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responses are themselves correlated. Group response data from environmental toxicology
illustrate the scaled link function analysis.
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1 INTRODUCTION

Data in which the individual responses are binary are frequently modeled by a gener-
alized linear model of the form

Pr(Y; = 1|z;) =1 - Pr(Y; = 0|z;) = G(BTz;), i=1,2,...,n, (1)

where Y; is the response of the ith individual, z; is a vector of explanatory variables,
and G is a cumulative distribution function. Common choices for the link function G are
a standard normal distribution, which is used in probit analysis, a logistic distribution,
which is the inverse of the logit function, and the Weibull, which has as its inverse the
complimentary log-log function.

Our concern is with situations in which the assumed constancy of the link function
across heterogeneous observations is untenable. For example, in the toxicological data
presented in section 5, we have group binary responses rather than the individual outcomes.
The number of individuals in each group is known, but the information on individual
incidences is missing. With groups of unequal size, the assumption of a common scale
is suspect. In other settings we may have other grounds for expecting different levels of
precision for different observations, e.g., if an underlying continuous response Z follows a
heteroscedastic linear model, and we observe whether or Z exceeds a threshold.

The method is easily implemented, because the scaling of the link function is equivalent
to a rescaling of the regression variables. If the scale function contains unknown parame-
ters, as in our group response example, then the estimation of the régression parameters
is easily nested within the maximum likelihood optimization for the scale parameters.

In order to make inferences about the scale parameters, and also to address situations
in which correlations exist between the observed binary responses, we develop generalized
likelihood confidence regions by treating a working likelihood as an estimating criterion,
and applying the large sample theory of likelihood ratio statistics under nonstandard con-
ditions. The resulting likelihood type confidence intervals provide a useful alternative to
the commonly used delta-method confidence intervals, because they are invariant to the
parameterization and they are range preserving.

An appealing feature of the scaled link function model for group responses is that,
although the observed elements are marginal responses, the parameters of the model are
defined at the individual level and are therefore comparable across groups of different sizes.
Moreover, we can combine group and individual level data by treating an individual as a
group of size 1.

The rest of the paper is organized as follows. Section 2 provides some derivations of

scaled link function models. Section 3 is concerned with profile likelihood and general-
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ized profile likelihood methods for computing confidence intervals. An application of the
methodology in toxicological risk assessment is discussed in Section 4. Section 5 provides

some further remarks.

2 DERIVATIONS AND INTERPRETATION

To model group binary responses and other forms of heterogeneous data we replace
(1) by a model of the form

Pr(Y; = 1|z;) =1 — Pr(Y; = Olz;) = G(BTziw;), i=1,2,...,n, (2)

where the design weights w; are scaling factors and refer to the precision of latent obser-
vations. Effectively, we replace the link function G(-) by the scaled link function G( - w;).

We first discuss how this model arises in general from an assumed weighted likelihood.
Then we derive special forms of the weight function under certain hierarchical latent struc-
tures. For group binary responses, a latent variable model described Section 2.2 suggests

weights of the form
w; = n:/z{l + (ns — 1)p} 712, (3)

where p is the intraclass correlation coeflicient for the latent responses in a group. In a
different vein, a latent random coefficient model, described in section 2.3, yields weights
of the form

w; = (1+2FTz;)7/2, (4)

In this case we have a type of robust model that bounds the influence of outlying regression

variables.

2.1 WEIGHTED LIKELIHOODS

Within the framework of logistic regression, a scaled link function follows from the

assumption that a group binary response has a density of the form
Pr(Y = y|r,w) o 7*¥(1 —m)*07), y=0,1; 7 €[0,1] (5)

where the normalizing constant is 7% + (1 —m)*. A more convenient expression is obtained
by reparameterizing in terms of the odds, § = 7(1 — w)~!. A Bernoulli random variable
with odds 6 has the density

f(yle) = ey(l + 0)_1, y=0,1.
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Using this parameterization and normalizing in (5) yields the group model,
f(y|8,w) = 6*¥(1 +6*)7%, (6)

a Bernoulli model with odds §*. In logistic regression § = exp(zTB) and 6* = exp(wzTB).

In this case (6) is a scaled logistic regression model with link-scale w L

2.2 LATENT INDIVIDUAL RESPONSES

One way to derive the probit model for binary response data is to assume that the
binary response to stimulus level d is an indicator of the event (Z < d), where Z is the
minimum level of stimulation required to achieve a positive response. Assuming Z is a

2

Gaussian random variable with mean p and variance o2, one obtains the probit model,

Pr(Y =1|d) = Pr(Z < d) = ®(—po ™' + o 1d),

where ®(t) = (2r)~1/2 f:oo exp(—t?)dt. Defining the probit regression parameters by
o = —po~ ! and B = 071, we see that 3 relates to the precision of the latent variable Z,
and —aff is the mean. Prentice (1976) used this kind of quantal response mode]iﬁg as a
starting point in deriving other shapes for the link function. For a comprehensive account
of quantal response analysis see Morgan (1992).

Next we note that covariate information may be incorporated by supposing that p =

2T for a vector of known covariates z. Propagating the covariate information through the
link model yields

Pr(Y =1|z) = &(—2Tno™  +do™1) = 8(zTp), (7)

where T = (d,2T) and g7 = (071, -0~ 1n7).
To model the response of a group subjected to stress d, we suppose that the response

occurs because d exceeds the average stimulus required to achieve a response, that is,

(Y;=1)=(Z; < d), where Z;= n;! Z Zij

j=1

and Z;1,...,2Zin, are the latent responses in the 1th group. To allow for within—group
correlation between individuals, we suppose the latent variables themselves follow a latent

variable model,

Zij=pi+ai+e; and p; =z, (8)
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where z; is an observed vector of covariates, and a; and e;; are independent random
variables such that a; ~ N(0,02) and e;; ~ N(0,02).

Setting 0% = o2 + 02, Z;; is marginally distributed as N (pi,o?), and the intraclass
correlation coefficient is p = ¢%/o?. Model (8) implies that Z; is normally distributed
with mean p, and variance (o2 /n;){1 + (n; — 1)p} = o /w?, where w; is given by (3). By

analogy with (7) we have the scaled probit model,
Pr(Y; = 1jz) = <I>{(—/.Lia'_1 + o d)w;} = ‘I’(winﬂ), (9)

with 2T = (d,2T) and 8 = (¢!, —o~97T). McCulloch (1994) used a related latent variable
model for correlated binary outcomes. The difference here is that (9) is for aggregates of
latent variables.

The square of the weight function may be interpreted as an effective group size. If
p = 0 then w? = n;, whereas a positive correlation shrinks the weight towards one. In
the extreme, if p = 1, then the effective group size is 1. Figure 1 shows how the Weight

function varies over a range of values of p and n;.

Figure 1: Group weight as a function of group size and latent correlation (p).’



Identifiability of the parameter p requires heterogeneity of the group sizes. If the
group sizes were all the same, then the weighting would simply introduce a constant scale
factor in the regression parameters. If the group sizes are heterogeneous, then the weights
in (3) identify B8 and v at the individual level, n; = 1. In this way the scaled model
avoids attenuation effects that would otherwise occur in the combined analysis of group
responses with heterogeneous group sizes. In practice, the parameter p may be difficult
to estimate precisely, because the thresholded observations supply only crude information
about scaling. ‘

The derivation of (9) extends approximately to other link functions. For instance,
the logistic link function, ¥(¢) = {1 + exp(—t)}~?, is near to a Gaussian link function in
absolute terms, because ' |

sup |¥(1.702¢) — &(t)| < 0.01;
t

see, e.g., Baker (1992, p. 16). Thu's, the preceding analysis might be used as a heuristic to

suggest a weight function for scaled logistic regression.

2.3 HETEROSCEDASTIC LATENT V'ARIABLES

The model of the preceding section is a special case of a general class of models in

which one supposes that a latent variable Z; follows a heteroscedastic linear model,
(Zi + 27 B)w; |z ~ G, (10)

but we observe only Y; = 1(_o0,0](Z:) Tather than Z;. We then have the weighted link
function model,
Pr(Y = 1z;) = G(wiz] B) = 1 — Pr(Y = 0|z;), (11)

where the weights are inte.rpreted as inverse scale factors for the latent responses.
Another interesting special case occurs under a hierarchical setup in which the latent

variable follows a linear model with random coefficients, that is,

Zi|zi by ~ N(—:c:rb, 1)

b; ~ N(B,T) 12

The mai'ginal distribution of Z; is then normal with mean —a:';rﬁ and variance 1 + :c';-r]f‘a:i.
For fully observed Z; this is a standard growth curve model; see, for instance, Johansen
(1984). Such a model might also be useful for observational data. If we observe only
the indicator Y;, then we obtain a binary regression model of the form (11) with w; =

1+ m?l‘mi)"l/ 2, This is a special case of the general type of latent model considered
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by Zeger, Liang and Albert (1988) and McCulloch (1994), who focused on the latent
structure for modeling correlated binary outcomes. Here the observable binary responses
are independent, but heteroscedastic.

In the preceding example the latent distribution for b; is a way of expressing uncer-
tainty about the linear model. The resulting link function model therefore controls the
influence of extreme values of z;. Note, in particular, that |jw;z;|| < )\;}I{z(I‘), where
Amin denotes the smallest eigenvalue. As a result, the maximum likelihood estimator has
a bounded influence function in the sense of Hampel, Rousseeuw, Ronchetti and Stahel
(1986). For further discussion of robust logistic regression see Pregibon (1982), Copas

(1988), Kiinsch, Stefanski and Carroll (1989), and Carroll and Pederson (1993).

3 GENERALIZED PROFILE LIKELTHOOD

Inferences about p in the group model of section 2.2 provide information about the
effect of grouping and the correlations between individuals in the same group. If the
group effect is the only random effect, then the profile likelihood for p is straightforward
to compute.

- Assume model (2) holds with weights given by (3). The log-likelihood is given by
6, ply,2) = S, (31108(G:) + (1~ ) log(1 — Gu)}, where Gi = G{wi(p)pTa:}. Given
the weights w;(p) we compute 3(p) and the profile likelihood £(p) = £{5(p), p} as follows:

(1) Set Z; = wi(p)z:;
(ii) Compute B(p) by maximizing £(83,1 |y,%);

(iii) Set £(p) = £{B(p),1 ly,&}.

The method is computationally convenient because (83,1 |y,Z) is an unweighted log-
likelihood for binary regression. Standard software will perform the optimization for each
fixed p, typically by iterative weighted least squares or the scoring algorithm. Computing
—2/(p) over a grid in [0,1] provides a deviance profile, which yields a likelihood based
confidence region for p as illustrated in Figure 2.

It often happens that the response data are clustered in some way. For instance, in
combining data from multiple experiments, the experimental run is a natural clustering
variable. In this situation it is necessary to account for correlations between clustered
observations. In particular, the profile likelihood given above no longer has the standard
large sample theory associated with likelihood ratio tests and likelihood confidence inter-
vals. However, a nonstandard theory of likelihood ratios is available; see Huber (1967),
Schrader and Hettmansperger (1980), Kent (1982), Ronchetti (1982) and Li and McCul-
lagh (1994). This theory is essentially an extension of the theory of generalized estimating
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equations, where the estimating equation is assumed to correspond to a criterion function.
In our case we begin with a natural criterion, the working likelihood, and proceed from

there to develop the working likelihood inferences.
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Figure 2: Deviance profile of latent correlation parameter for tetrachloroethylene data.
Cutoff values are shown for the likelihood ratio (chi-square) and generalized likelihood
(adjusted) tests.

3.1 GENERAL THEORY

In the general theory we consider inferences about a parameter vector 8, and we assume
that the estimate § maximizes an estimating criterion, £(6|z,y), which is effectively the
working log likelihood, although it need not be the logarithm of an actual density function.
We refer to ef as the generalized likelihood function. Li and McCullagh (1994) considered
a class of generalized likelihoods determined by the first and second moment structure, in
which case they called e the quasilikelihood. Define the score function,

Uz, 416) = 550012, (13)
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the score covariance,

J = E{U(m,ylG)L{(m,yle)T}, (14)

and the negative expected hessian,

H=-E {B%U(m,yw)} . (15)

If £ were the true log likelihood, then we would have H = J, but this equality usually
fails for generalized likelihoods. As in the theory of generalized estimating equations, the
parameter 6 is determined by the equation E{U(z,y|)} = 0.

We partition § = (77, nT)T, where v is the p—dimensional parameter vector of interest,

and 7 is the vector of nuisance parameters. Partition H similarly as

H H
H = 1Y 771) :
( Hayy  Han

Let 6 = (vZ,7&)T denote the maximum generalized likelihood estimate subject to
~ = vo. We need the large sample distribution of the log generalized likelihood ratio,

L(vole,y) = 2{€(b]z,y) — Lbo|z,y)}- (16)

The following result is well-known under various regularity conditions. For the basic idea
of the proof see Kent (1982).

Theorem: If v = 7o, then, as the number of independent observations increases,
L(vo|z,y) converges in distribution to > »_, AeWyk, where Wi,..., W, are independently
distributed as x2, and )1,...,)p are the eigenvalues of Hyxyy(H T TH™)4q-

To use this result in practice, either to perform a generalized likelihood ratio test of
Hy : v = 70, or to compute a generalized likelihood confidence set for vy, we need to
estimate the matrices H and J. If all data are independent, an obvious approach is to
replace the theoretical expectations in (14) and (15) by the analogous empirical averages.
The next section discusses the situation in which the data are correlated in batches.

We also need to compute quantiles of the distribution of ), M\eWy. Observe that
if p = 1 the appropriate distribution is simply a scaled x? distribution. If p > 1, then
algorithms given by Marrazzi (1980) and Griffiths and Hill (1985) may be used. A quick
and simple way to do the computation is to simulate from the distribution of 3, A Wi,

since chi-square deviates are easy to generate.



3.2 CORRELATED BINARY RESPONSES

We now suppose the response data are binary and correlated in batches. For instance,
in the data of section 4 we have observations from a number of different studies, and the
responses within a particular study are naturally assumed to be correlated. We construct a
generalized likelihood confidence interval for the latent within—group correlation parameter.
The modifications for other parameters are obvious.

Let 6 = (87, p)T, and let n; be the number of response groups in the 1th batch. We
consider the generalized likelihood, '

(b)z,y) = Zz{yulog(GmH(l yij) log(1 — Gi)},

i=1 j=1

with score function, U(z,y|6) = Y., ¥;, where
n" wo pw- .
V. = yis — G ______(.n 1])
i ;( J J) 1,3(1 _ ij) wij,BTzij ’

Gi J = G(wuﬂ zl])’ ij = G'(w,]ﬂTz,J), wij = wij(p) = n1/2{1 + (ni5 — 1)p}~ 1/2 y Wij =
5 ij(n,] —1)/n;;, and n;; is the number of latent responses for the jth group in batch
i. Asin the theory of generalized estimating equations described, e.g., by Liang and Zeger
(1986), the idea here is to treat the correlated observations as a multivariate observation
and view U; as a function of this vector. Thus we estimate H by H = -é%lxl (z,y|6), but use
a batched estimate of J, given by J = {n/(n —p)} L5, ¥i¥7, where p is the number of
parameters in the model. Note that the asymptotics require the number of batches to be
large rather than the number of groups within each batch. Given these estimates, one then
constructs estimates A of the eigenvalues )\j by insertion into the formula given in the
Theorem of section 4.1. This is particularly convenient for a one—dimensional parameter,
in which case we have a scalar adjustment.
In the next section we use the generalized likelihood technique both for confidence

intervals and for testing within a hierarchical family of models.

4 EXAMPLE: GROUP ANALYSIS OF TOXICOLOGY DATA

Figures 3(a)-(d) show data from multiple studies on the effects of acute inhalation
exposure to tetrachloroethylene. The responses are binary indicators for adverse (solid
diamond) versus nonadverse (hollow circle) outcomes. These outcomes were determined
by a toxicologist during a thorough review of the literature. Figure 3(a) shows all of the

outcomes plotted versus log concentration and log duration; Figures 3(b)-(d) break this
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down by species. The lines in the graphs are effective concentrations estimated to give a
10% response rate, conditional on the duration. We call these the EC1y, lines.

The data are from 17 studies ranging in size from 1 group to 35 groups, with median
of 4 groups per study. These data comprise a subset of a larger database. They include
all the group responses for studies in which adverse and nonadverse outcomes can be
distinguished. The larger database includes some studies for which only partial response
information is available. Carroll, Simpson and Zhou (1994) discussed censored analysis of
such studies.

Usually the reason for group responses rather than individual incidences is that the
published results are simply descriptions of lesions and tissue damage typical of the group.
This leads to data in which the group size is known, and an overall group adversity level can
be assigned, but individual incidence information is missing. In addition to the response
indicator, we have information on the exposure concentration and duration, the species,
and the gender.

We fit a scaled link function model for logistic regression on log,o(concentration) and
log,(duration) with the intercepts stratified on species x gender and with the concentra-
tion parameter stratified on species. Of particular interest is the question of how much
information group binary responses provide as compared with individual outcomes. The
latent correlation parameter, p, allows us to investigate this question.

Figure 2 shows the profile deviance function for p, along with the projected 95% gen-
eralized likelihood confidence interval computed via the sandwich approximation method
described in section 4. The cutoff value was computed by batching the groups within
studies as described in section 3.2. We see that the maximum likelihood estimate of pis 1,
but the confidence interval is rather wide. A naive confidence interval based on the usual
chi-square approximation is a bit narrower but suspect because of the likely correlation
within studies. The within group correlation is significantly different from 0. In fact, a
group binary response appears to contain about the same information as a single individual
binary response. This is useful knowledge for the analysis of the existing database, and
for the design of future toxicological studies. It implies that individual data should be
obtained whenever possible. '

Another question is how much stratification is necessary in the model. We used the
batched generalized likelihood method to test the hypothesis that the concentration pa-
rameters for the different species are equal. The log generalized likelihoods are obtained
as deviances from standard logistic regression software after weighting the regression vari-
ables. The drop in deviance in going from the smaller to the larger model was 2.118. The

estimated eigenvalues from the sandwich formula were 1.44 and 0.69. Comparing the log
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generalized likelihood ratio to quantiles of 1.44W; 4 0.69W, gives a p-value of 0.35, so
there is little evidence of nonparallelism among these data. Figure 3 shows why. Within
species the ECjyo lines show little difference, and the difference could easily be explained
by random variation. '

The main work was in computing H, J and the appropriate eigenvalues. To get
quantiles of ) Aixﬂ a=i; Ve generated 5000 observations from the distribution.

A further test of equality of intercepts is highly significant. With concentration enter-
ing the model logarithmically, the different intercept parameters for the different species
correspond to dose conversions. Because the different species have different inhalation
rates and metabolisms, one would expect such an adjustment of the dosage across species.

As the example illustrates, once the machinery is in place for performing these kinds of

tests, model selection and confidence intervals may proceed quite analogously to standard
likelihood based analysis.

5 DISCUSSION

If both group and individual level data are available, the latent model for the group
responses provides the basis for combining these sources of information. The key is that the
parameters are defined at the individual level rather than at the group level. In particular
(5) implies that the individual ordinal responses follow model (6) with w; = 1. (Observe

2, not 02.) Therefore

that the appropriate variance of the individual latent response is o
the regression parameters of the group and individual response models have the same
interpretation. ‘ . ‘

In applications, however, some caution is required in combining group and individual
responses when the individuals are also subject to group correlations. The group-only
responses might well appear to have a high within group correlation in part because the
group level reporting itself inflates the apparent agreement among elements of the group.
Thus, although the latent responses appear to be highly correlated, this need not imply
that fully observed individual responses would exhibit the same high correlation. For
this reason it would be a good idea to model the within group correlations separately for
individual level and group—only data.

The scaled models generalize the unscaled models just as weighted least squares regres-
sion generalizes ordinary least squares. The simple technique of weighting the regression
variables may be useful in a variety of problems. In the group ordinal model, group size
and within group correlation are natural effects on which to model the scale of the link
function. In other settings it might be more natural to key on covariate information to

model heterogeneity of the scale.
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Figure 3: Tetrachloroethylene data showing the binary response (hollow circle = nonad-
verse, solid diamond = adverse) versus concentration and duration for (a) pooled data,
(b) humans only, (c) mice only, and (d) rats only. Lines in (a) are EC10’s for humans
(solid), mice (dotted) and rats (dashed). Lines in (b)-(d) are EC10’s for unconstrained
slope model (solid) and parallel slope model (dotted).
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Sandwich type confidence intervals, i.e., delta method confidence intervals derived
from generalized estimating equations, are often suggested as a means for dealing with
correlations among the responses. Although convenient, these confidence intervals have
some well-known drawbacks. They lack invariance to reparameterization, they are fre-
quently inaccurate without a transformation of some kind, and they can lead to confidence
intervals that extend beyond the boundary of the parameter space, e.g., in the estima-
tion of a correlation parameter. To address these problems we have developed generalized
likelihood confidence intervals, which have similar properties as likelihood based intervals.
In particular, they are invariant to transformations, and they are range preserving, so
they offer an improvement on delta method conﬁdenée intervals. In the context of scaled
link function modeling, generalized likelihood ratio tests and confidence intervals provide

a convenient way to test for structure in the model in the presence of correlations.
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