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Abstract

We use the spatial-temporal model developed in Oehlert (1993) to
estimate the detectability of trends in wet-deposition sulfate. Precip-
itation volume adjustments of sﬁlfate concentration dramatically im-
prove the detectability and quantifiability of trends. Anticipated de-
creases in sulfate of about 30% in the Eastern U.S. by 2005 predicted
by models should be detectable much earlier, say 1997, but accurate
quantification of the true decrease will require several additional years
of monitoring. It is possible to delete a few stations from the East with-

out materially affecting the detectability or quantifiability of trends.
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Careful siting of new stations can provide substantial improvement to

regional trend estimation.

1 Introduction

Oehlert (1993) described a spatial/temporal model for wet deposition data
in eastern North America. This model includes spatial and temporal correla-
tion among the monitoring stations and provides a way to estimate regional
values from a scattering of stations by using a discrete smoothing prior. In
this paper, we use the model of Oehlert to estimate the detectability of re-
gional trends in sulfate wet deposition for current and modified networks,
based on hypothesized future trends and variances and other model pa-
rameters observed to date. In particular, we investigate the detectability of
trends in sulfate concentration for seven regions of the Eastern US: Northeast
less Appalachians (NE), Mid Atlantic (MA), Appalachians (AP), Midwest
(MW), Plains (PL), South (SO), and Mississippi Delta (MD). These regions
of the US are shown in Figure 1, as well as four additional regions for the
remainder of the continental US: Inter-mountain/Desert (ID), Southwest
California (SC), Pacific Northwest (PN), and Rocky Mountains (RM).

The Regional Acid Deposition Model (RADM) (Chang et al, 1990) pre-
dicts sulfate wet deposition over eastern North America on the basis of
emissions and meteorology. Sulfur emissions are expected to decline over
the next 15 years as the result of the 1990 Clean Air Act Amendments.
Applying RADM to the a.nticipated emissions reductions results in approx-
imately 35% reductions in sulfate wet deposition in the Northeast, and less

elsewhere. The anticipated changes are not linear over time, but are great-



est near the years 1995 and 2002 when the Clean Air Act has reduction
goals. While not homogeneous over time or space, we will treat the future
sulfate changes as the product of specific regional mean reductions (given
in Table 1) and the temporal shape shown in Figure 2 (R. Dennis, personal
communication).

We wish to know how well such trends can be estimated using data from
the existing NADP/NTN monitoring network. For example, we might ask
with what probability could we detect a decrease by the year 1995 (de-
tectability), or with what probability will our estimated change for a region
be within 20% of the true value (quantifiability)? These criteria depend
on the size of the true regional trend and the variance of our estimate of
the regional trend. The main problem is thus to determine the variance of
regional trend estimates for response variables of interest (such as sulfate
concentration and precipitation-adjusted sulfate concentration).

The structure of this paper is as follows. The next section introduces
the data sets we use to determine the variance parameters in the model and
discusses the precipitation adjustment. Section 3 gives our results for dec-
tectability and quantifiability for current networks, and Section 4 considers.
the addition and deletion of stations to the current network. An Appendix
briefly reviews the spatial/temporal model of Oehlert(1993) and discusses
the computation of detectability and quantifiability.

2 Variance parameters and the data

Detectability and quantifiability depend on the variance of regional trend es-

timates, which in turn depend on the change scenario t, the station locations,



and several variance parameters in the model (the spatial and continental
variances S and D and the prior variance 1/\g) as described in the Ap-
pendix. This section discusses the choice of these parameters. As discussed
below, all data are analyzed on the log scale, so that coefficients of change
are approximately proportional changes.

The temporal change scenario t is shown in Figure 2. North America is
tiled with small rectangles, one degree of latitude by 1.5 degrees of longitude.
We assume that every station in rectangle j has the same true change §;,
and the procedure described in the Appendix shows how to estimate the
B; values. Regional estimates are the unweighted averages of the rectangle
estimates. The prior variance 1/Ag (for neighboring rectangle differences)
was set to 0.01, with the interpretation that the difference in coefficients
between two neighboring rectangles should be zero, plus or minus about
0.10. Given that the anticipated coefficients range fairly smoothly from
about 0.15 to 0.35 across eastern North America, this represents a mild
smoothing.

We model the spatial covariance S (between stations) using an expo-
nential model. Let § be o% on the diagonal and o%bexp(—c d) for two
stations at a distance d. This model of S corresponds to a stationary spatial
covariance (with nugget) that is frequently used in Kriging. The continental
component variance D is modeled as 0% times the ARMA(1,1) correlation
structure described in the Appendix. Fitting of on, b, ¢, and o? from data
is discussed in Oehlert (1993). We note that 0% is poorly estimated.

Our data come from the ADS data base (Watson and Olsen 1984). We
obtained monthly sulfate concentration data for the years 1978 through
1987 and stations in the NADP/NTN, APIOS-C, and CAPMON networks,



and form volume weighted annual means. Values are imputed for missing
months (see Oehlert 1993 for details), and a station annual mean is missing
if precipitation volume measurements are available for less than 90% of the
year or concentration values are available for less than 60% of the collected
precipitation. For variance parameter estimation, we use all stations from
these networks that have no missing years in the period 1982-1986 for the
variable of interest. This is the 82-86 station set, denoted in Figure 3 by a
X. A second station set comprising all stations in these three networks in
operation at the end of 1987 will be used for computing variances of regional
averages; these stations are denoted by a + in Figure 3. We assume that
the complete station set has the same variance structure as the complete-
data station set and use the log of annual concentration, as this scale helps
stabilize interannual variability across stations.

Sulfate concentrations tend to be smaller for larger precipitation vol-
umes, due in part to a dilution effect. We will also consider precipitation
adjusted concentrations, where the adjustment is as follows. For each sta-
tion, fit a linear model including a separate mean for each of the 12 calendar
months and a common (across months) linear effect for precipitation vol-
ume. Let 4 be the estimated coefficient for precipitation volume. For a
given monthly concentration, say a value in calendar month ¢ with precip-
itation volume p;;, form the precipitation adjusted concentration by sub-
tracting 4(pi; — p;) from the monthly concentration, where p; is the mean
precipitation in calendar month 7. This adjusts each observation in a given
calendar month to a standard precipitation volume. Form adjusted annual
concentrations by taking volume weighted means of the adjusted monthly

concentrations.



3 Sulfate trend detectability and quantifiability

For unadjusted log sulfate concentration, we have the following parameter
estimates: 02 = 0.00228, o = 0.0196, b = 0.139, and ¢ = 0.00194 (1/km).
Figure 4 shows the standard error of the regional estimates of total reduction
in log sulfate concentration in 2010 based on our assumed decrease scenario
for data years 1995 through 2010. Large regions with many stations (eg., the
Plains, Midwest, or South) have smaller standard errors than small regions
with few stations (eg., Mississippi Delta or mid-Atlantic). Standard errors
decrease nicely over time, with larger decreases in standard error occurring
in years where we expect larger changes sulfate concentration. In 2000, a
typical standard error for the estimated decrease is about 6 or 7 percent of
total starting concentration. This decreases to about 4 percent in 2010.

The detectability of the RADM predicted decrease is excellent, with
the five easternmost regions haviﬁg power essentially one by 1998. The
Plains reaches a power of nearly one in 2002, and the Mississippi Delta only
reaches power 0.8 by 2003. These regions have lower powers due to smaller
anticipated changes, and, in the case of the Mississippi Delta, larger standard
errors. Figure 5 shows quantifiability of the estimated 2010 decrease based
on data from 1995 through 2010 for the seven Eastern regions, that is, the
probability that the estimated regional average decrease is within 0.23 of
the true regional average decrease 8. Quantifiability is much smaller than
power, with the five Easternmost regions not achieving 0.8 quantifiability
until 2002.

The contribution of the continental component ¢% to the variance is not

well estimated. Thus it is prudent to determine how sensitive our results



are to inaccuracies in that variance component. To explore this sensitivity,
we computed the regional variances, powers, and quantifiability for the data
year 2000 when the continental component is 1) set to zero, 2) used as esti-
mated, and 3) set to twice the estimated value. In the seven Eastern regions,
the estimated continental component is responsible for approximately two
thirds of the regional standard deviation. Detectability in data year 2000 is
not strongly influenced by this modified continental component except for
the Plains and the Mississippi Delta, which lose about 15% power when the
continental component is doubled. Quantifiability is much more strongly
affected by changes in the continental contribution. Removing or doubling
the continental component can change regional quantifiability from 5 to 35%
depending on the region; see Figure 6. |

We now reanalyze using variance estimates based on log precipitation-
adjusted sulfate concentrations. The estimated variance parameters are
ol = 0.00044, 0% = 0.0156, b = 0.130, and ¢ = 0.00224 (1/km). Thus the
short term variance has decreased slightly relative to unadjusted sulfate, but
most importantly, the continental component is smaller by a factor of 5 for
the adjusted sulfate. Figures 7 and 8 display standard errors and quantifi-
ability using precipitation adjusted variance estimates. Regional variances
are about a factor of 2 to 3 smaller using precipitation adjusted data than
they were with unadjusted data. All Eastern regions except Mississippi
Delta have power essentially one By 1997, and the Mississippi Delta region
has power greater than 0.9 by 2001. Quantifiability is also dramatically
greater for the precipitation adjusted data, with the five Easternmost sta-
tions having quantifiability greater than 0.8 by 1997. These improvements

are primarily the result of the smaller estimated continental component.



4 Adding and deleting stations

Monitoring networks are not static; stations are added and stations drop
out over time. With tighter budgets, it is sensible to ask questions such
as “Given that we have funding to add 10 stations to the network, where
should we put them for maximal improvement of the network?” or “Given
that we must delete 10 stations, which 10 stations should we delete to have
minimal effect on the capabilities of the network?” Of course, the answers to
these questions depend on many factors, including which chemical is being
studied, whether we are interested in mean or trend, and how we choose to
measure the quality of information produced by a network.

We have decided to concentrate on the estimation of change through 2010
in log precipitation-adjusted sulfate concentration for the five Easternmost
regions using the RADM change scenario shown in Figure 2. (Similar results
are obtained for unadjusted sulfate.) We will use two different criteria for
evaluating the quality of a set of stations. The first criterion is the sum
of the regional variances for the five Easternmost regions; the second is
the sum of the 40 largest variances corresponding to rectangles in the five
Easternmost regions. The first criterion concentrates on minimizing the
average regional variance, while the second tries to keep the largest local
variances from getting too big. The choice of 40 rectangle variances was
somewhat arbitrary; they are about one fifth of the rectangles in the five
regions.

Figure 9 shows the locations of the 40 largest rectangle variances when
using all stations in operation at the end of 1987; Table 2 gives the regional

variances and the two criteria. We see that the large variances tend to be



along the coast where stations are few and there are no stations “on the
other side” to be included in smoothing.

Suppose now that we must delete 10 of the stations from the East, but
that Appalachian stations are precious and none will be deleted. Which
stations could be deleted with minimal increase in our criteria? To minimize
the computations, we have chosen these stations sequentially. That is, we
look for the station which least increases the criterion. Then, given that
station is deleted, we find which station to delete in addition to the first,
and repeat this till we have chosen 10 stations for deletion. (This is the so
called greedy algorithm.) In fact, at each stage we have carried forward 10
sets of stations rather than a single set of stations, so that we are more likely
to find a good set.

Figures 10 and 11 show the locations of 10 stations for deletion using the
greedy algorithm when selected according to the regional variance and rect-
angle variance criteria respectively. Table 2 gives the criteria values. Both
Figures show that most of the deleted stations would come from the Mid-
west/Great Lakes region, where stations are relatively dense and surrounded
by stations in other regions or Canada. When the regional criterion is used,
some of the deleted stations are near rectangles with high variance; this oc-
curs to a lesser extent when the criterion is rectangle variance. With both
sets of stations and criteria, the deletion of stations has resulted in little
increase in the criteria for adjusted sulfate. We note that there are several
other sets of stations that give nearly identical results.

Conversely, suppose that we can add 10 stations to the network in any
rectangle of the five Eastern regions; where should we add these stations

to most reduce our criteria? We have tested the centers of all rectangles



as potential additional sites. In reality, the sites would need to be located
somewhere within the rectangle (in particular, the coastal sites would need
to be on land, not in the ocean!), but we have used the centers as an approx-
imation. Furthermore, we have estimated the improvement in variance as
if the stations had data during the entire period 1985-2010, not beginning
part way through. This approximation is adequate for showing the general
outlines of the results. As before, we add stations sequentially.

Figures 12 and 13 show the locations of the 10 stations to be added when
selected according to the regional and rectangle variance criteria using the
greedy algorithm; Table 2 again gives the criteria values. Basically all station
lie along the East coast. When selecting for regional variances, all new
~ stations are in the Northeast and Middle Atlantic regions; when selecting
for rectangle variances, the stations are spread along the coast from Florida
to Maine. Looking at the criteria, we see that we can reduce the variance
sums by 10 to 15%. However, selecting for the different criteria has resulted
in rather different station configurations, and the configurations perform

differently for the different criteria.

5 Discussion

The key to any power analysis of this sort is a proper estimate of the vari-
ance. The most unusual aspect of our variance model is the inclusion of
a continental scale variance component. While the appropriate method for
modeling this type of variation is subject to discussion, the existence of long
term phenomena in meteorological series, specifically precipitation series,

seems accepted, and there is some evidence to suggest that this long term
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phenomenon is also broad in spatial scale. Thus, wet deposition and, to a
lesser extent, concentration series should inherit at least some long term,
broad spatial scale variation through their dependence on precipitation vol-
ume. Unfortunately, five years of data provide us with a very poor estimate
of this continental scale component of variation. For example, the 0% we esti-
mated for sulfate concentration seems high relative to the overall variability
of the series. More years of baseline data will help reduce the variation in
our estimates, but for now we must explore the sensitivity of our results to
or. _

Using either adjusted or unadjusted sulfate, we have an excellent chance
of detecting the reductions in sulfate concentration anticipated for the East-
ern US as early as the year 1997. This remains true even if we have underes-
timated the variance of the continental scale component by a factor of two.
However, precise quantification of the amount of decrease is more difficult
than detection, and will require several more years of monitoring.

We have made precipitation volume adjustments to concentration val-
ues using linear regression on monthly data. Better adjustments, including
more complicated dilution or metebrologica,l models, should be possible us-
ing weekly or event data. For example, Stfyer and Stein (1992) investigated
meteorological adjustments to wet deposition data used in trend analysis.
However, obvious alternatives to our simple approach (such as using log
transformed concentrations and precipitation vplumes) did not appreciably
vimprove our precipitation adjustment when using monthly data.

The redesign of a network requires some criterion for optimization. We
have used two criteria: the local and regional variances of trend estimates.

Many other criteria are possible, and these other criteria may lead to dif-
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ferent recommendations. For example, Guttorp et al. (1992) argue that
we should minimize the entropy of the unobserved data given the observed
data. For the network augmentation problem, they found that this criterion
(for certain prior distributions) translates to maximizing the determinant of
the covariance of the augmented stations given the existing stations. This
is not equivalent to our 40 largest réctangle variance criterion, but both will
tend to add stations where the local variance given the existing stations is
large.

The continental scale variance o7 does not affect the selection of stations
for deletion or inclusion, as 0% enters only through a constant in the covari-
ance matrix. The prior smoothness precision Ag could affect the choice of
‘stations, but preliminary investigations show that the dependence on Ag is
fairly weak.

We should note that the recommendations for station deletion and ad-
dition assume that the remainder of the stations remain and that the op-
timization criteria capture our interest in the phenomenon. For example,
we would be less likely to remove stations around the Great Lakes if sta-
tions in Canada were also being removed. Also, we have been working with
log transformed data, and this will tend to emphasize the variance at low
concentration stations relative to high concentration stations. This is unde-
sirable if trend at low concentration sites is not of interest.

The station addition results point to questions of station siting that go
beyond the variance criteria to the definition of what is being measured. All
the sites for addition were near the coast, yet most network siting criteria
specifically avoid coastal areas. This avoidance means that coastal estimates

could contain a substantial bias, since coastal precipitation is not actually
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sampled. The addition of stations along the coast would reduce that bias (as
well as reduce the estimation variance), but alter what the network measures
to include coastal precipitation. This would be important, if, for example,
we wished to estimate acid deposition in estuarine ecosystems. If coastal
sites are not eligible for measurement, then the coastal regions should not
be included in the selection computation and other sites, presumably near

coastal, would be selected. Similar problems exist for high elevations.

6 Appendix

Here we present a sketch of the statistical model; see Oehlert (1993) for
details. Tile Eastern North America with small rectangles, one degree of
latitude by 1.5 degree of longitude. We assume that all stations within
a rectangle have the same expected trend, but that trend may vary from
rectangle to rectangle. We take as regional trends the unweighted mean
of the estimated rectangle values for each of the rectangles in the regions
of interest. The variance of these fegional average estimates is determined
from the covariance matrix of the rectangle estimates.

There are s monitoring stations each with y years of data. Let Y; be a
vector containing the series of annual values at station :. The values could
be concentrations, precipitation adjusted concentrations, depositions, etc.
Let j(2) indicate the rectangle in which station 7 occurs. We assume that

each series Y; has the structure
Yi = ajil+t84) + L+ N + 61, (1)

where a(;) is the mean value in rectangle j(z), t is the trend shape in Figure 2

(centered to have mean zero), B;(;) is the change for rectangle j(i), L is a
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long-term noise series common to all stations, N; is a short-term station
specific noise series, and §; is a station specific random effect accounting
biasing effects such as elevation or proximity to point sources of sulfur. Let
N denote the vector of all the station specific noise terms, let é be the vector
of station biases, and let ay = (a;(1), -, j(s)) be the vector of rectangle
means. The analogous vector for slopes is ;.

We assume that all station specific noise terms have the same temporal
correlation structure, and we assume that the cross covariance factors into

a spatial term and a temporal term, so that the covariance matrix of N is
Cov(N)=85®C, (2)

where S is the spatial covariance matrix and C is the common temporal
correlation matrix. Because of the structure of the short term noise series,
C is essentially tridiagonal, with sub- and super-diagonal elements nearly
zero, say about 0.01. The covariance matrix of L is denoted by D. The
station random effects §; are uncorrelated with variance o2, and we assume

that N, L, and § are uncorrelated. Thus the covariance of Y is
loxs ® D+ S ® C + UgIsXs ® lyxy- (3)

With this notation, observed station slopes (calcula.ted via ordinary least

squares) can be expressed
b=Bs+ Lsx1 X (t't)" WL + Ly, x (t't)"H'N, (4)
with covariance matrix

Cov(b) = 1.xs X (t't)71t D(t't)™r + S ® (t't)"1t' Ct(t't)™ .  (5)

14



We now estimate the §; for all rectangles j. The estimates b; serve as
the observations in a spatial linear model. An observed trend b; in the j(2)th
rectangle from station ¢ has expected value (;;). We may express this in

matrix form as

E(b)=W§, - (6)

where the matrix W is all zero except for a 1 in each row indicating rectangle.

In addition to the observed trends, we also use a discrete smoothness
prior for 3, because we believe that 3 varies slowly in space. We make this
belief explicit by using a partially improper normal prior on 8 with mean
zero and inverse covariance matrix AgA’A. The matrix A has a row for every
pair of adjacent rectangles, and a column for every rectangle. A is all zeros,
except that each row has entries of 1 and —1 for the associated rectangle
pair coefficients. The smaller the prior variance for these differences (1/Ag),
the smoother the resulting estimates will be.

If T, is the covariance matrix of b, then the estimate B can be expressed
B=(WE7IW + AgA'A) WS b (7)

with posterior variance matrix
Cov(B) = (W'S;IW 4 MgA'A)™L. (8)

We use an ARMA(1,1) type correlation structure for D: px = p1¢*~! for
lags k£ > 1. Boes and Salas (1978) show that several models proposed for long
term dependence in precipitation records have this ARMA(1,1) covariance
structure. Oehlert (1993) used the parameters p; = 0.3 and ¢ = 0.95,
based on analysis of historical precipitation records, and these values will

also be used in this study. The variance of this process, 0% is estimated
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using covariance between stations at great distances, as discussed in Oehlert
(1993).

Regional trend detectability and quantifiability depend on the regional
trend and the variance of the estimated trend. Detectability is power. We
compute detectability based on the null hypothesis of no trend, using a
one-sided test at the 5% level. The power is then computed as ®((F —
1.6450,)/0,), where § is the magnitude of the hypothesized regional trend,
o, is the standard deviation of the regional trend estimate, and ® is the
standard cumulative normal. To compute quantifiability, we assume that
the regional trend estimate is unbiased with mean equal to the hypothesized
trend (the regional trend estimate is actually slightly biased). We then
find the probability that the estimate lies within 0.23 of § using normal
probabilities. |
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Table 1: RADM predicted regional average reductions in sulfate deposition

by 2010
Northeast 32%

Mid Atlantic 29%
Appalachians 35%

Midwest 30%
South 30%
Plains 19%

Mississippi Delta 14%

Table 2: Regional variance totals x10000 and sum of 40 largest rectan-
gle variances for 1987 stations, after 10 stations deleted using regional and
rectangle variance criteria, and after 10 stations added using regional and

rectangle criteria.

deletion criterion addition criterion

1987 Teg. rect. reg. rect.
Northeast 6.56 6.58 6.66 5.79 6.26
MidAtlantic 9.51 9.52 9.51 6.11 7.01
Appalachian 5.05 5.08 5.07 5.02 5.03
Midwest 4.53 4.69 4.81 4.53 4.53
South 5.80 5.81 5.80 5.79 5.13

Total eastern regional 31.46  31.69 31.86 27.24 27.96

Total rectangle 0.2081 0.2082 0.2081 0.1913 0.1683
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Figure 1: Eleven Regions
Figure 2: Shape of Temporal Change

Figure 3: Locations of 1982-1986 stations ( x ) and of all stations in operation

at end of 1987 (+).

Figure 4: Standard errors of estimated decrease in 2010 of log sulfate con-
centration for data years 1995 through 2010 in Mississippi Delta, Middle
Atlantic, Northeast, South, Appalachian, Midwest, and Plains regions (top

to bottom).

Figure 5: Probability of estimated decrease in 2010 of log sulfate concen-
tration being within 20% of modeled decrease for data years 1995 through
2010 in Appalachian, Northeast, Midwest, South, Middle Atlantic, Plains,
and Mississippi Delta regions (top to bottom).

Figure 6: Probability of estimated decrease in 2010 of log sulfate concen-
tration being within 20% of modeled decrease in data year 2000 for North-
east, Middle Atlantic, Appalachia.n; Midwest, South, Plains, and Mississippi
Delta regions using modified continental variance estimates. Upper, center,
and lower values for each region correspond to 0% set to zero, the value

estimated from the data, and twice the value estimated from the data.
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Figure 7: Standard errors of estimated decrease in 2010 of log precipitation-
adjusted sulfate concentration for data years 1995 through 2010 in Missis-
sippi Delta, Middle Atlantic, Northeast, South, Appalachian, Midwest, and

Plains regions (top to bottom).

Figure 8: Probability of estimated decrease in 2010 of log precipitation-
adjusted sulfate concentration being within 20% of modeled decrease for
data years 1995 through 2010 in Appalachian, Midwest, Northeast, South,
Middle Atlantic, Plains, and Mississippi Delta regions (top to bottom).

Figure 9: Locations of 40 largest rectangle variances for decrease in 2010 of

log precipitation-adjusted sulfate concentration using all stations.

Figure 10: Locations of 40 largest rectangle variances for decrease in 2010
of log precipitation-adjusted sulfate concentration and deleted stations se-

lecting on the regional variance criterion.

Figure 11: Locations of 40 largest.rectangle variances for decrease in 2010
of log precipitation-adjusted sulfate concentration and deleted stations se-

lecting on the rectangle variance criterion.

Figure 12: Locations of 40 largest rectangle variances for decrease in 2010 of
log precipitation-adjusted sulfate concentration and added stations selecting

on the regional variance criterion.

Figure 13: Locations of 40 largest rectangle variances for decrease in 2010 of
log precipitation-adjusted sulfate concentration and added stations selecting

on the rectangle variance criterion.
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