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1 Introduction

1.1 A Semi-parametric Regression Model

We model protein activity as a realization of a Gaussian stochastic process which depends on ex-
planatory variables, Buffer, Ph, NaCl, Protein Concentration, Reducing Agent, Detergent, MgCl,,
and Temperature as well as a number of tuning parameters. Let x = (z1,...,zs) represent the
vector of the eight explanatory variables, and let Y be the observed protein activity. Our basic

model, as described in Sacks, Welch, Mitchell, and Wynn [4] is
Y(x) =7 (0)B+ Z(x) +e. (1)

In general, f could be a vector of linear-model terms (main effects, quadratic effects, interactions,
etc.), with 3 the vector of cor’responding coefficients. In the model fitted in Section 3, however,
| fT(x),B is simply 10y, i.e., a constant or intercept term. In our ﬁ‘pted model, ithen, systematic
dependence of Y on x is captured by the Z(x) term, assumed to be a Gaussian stochastic process.
The € term represents random error from measurement, etc.
The stochastic process Z(x) in (1) is therefore central to our model. The correlation between

Z(x) and Z(w), the stochastic process at two design points x and w, is denoted by R(w,x).
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Specific choices for R are suggested in Section 1.2. The basic idea is that when the distance
between x and w in the space of explanatory variables is small, R should be close to one; i.e.,
nearby values of Z, and hence the underlying function, are similar. Conversely, as x and w become
more remote from each other, their responses should be unrelated, and R should approach zero.
It is this property that enables Y to be predicted from the experimental data. The presence of
unordered categorical variables requires that we adapt the notion of “near” versus “remote” vectors
of explanatory variables. This is taken up in Section 1.2.

Let x; denote the vectof of explanatory variables for run ¢ of the experiment, and let Y =
(Y1,...,Y,)T denote the vector of corresponding protein activities. The model (1) can be written
in matrix notatidn as

Y=FB+Z+e (2)

where F is the expanded design matrix with f7(x;) in the ith row, Z = (Z(x1),...,Z(x,))T is
the vector of stochastic process values at the n experimental settings, and € = (él, e en)T is the

vector of random errors. Specifically, we assume that

Z ~ N(0,0%R), (3)
where the n x n matrix R has R(x;,%;) as the (i,j) element, and

e ~ N(0,021). » (4)
Also, Z and € are assumed to be independent. Together, these assumptions imply that

Y ~ N(FB,s°C), (5)

2 = 0% 4+ 02, and the n x n correlation matrix C is given by (cZR + 021)/0?.

where o
As expressed in (5) this model can easily be recognized as a universal kriging model, common
to the spatial statistics literature [3|, as well as to the analysis of deterministic experiments such
as those discussed in [1], [2], [4], [6], and [7] on which our work is based. This model has proven to
be useful in situations of both types, specifying flexible nonlinear models. In the kriging scenario,
explanatory variables are actual physical locations in two or three dimensions, and the covariance
structure, R, is specified via a variogram rather than a covariance matrix.
When R and 0%/0? are assumed known, we use the best linear unbiased predictor (BLUP) of
Y(x),
Y(x) = £7(x)B + c(x)"C~H(Y - FA). (6)
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Here c(x) is a vector with element i given by %%R(x, X;), the correlations between the Y’s at x and
the n experimental runs. The Gaussian assumption of (5) implies that (6) is also the maximum
likelihood estimate of Y (x). From a Bayesian viewpoint, under model (5) and a non-informative

prior on 3, (6) is the posterior mean for prediction.

1.2 Specifying the Covariance Structure

‘Model (5) has previously been employed primarily for continuous or at least ordinal explanatory
variables. We propose a modification to the structure of R to handle unordered categorical variables.
In previous work [4] with ¢ quantitative (continuous or ordinal) explanatory variables, the

correlation R(w,x) between Z(x) and Z(w) was specified as

q
R(w,x) = ][ exp{—6s|w; — 2"}, (7)
=1
where 6 = (6y,...,0,) and p = (p1,...,p,) are unknown parameters. All p;’s are in (0,2] in order

to satisfy a positive definiteness constraint. The 6;’s are restricted to be nonnegative, implying that
the correlation is nonincreasing with distance in each dimension. Unlike most traditional kriging
models, no isotropic assumptions have been made.
Suppose x; is an unordered categorical variable with k& levels. In this case we replace the factor
exp{—6i|w,~ - :Eilpi} in (7) by
k
I exp{~6:lI(wi = j) — I(zi = j)I} | (8)
i=1 -
where I(z; = j) is 1 if x; takes level 7 and 0 otherwise.
For example, buffer is categorical with four levels. Ignore the other explanatory variables, so

that we may omit the ¢ subscript in 6,5, and let Z(j) denote the stochastic process at buffer j. The

correlations between Z(1),...,Z(4) are
1 1
com(z| > |)= | CPTOFOS ' )
3 exp{—(61 +03)} exp{—(62+03)} 1
4 exp{—(01 +04)} exp{—(02+04)} exp{—(f3+64)} 1

For four or more levels, this correlation matrix is restricted (for ¥ = 4, six correlations are specified
by four 0;; parameters). For three levels, the matrix is fully parameterized, while for £ = 2 it is
over-parameterized. The latter problem is easily avoided by setting one of the two 6;; parameters

to zero.



2 Model Fitting and Analysis

Model (5) is parameterized by 3, 0%, o2, 6, and p, which we estimate by maximum likelihood

estimation (MLE) [4]. The estimates of 3 and o2, given 0, p, and 0% /0?2, are
B =FTCcF)'FCcly - (10)
and
5= (Y - BB C(Y - F). (11)
Estimates of 6, p, and 0%/0? must be obtained by numerical minimization of |C|\ /62
While performance of the kriging predictor (6) is of primary interest, identifying the important
explanatory variables aids interpretation. For designed experiments on a cuboidal region, it is useful
to define the mean effect by pg = [ Y (x) [] dzp, the main effect of x; by p;(x;) = [V (x) [T4; dwn,
and the joint effect of x; and x; by pij(@s,z;) = [V (%) [Inei dwﬁ. We estimate these effects by
replacing Y (x) with (6). Plotting‘ the estimated effects gives a visual indication of the relative
importances of the factors.
The performance of the kriging predictor (6) can be judged by leave-one-out cross-validation.

The cross-validation predictor of Y (z;) based on all data except run 4 is

Voi(xi) = £7(x;)B_; + cZ,CZH(Y i — F_i3_,;) (12)

(3

where ‘

B_; = (FL,CIIF_)'FL,CIlY_,. - (13)
We use the subscript —¢ to denote the deletioh of the ith row of ¢, F, and Y, and both the sth row
and the ith column of C.

We perform two versions of this cross validation. In the first, the parameters 6, p, and 0% /0>
determining the correlation structure (hence ¢ and C) are estimated from all the data. In the second
version, these correlation parameters are re-estimated by MLE at each deletion (i.e., without the
deleted run). Previous work (for example [6] ) suggested that the first method gives a valid indication
of prediction accuracy, obviating the second, computationally more demanding, version. For the
model fitted in Section 3, however, the second version is apparently necessary.

To investigate the fit of the model we can also compute the “theoretical” MSE of Y_;(x;),

assuming the correlation structure fixed and known,
-1
. 0 FI, £(x;
MSE[Y_;(x;)] = 02 |1 — (f(x:)T, c_i(x:)T) () : (14)
F_i C_i C_,'(xi)



As with the cross-validétion predictions themselves, this MSE can be based on correlation pa-
rameters from the full data or re-estimated after deleting run . When prediction variability, as
indicated by (14), is large relative to the range of the data, suspicion is raised about the utility of
the model being fit. Using the square root of MSE[Y_;(x;)] for the standard errors to normalize the
cross-validation prediction residuals should result in standard normal errors. This can be checked
by a Q-Q plot and provides a rough check of the validity of the Gaussian modelling assumptions.

We also evaluate the model based on an empirical measure of MSE averaged over the design

points,
1 LN
E=—— ;) — ))2.
MSE = &gy (%) = ¥ ) (15)
The “hat” matrix, H, is defined by
H=(1-(62/c> ) RCHFFTCIF)FTC! + (62/c?)RCL. (16)

We use the trace of the “hat” matrix as a surrogate for the degrees of freedom in the model as

suggested by Wahba [5] for splines.

3 Protein Activity Model

The specific model we employed for the protein activity data included only a constant term, Sy, in
the regression part. The correlation structure was specified with 17 €’s and four p’s: There is one
(8, p) pair for each of the four continuous variables, and one 6 for each level of the four catego:ical
variables. In addition to these 21 parameters, [y, a%, and o2 are also estimé,ted by MLE. Many
of the #’s are estimated to be zero. This is “encouraged” by the algorithin by periodically testing
whether setting each 6 parameter equal to zero produces an insignificant change in the likelihood.
If 0; is zero for a continuous variable or the 6;;’s are all zero for a categorical variable, that variable
has no effect on the predictor. This provides a “screening” for important effects [6].

Of the 21 correlation parameters, 12 parameters are “active.” These are the 0;;’s for Buffer TRS,
Buffer P04, Reducing Agent AGX, Detergent TWEEN, Detergent N.OCTGLU, and MgCl, = 1,
plus the 6;’s and p;’s for NaCl, Protein Concentration, and Temperature. All of the active p;’s were
estimated to be 2 indicating smoothness (differentiability) of the respOnée surface. The constant
term,b Bo, was estimated to be 0.7664, model vafiance, a%, was estimated-at 0.438, and error

variance, o2, was estimated at 0.00708. The maximum likelihood estimate of the standard deviation



Table 1: Non-zero parameter estimates. (All p’s were estimated at 2.)

Parameter Estimate | Parameter Description
Bo 0.7664 | Mean
o2 0.438 | Model variance
o2 0.00708 | Error variance
6, 0.149 | TRS indicator
6, 1.07 | P04 indicator
03 0.000000337 | NaCl
04 0.000000658 | Protein Concentration
05 0.0692 | AGX indicator
05 - 11.8 | TWEEN indicator
6, 0.579 | N_.OCTGLU indicator
65 0.0814 | MgCl,
) 0.000407 | Temperature

of error, o, = 0.0841, agreed rather well with the estimate of measurement error based on the
repeated design point in the data, 0.0965.

Not surprisingly, in light of the estimate of o2, the plot in Figure 1 of the predicted values based
on (6) versus the observed data showed an excellent fit. The trace of H is approximately 81 which
explains the approximate interpolation of the model. RMSE, calculated by taking the square root
of (15), is 0.0877. Our leave-one-out cross-validation (12) based on the economical method of not
re-fitting correlation parameters at each deletion resulted in a CVrootMSE of 0.3187. The plot
in Figure 2 of the cross-validation predictions from this method against the observed data shows
larger scatter than Figure 1, but no systematic problems. The “theo;etical” prediction errors (14)
are large relative to the range of the data. The “theoretical” root mean squared errors, given
by the square root of (14), are roughly between 0.1 and 0.5. Since the random error component
in this model is small, this suggests that the variability due to the model is large, encouraging
further investigation about the model including the re-estimation of the correlation parameters at
each deletion in computing CVrootMSE. The Q-Q plot in Figure 3, based on economical cross-
validation (12), of the standardized residuals from cross-validation seemed to validate the Gaussian
assumption.

Our analysis of the main and joint effects produced three important main effects, Protein Con-

centration, Buffer, and Detergent, and four important joint (interaction) effects, Buffer x Detergent,



Buffer x Temperature, Detergent x Protein Concentration, and Detergent x Temperature. As each
of the important main effects appears at least once in an important joint effect, we need only look
at the joint effects in Figure 4 to find optimal conditions. In Figure 4 the lines for Buffer MES and
Buffer HPS are indistinguishable; the same is true for /Detergents ETHGLY and GLYCINE.

Our conclusions from Figure 4 are somewhat mixed. It is clear that optimal conditions include
Detergent TWEEN and that high Temperature is at least somewhat better than low Temperature.
Choice of an optimal Buffer is clouded by the conflicting evidence of the Buffer x Detergent
table and the Buffer X Temperature plot. The former recommends either Buffer MES or HPS
while the latter encourages Buffer PO4 at a high temperature. Further investigation of the three-
way interaction between Buffer, Detergent, and Temperature might resolve this conflict. Once
Detergent TWEEN is chosen, Protein Concentration is fairly unimportant. The settings of Ph,
NaCl, Reducing Agent, and MgCl, are also unimportant. These findings are consistent with our
selection of an ‘optimal design point (design point which maximizes our predictor, (6)) as case 37.

We performed the requested leave-one-out cross-validation, leaving out only one of the largest
third of the data points each time by the two methods previously discussed. Our CVrootMSE based
on only recalculating (6) without re-estimating the correlation parameters (CVPredicteds in Table
3) was 0.375, re-estimating the correlation parameters at each deletion (CVPrediction; in Table 3)
gave a CVrootMSE = 0.536. »

The discrepant performance of our first estimator of cross-validation error lead us to a more
careful examination of the data set. We found that the surface is extremely spiky. For example,
cases 77 and 82 both have Buffer HPS, Detergent N.OCTGLU, Temperature —80°, and Protein
Concentration 100, i.e., they have the same settings for the apparently important variables. Yet
case 77 has a high response, 1.495, while case 82 has an extremely low response, 0.032. Similar
examples exist in this data set. We \;vould be suspicious of any method which put unexplained spikés
into a predictor when the only data point which seems to support that spike has been remOQed
from the data. There were no other design points in the top 33 observations which had the same
important explanatory variables (Buffer, Detergent, Temperature, and Protein Concentration) as
case 77.

A cursory check of main and joint effects with case 77 deleted lead to similar recommendations
on optimal values in the important effects. We recommend that further design points be chosen
in the optimal areas suggested by this analysis in order to more accurately predict optimal protein

~ storage conditions.
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Table 2: Cross-validation of 33 largest observations.

Case | Observed | Predicted | CVPredicted; | CVPredicted,
37 2.112 | 2.090123 1.202510 1.5591007
76 2.059 | 1.998767 0.971013 1.5342398
90 1.940 | 1.929449 1.766920 1.7875905
20 1.880 | 1.845872 0.815522 0.8106532
38 1.813 | 1.776779 0.770639 0.9548504
65 1.793 | 1.776152 1.596580 1.6685995
27 1.791 | 1.788682 1.746870 1.7390436
79 1.732 | 1.725929 1.660820 © 1.6715659
29 1.716 | 1.646411 1.179970 1.2297464
68 1.690 | 1.671872 1.196730 1.2518140
21 1.670 | 1.646340 1.240200 1.3185723
88 1.664 | 1.666200 1.634900 1.6846383
39 1.639 | 1.640562 1.865850 1.6643416
56 1.586 | 1.574286 2.078500 1.5134114
64 1.554 | 1.554969 1.580970 1.5679600
54 1.544 | 1.555517 1.700540 1.6636751
77 1.495 | 1.452651 0.183360 0.6809593
95 1.441 | 1.338367 1.287620 1.2884319
3 1.400 | 1.398416 1.336880 1.3475908
69 1.378 | 1.355281 1.381460 1.2516411
67 1.343 | 1.312942 0.138577 | 0.7787523
89 1.328 | 1.343454 0.852592 1.6695348
96 1.309 | 1.338367 1.353340 1.3526548

1 1.253 | 1.338367 1.380280 1.3799009
94 1.230 | 1.208312 0.803463 0.9498886
92 1.201 | 1.201713 1.213300 1.2178295
40 1.158 | 1.166602 1.269750 1.2479975
55 1.134 | 1.074884 1.019610 1.0204219
47 1.084 | 1.153612 1.661780 1.5061271
86 1.049 | 1.052411 1.092090 1.0912879
17 1.039 | 1.024496 0.809032 0.8270347
35 1.016 | 1.074884 1.115570 1.1291317
13 1.000 | 1.008796 1.313500 1.2592392
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Figure 1: Plot of values predicted from model against observed responses.
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Figure 2: Plot of values predicted by cross-validation against observed responses.
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Figure 3: Q-Q plot of standardized residuals from cross-validation.

12




Protein Activity

Protein Activity

14

1.2

1.0

08

0.6

0.4

0.2

0.0

Buffer x Detergent

TRS
P04
MES
HPS

TWEEN ETHGLY GLYCINE N_OCTGLU
1.03 0.27 0.27 0.05
0.97 0.45 0.45 0.93
1.36 0.43 0.43 1.14
1.36 0.43 0.43 1.14

Buffer x Temperature

Detergent x Protein Concentration

Detergent x Temperature

- -
- -7

—— TWEEN

e ETHGLY/GLYCINE

—==- NOCTGLU

T T ! ! .
-80 60 0 2 0
Temperature

Figure 4: Important joint effects.

13

<
—— TRS
rs— P04
—-==- MESHPS o —’—_\
............. o | | — Tween e
""""""""""" - - ETHGLY/GLYCINE T
______________ ———- NOCTGLU 7
_______——————---——""“'”;7" 2 @ T
- 20 )
/ ’ 5 T e -
- I -
e I e
ol e
. o < e
— o
e e e
........ al e
]
s e
=
=3
T T T T T T T T T T
-80 -60 40 20 0 200 400 600 800 1000
Temperature Protein Concentration




