May 1987 suggested that the former possibility is real.

In order to address both the spatial and temporal representativeness of the data samples
compared by Wadhams, we have denoted by heavy dots in Figure 10 the space-time points
corresponding to Wadhams’ submarine data. The model-derived anomalies are strongly positive in
October 1976 and nearly zero in May 1987. In this respect the anomalies are consistent with the
findings of Wadhams (1990). However, the anomalies of these two years are not representative of
a systematic trend in the model results. In the Fram Strait area, the model-derived thickness
anomalies were preceded and followed by anomalies of a different sign. The overall pattern of ice
thickness anomalies (Figure 10) shows a weak tendency toward thicker ice during the 30 years
beginning in 1960. However, this trend is not statistically significant and is due primarily to the
preponderance of negative anomalies in the middle and late 1960s. It is noteworthy in this regard
that there is only modest evidence in Figure 10 of the heavy ice conditions associated with the
“Great Salinity Anomaly” of the late 1960s and early 1970s (Dickson et al., 1988). The simulated
ice was slightly thicker than “normal” in Fram Strait during 1970-1972, but an upstream signal is
not apparent in Figure 10. The absence of such a signal may not be surprising because the
observational evidence of the Great Salinity Anomaly comes from the waters well to the south of
Fram Strait. Moreover, the effects of salinity are not included in this formulation of the model.
The model-derived outflow of ice through Fram Strait is nevertheless larger during 1970-1971
than at any other time during the simulation, but the earliest oceanographic indications of the Great
Salinity Anomaly appeared several years earlier (Dickson et al., 1988).

As a further indication of the absence of any significant negative trends in the model output,
Figure 11 shows the time series of simulated (total) ice-covered area as well as the simulated (total)
ice mass. The only apparent indication of a negative trend is found in the wintertime maxima of

ice-covered area, which decrease by approximately 5% from the mid-1970s to the mid-1980s.
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This decrease of wintertime areal coverage is consistent with that obtained from satellite passive
microwave imagery for 1978-1987 (Gloersen and Campbell, 1991). However, any claims
concerning temporal trends in the model output must be qualified in several respects. First, the
parameters of the ice model can easily be adjusted to produce a trend of either sign in the simulated
ice mass or ice coverage. The long-term (1960-1988) simulation was indeed tuned to give a
temporally stable time series by varying the cloud depletion parameter B (Table 1). Similar tuning
could have been performed with many of the other parameters in Table 1, as well as with
parameters not included in Table 1. Second, as described below, the correlations between
simulated and observed variations of ice coverage are such that much of the observed variance is
unexplained by the model. It is therefore quite difficult to regard as meaningful the secular trends
representing only small portions of the variance of the simulated time series.

Figure 12 is a time-longitude representation of the simulated anomalies of ice-covered area.
While this figure is intended to permit a comparison of the timescales of anomalies of ice-covered
area and ice thickness (Figure 10), the horizontal axis is longitude in Figure 12 rather than distance
along a central Arctic “transect” as in Figure 10. These two figures nevertheless indicate that the
timescales of ice-area anomalies are much shorter than those of ice thickness. Most anomalies of
the simulated ice coverage at a particular longitude last less than a year, and there is no indication of
a systematic tendency for east-west advection of the anomalies. In these two respects, the contrast
with the thickness anomalies in Figure 10 is striking. The simulated fluctuations of ice-covered
area are more rapid than those derived from observational data (Chapman and Walsh, 1992, Fig.
5), which show the persistence of some relatively large anomalies over timescales of several years.
The period of the Great Salinity Anomaly noted earlier is one such example. The absence of
oceanic coupling appears to contribute to the rapidity of the simulated fluctuations of ice-covered
area, since the model is effectively missing a slowly varying source of temperature and salinity
anomalies that directly affect the expansion and contraction of the sea ice margin.

Figure 13 shows the correlations between the simulated and observed anomalies of ice-
covered area in 20° sectors of longitude. (The correlations are limited to the 1972-1988 period of

homogeneously charted ice concentrations from the U.S. Navy/NOAA Joint Ice Center.) While
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the correlations vary considerably with longitude, they are generally largest (2 0.7) in the Bering
Sea, the eastern Canadian waters, and in the sectors of several of the North Atlantic subpolar seas.
The smallest correlations (110°E, 110-150°W) are found in sectors in which the advance of the ice
is land-blocked during much of the year. The average of the correlation over all sectors is only
0.53. Although deficiencies in the observational data may account for some unexplained variance,
it is apparent that much of the observed variability is not captured by the model. Fleming and
Semtner (1991) have shown that oceanic coupling can result in a modest increase of explained
variance over interannual timescales, but even coupled models have yet to reproduce more than half
the interannual variance of corresponding time series of observed ice coverage. This “state of the
art” implies that ice models must be used with extreme caution in applications pertaining to trend

detection.

6. Conclusion

The findings obtained here may be viewed in several lights. On the one hand, the statistical
model results show that the ice model sensitivities are many and that the sensitivities to various
parameters are interdependent. The sensitivities and their many interdependencies are quantifiable,
as shown in Section 4. However, the complex set of sensitivities casts ‘a pervasive shadow over
the interpretation of sea ice simulations driven by interannually variable forcing, since the model
response to the variable forcing may change considerably if the model parameters are changed. On
the other hand, the simulation described in Section 5 was able to produce interannual variations
consistent with the ice thickness data of Wadhams (1990) and the ice-extent variations reported by
Gloersen and Campbell (1991). If these correspondences are valid, the model results then imply
that interannual variability is a major contributor to the changes of ice thickness and extent over
timescales of a decade or less. The multidecadal model results also indicate that the timescales of
ice thickness anomalies are much longer than those of ice-extent anomalies, suggesting that ice
thickness is a much more conservative variable on a year-to-year basis. If the actual ice-ocean
system varies similarly, then the sampling requirements for the monitoring of ice thickness may be

less severe than those for areal ice coverage. Hypotheses such as this one should be pursued
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through further experiments with models containing more realistic forcing (e.g., radiative fluxes)
and physics (e.g., oceanic coupling).

With regard to the physical-statistical methodology examined in Sections 3 and 4, the ultimate
value of such an approach may lie in its quantitative depiction of the sensitivities relative to the
observational uncertainties in the various parameters and combinations thereof. In the case of the
minimum lead fraction, for example, the total ice mass varies by nearly a factor of two as the
minimum lead fraction varies from 1% to 4%, which is arguably the range of observational
uncertainty of the minimum lead fraction in the wintertime Arctic. When the sensitivity analysis
procedure is extended to coupled models driven with more realistic thermodynamic forcing, the
results may provide an indication of the priorities for the narrowing of observational uncertainties

in the various parameters.
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Appendix

The essence of the formulation of the statistical model is summarized here; details and
generalizations are given by Sacks, Welch, Mitchell, and Wynn (1989).

Consider the stochastic model

y(x) = B+Z(x) (A.1)

where Z (x) is a random function, B is a constant, and y is the response. For two sets of inputs x

and w, the covariance between Z (x) and Z (w) is

Cov(Z(x),Z(w)) = 6’R(x, W), (A.2)

where o2 is a (variance) constant and R (x , w) is a correlation function assumed to be from the

family

R(x,w) = Hexp (— 0;| xi-w; lp‘) . (A.3)

The unknown constants 6; , p; , B, 62 are to be estimated as described below. The power p; ,
which is constrained to lie in the interval 1 < p; <2, determines the shape of the correlation
function in the i’th dimension of the parameter space; while 1/6; is the effective length scale of the
correlation in the i’th dimension of the parameter space. With this correlation structure, two
points x and w that are close together will have highly correlated y’s. This property is exploited to
develop a predictor.

Lety = (y}, ..., ¥,) denote the observed performances at an experimental design of n input

vectors, §;, ..., §,, and
ry = [R(x,s)],R = [R(sk,skr)] , (A.4)

Then r,, which is an n x I vector, is the correlation between the point x and all of the sample
points, s,, while R, which is an n X n matrix, is the correlation between all possible pairs of

sample points. It can be shown that the best linear predictor of y (x) at an untried input point X is

A-1



y(x) =B+ ryR'(y-BY), (A.5)

where

B={RrR"'Irrly (A.6)

and 1 is an n-vector of 1’s.

To compute these predictions and their mean-squared errors, the correlation parameters 0;
and p; in (A.2), B in (A.1), and 62 must be estimated. Because the predictor is an interpolator, it
produces a surface that passes through all the data points for any feasible choice of ; , p; , B, and
62; this can be shown to follow from (A.5) and (A.6). We select ©; , p; , B, and 62 to give an
optimal fit to the data in the sense of maximizing the likelihood L. Assuming that y has a normal

distribution, the likelihood to be maximized is

L(6,p.B.0%) = 1 p(—-z—lﬂy-ﬁl)'R'l(y-ﬁl)). (A7)

(2m)™2 (6™ (det R)'2 =

For given 0; and p; , it is possible to determine the values of B and 62 maximizing the likelihood.

The optimization therefore reduces to numerical maximization of

-nlog(6?)- log (detR) , (A.8)

where

~2
g =

(v-BY) R'(y-B1), (A.9)

=R

and B is given by (A.6).

Accuracy of a statistical model can be assessed through cross validation. At design point Xx; ,
we predict the observed response y; via (A.5) using all the data except observation i. In the plots
of Figure 5, ¥ (x;) is plotted against y; fori =1, ..., n. The cross validation residuals or

errors on the vertical axes of the plots in Figure 5 are given by

Yi—¥-i(x;) - (A.10)
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To estimate the dependence of a response on input parameter j we integrate out all the other inputs

from §:
g = [ 910 m) L (@x)/ L i),

where [a; , b;] is the range of values for x; . These are plotted versus x; in Figure 3.
Similarly, the dependence on the joint effect of x; and x, can be estimated by integrating out

all variables except these two,
Bigeyong = [ 901 axis) T1 o/ TT, (bi-a),

and so on for higher-order effects. These two-dimensional effects are plotted against x; and Xy
in the contour plots of Figure 4. To assess the importance of the joint effect over and above that

explained by fi; (x;) and fly (,, ) » We consider the estimated interaction effect

R xi) ~ Fipxg) ~ Pigxy) + o

where

Ao = f?(xl:---,x13)£1j dxi/il;IJ (bi—ay),

is the overall estimated average value of the response y . If this interaction is small, x; and x have
approximately additive effects, it is sufficient to look at the separate i ix) and Higxy) effects, and

f {xj %) need not be inspected.
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Input Parameter Mass Area Velocity Range

Atmospheric Drag Coefficient 0.0 1.1 38.6 16.6
Oceanic Drag Coefficient 0.1 4.0 32.4 9.4
Ice Strength 2.1 0.3 5.2 20.3
Minimum Lead Fraction 26.6 0.0 5.2 11.3
Snow Albedo 1.7 1.4 0.0 3.8
Ice Albedo 0.0 0.4 0.0 0.0
Open Water Albedo ‘ | 0.0 0.0 0.0 1.2
Turbulent Exchange (Sensible Heat) 31.1 47.4 5.7 4.2
Turbulent Exchange (Latent Heat) 1.0 5.9 0}.7 0.7
Snowfall Rate 0.0 0.0 0.0 7.0
Cloud Depletion (Shortwave Flux) 1.5 0.5 0.0 0.0
Cloud Depletion (Longwave Flux) 4.5 5.3 0.1 0.4
Oceanic Heat Flux 1.8 0.0 0.0 0.0

Table 2. Percent variance explained of four model responses by each single
sensitivity parameter.



Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

FIGURE CAPTIONS

The grid used for the ice model. Crosses denote transect along which ice thickness
anomalies are evaluated in Section 5.

Cross-validation predictions versus true (simulated) values for the four model
responses: (a) ice mass, (b) ice area, (c) mean ice drift speed, and (d) winter-summer
range of area.

Examples of single-parameter sensitivities of ice model. Abscissa contains values of
parameter, ordinate contains values of “response” variable.

Examples of joint (two-parameter) sensitivities of ice model. Contoured values are
those of response variable identified above each plot; abscissa and ordinate contain
values of parameters.

Examples of statistical model cross-validation residuals for (a) ice mass versus oceanic

drag coefficient and (b) ice area versus sensible heat flux.

Seasonal mean ice velocity vectors and ice thicknesses for the simulation spanning
1960-1988. Seasons indicated in lower left portion of each panel are (a) winter
(Jan—Mar), (b) spring (Apr-Jun), (c) summer (Jul-Sep) and (d) autumn (Oct-Dec).
Trajectories of simulated buoys for the period January 1-December 31, 1987. Heavy
dots denote end of trajectory. Buoy trajectories are superimposed on fields of (a) ice
thickness and (b) concentration of multiyear ice.

Monthly positions of arctic buoys during 1987. Heavy dots denote final positions
(December 31, 1987). Buoys were deployed by Arctic Ocean Buoy Program (Colony
and Rigor, 1991).

Annual net ice growth (m) in the model simulation of 1960-1988. Negative values
denote annual net melt of ice.

Time evolution of simulated ice thickness anomalies along transect of Figure 1.
(Right-hand portion of each panel is the Fram Strait/Greenland Sea area.) Anomalies
are defined as the departures from the monthly means of the model results. Positive

anomalies are blue and green, negative anomalies are red and yellow. Heavy dots



Figure 11.
Figure 12.

Figure 13.

denote space/time points corresponding to Wadhams’ (1990) submarine
measurements.

Time series of simulated total ice-covered area and ice mass for the period 1960-1988.
Time-longitude sections of the simulated anomalies of ice-covered area. Anomalies are
defined as the departures from the corresponding monthly means of the model results.
Positive anomalies are blue and green, negative anomalies are red and yellow.
Correlations between simulated and observed anomalies of ice-covered area

(1972-1988) in 20° sectors of longitude.



The grid used for the ice model. Crosses denote transect along which ice thickness

Figure 1.
anomalies are evaluated in Section 5.
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Examples of joint (two-parameter) sensitivities of ice model. Contoured values are
those of the response variable identified above each plot; abscissa and ordinate contain

values of parameters.
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Figure 5. Examples of statistical model cross-validation residuals for (a) ice mass versus oceanic
drag coefficient and (b) ice area versus sensible heat flux.
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Figure 8. Monthly positions of arctic buoys during 1987. Heavy dots denote final positions
(December 31, 1987). Buoys were deployed by Arctic Ocean Buoy Program (Colony

and Rigor, 1991).
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Figure 9.  Annual net ice growth (m) in the model simulation of 1960~1988. Negative values
denote annual net melt of ice.



"SjuawaInsealw auLrewqns (0661) Sweypeps 01 Surpuodsariod
siutod swn/aoeds ajousp siop Aavoy "MO[[24 pue paI a1e sorewour sAueSoU ‘UadIS pue anjq SIv SOIBUIOUR SANISOJ
SINS3 [9pOU 213 JO SUBIW A[yIuow 3y} woly sarniredap ay) St PaUYSp SI SIEWOUY (“BOIE IS PUB[USINATENS WEL]
oy st [oued yoes jo uonod puey-1ySry) °| N3y o 109suen Juoe SOI[EWOUE SSIWYOIYI 91 PIIB[AWIS JO UOIN[OAD dWIL], *0T InSL]

SUONRLAY(] prepuv)§

o

0°0 0'e

8961

LY6T

9861

RREUEK oy pusjiosin) N BRI YMBNY ) pusjunaan / RIS IER N o,y - purjuaay N

SSOUYDIY], 971 JO SoI[ewouy UQN:mEHoZ vmz.nmﬁ._vvo-z



Ice Area (km**2)

Ice Mass (kg x 10**15)

8.0c+6

6.0c+6 U

4.0c+6 U

2.0e+6

0.0c+0

—————————————————————
000000000000000000000000000000

B I B R B R Tl T R R e TR TR S S0 U= S D Ut Suct S (ol b S e e e S

25

zo-.n

ooooooooooooooooooooooooooooo
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
L= - < Y - Y = W - Y - N - N - Y - S = SN < U - S = N - S - W« S« T = S ) S - L S S = S N« (S« AU - W - (S - N =}

P = = = = = = T e R e T D TR T T T = S R

Figure 11.Time series of simulated total ice-covered area and ice mass for the period 1960-1988.
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Correlation

Data : 1972 - 1988 (Annual Mean) T =.531
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Figure 13. Correlations between simulated and observed anomalies of ice-covered area '
(1972-1988) in 20° sectors of longitude.



