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1. INTRODUCTION

In this paper! we discuss some of the practical problems in using
multilevel techniques, by looking into the choices users of these tech-
niques have to make. It is difficult, of course, to define “user”. Dif-
ferent users have different degrees of statistical background, computer
literacy, experience, and so on. We adopt a particular operational def-
inition of a “user” in this paper, which certainly does not apply to all
users. Qur “user” is defined by the set of questions asked by the Sta-
tistical Standards and Methodology Division of the National Center
for Education Statistics (as formulated in a letter of 9-16-93 of Bob
Burton of NCES to Jerry Sacks of the National Institute of Statisti-
cal Sciences) whose

purpose%’cso evaluate the practical usefulness of multilevel modeling for
educational statistics. We cannot discuss, let alone answer, all the ques-
tions from NCES in this paper. Many of them will require additional
statistical and computational research, but they illustrate nicely some
of the practical methodological problems in using hierarchical linear
models. They also illustrate the dominant position of the terminology
and notation of Bryk and Raudenbush [7], and of the computer pro-
gram HLM [8] in the field of “official” educational statistics. In many
cases it seems as if “fitting a multilevel model” and “using HLM” are

Key words and phrases. Variance components, hierarchical models, mixed mod-
els, multilevel models, random coefficients.

!This version of the paper has benefited greatly from written and spoken com-
ments by John Tukey. The remaining errors, mistakes, and ambiguities are all ours.
A version of this paper was presented in October 1993 at a workshop on Hierarchical
Linear Models: Problems and Prospects, at the RAND Corporation in Santa Mon-
ica. Another, considerably shorter, version of the paper will be published in the
Journal of Educational and Behavioral Statistics, Summer 1995, which contains
the proceedings of the RAND workshop. Research of the first author supported
through the National Sciences Foundation Grant No. DMS-9208758.
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seen as identical activities. They are not, of course. There is more
to structural equations modeling than LISREL, and there is more to
Aspirin than Bayer. To avoid confusion, we shall not use the term “hi-
erarchical linear models,” and if we say HLM we mean the computer
program of that name.

We shall keep the statistics and mathematics as simple as possible.
We shall also concentrate on the situation in which we have a relatively
large number of relatively small groups. The situation in which we
have only two or three groups does not really interest us here, and the
situation in which we have a large number of very small groups (twins,
couples) also requires a slightly different emphasis. We are thinking in
terms of at least 20, but maybe as much as 1000, groups of size at least
5, but maybe as large as 50. This seems to cover most studies in which
the individuals are students and the groups are schools or classes.

Throughout, we shall try to keep the following quotation from Wllk
and Kempthorne [66] in mind. ‘

We feel that any mathematical assumptions employed in the
analysis of natural phenomena must have an explicit, recogniz-
able, relationship to the physical situation. In particular, if the
analysis of variance is to be generally useful in the interpreta-
tion of experimental data it is necessary that its meaning and
justification should transcend the set of arbitrary assumptions
which are usually put forth.
It is likely that papers looking critically at multilevel models fall into
two classes, which try to answer two different questions, aptly described
by Searle [54].

This approach answers the question “given this model and
its definitions, what consequences can I deduce ?” However,
this is not the prime question for the biologist. His concern is
usually “given these data and their origin, what model do I use
29
We shall try to concentrate on the second type of question, although
lapses into the first mode are unavoidable. The NCES questions will be
discussed in terms of a number of choices the user has to make. Here
is a brief list. The user has to choose

e a selection and coding of her variables;

¢ a model from the class of regression models;

e a loss function to measure goodness-of-fit;

e an algorithm to minimize the loss function;

e a computer program to implement the algorithm.

We shall see that all these choices are nontrivial, but our discussion
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will mainly emphasize the choice of the model, the loss function, and
the technique. And, of course, the consequences of these choices.

2. MUSINGS ON LINEAR REGRESSION

The first, rather general, question in the list posed by NCES is

Is some form of hierarchical linear model always preferable
when conducting analysis with independent variables from two
levels of a hierarchical data set ? Are there alternatives to the
HLM software that NCES should consider using ?

We shall postpone the question about software to a later section, and
extensively comment on the problem of model choice here. From the
modeling point of view, the first important choice is to decide what is
random and what is fized in our regression models. Predictors can be
fixed and random, and coefficients can be fixed and random. Although
this choice in itself may seem somewhat esoteric, it has major conse-
quences for subsequent computations, although perhaps not always for
the outcome of these computations. Before we discuss the choices, we
obviously have to discuss the alternatives the user can choose from.

Let us start our discussion with the usual linear regression model.
So we have n individuals and p predictors. The outcomes are in an
n—element vector y = {y;}, the values on the predictors in an n x p
matrix X = {z;,}. We suppose

(1) y=XB+e

Some aspects of (1) are of importance, and since they usually are dis-
cussed rather vaguely we emphasize them here. In the first place we
distinguish random variables from fixed quantities by underlining them
[32]. In discussion this class of regression models, the distinction be-
tween what is fixed and what is random is crucial, and the underlining
notation helps to emphasize the difference between the two. Of course
what the distinction actually means in a practical data analysis context
has been the subject of much debate, because it is intimately linked
with the foundations of statistics and with the quarrel between the
Bayesian and Frequentist schools.

We use frequentist terminology in this paper. Thus we think of (1)
as a model that describes a hypothetical sequence of replications of the
experiment that generated the data. Our statistical model does not
describe the outcome of a single experiment, or of an actual sequence
of replications, but it models a hypothetical sequence of replications.
In this hypothetical sequence X remains fixed, i.e. it is exactly the
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same in each replication. The coefficients 3 are also fixed over replica-
tions, but we do not know what their values are. They are parameters
that have to be estimated. The disturbances ¢ are different for each
of the hypothetical replications, and they vary according to specified
probability distributions. In particular, we assume, for their expected
value and dispersion matrix,

(2) E(¢) =0,
and
(3) V (¢) = o*Z.

The model (1)-(3) says, in essence, that the disturbances are uncorre-
lated. They all have the same expectation and variance, i.e. they are
not systematically related to X. Or to anything else within the model,
for that matter.

Some general comments are in order here. In the first place the
model (1)-(3) was really meant for situations in which the predictors in
X are under experimental control, and can be assumed to be measured
without error. That is, they are meant for designed experiments. The
z;s are fixed quantities, i.e. they remain the same over the hypothetical
replications, which means that in order to use the model we must have
have a way of physically keeping them the same. This does not happen
very often in educational statistics. If we regress school success on 1Q,
we are usually not interested in replications in which the individual has
the same 1Q all the time, only different school success. Both variables
covary,i.e. it looks as if we should use a model with a random predictor.
Fortunately, this problem can be solved quite easily. We assume that
(1) models the conditional distribution of y. given z; = z;, and, if we
want to, we can model the marginal distribution of z; separately to
get a model for the joint distribution of (y,, z;). In this, we agree with
Beran and Hall [5], page 1971:

We should comment on our decision to condition on the vari-
ables z;. In our view, regression is intrinsically the study of func-
tional relationships where the design variables are held fixed,
that is, are regarded as nonrandom. If the z’s are not condi-
tioned upon, then the study is one of correlation, not regression.

A second problem that remains is that assuming linearity and ho-
moscedasticity of the regression in the joint distribution is a very strong
assumption, which is unlikely to be even approximately true. It forces
us to take a more modest approach, in which models are used to gen-
erate tools for compact description and/or tools for prediction. We do
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not have to worry about the model being true (it obviously is not),
we only have to worry if the procedures it generates do their job of
summarizing the information in the data and extrapolating into the
future well enough. We think it is still the general consensus that the
procedures usually generated by the linear regression model (1)-(3) do
very well, given how strong and unrealistic the model is. It is still the
workhorse of applied statistics, in fact it sometimes seems as if applied
statistics is linear regression analysis.

This points to a third general point, which is of tremendous impor-
tance, and which is not often discussed. Statistical models are lan-
guages that users in a particular field have to learn, and that they use
to talk to each other efficiently. Regression analysis, path analysis,
factor analysis, survival analysis are all examples of this. There is a
tendency to narrow down the language even more, so that for exam-
ple in the seventies LISREL became the language of choice for a large
group of scientists in various disciplines. In educational statistics the
multilevel framework provides a language that encompasses and super-
sedes the older language of contextual analysis, and there seems to be
a tendency to narrow it down even more to the language of the HLM
program. But this means that in the field it becomes difficult to talk
about hierarchical data structures without adopting the terminology
(and constraints) of the HLM program. The NCES questions seem
to indicate that it is not clear to everybody in educational statistics
that the current multilevel language, or its HLM dialect, should really
occupy this exclusive position.

3. ON RANDOM COEFFICIENTS

Finally, another assumption which is implicit in (1) is that the re-
gression coefficients 3 are the same for all individuals. Starting with
Wald in 1947, economists have been critical about this assumption too,

although as usual for the wrong reasons. In his textbook, page 216,
Klein [38] says

Individuals differ greatly in behavior, and it may not be pos-
sible to obtain observations on a sufficiently large number of
variables so that each unit may be considered to behave ac-
cording to the same structural equation. We are then faced
with the problem of interpreting a single estimated equation as
representative in some sense of a large number of underlying
equations.
The quotation is interesting, because it states explicitly that we need
multiple equations because we do not have enough predictors. If we
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had all relevant predictors in our study, we could use a single equation
for all individuals, but since this is impossible, or at least impracti-
cal, the equations will vary around some average equation. It does
assume, however, that there is some “true” model, which we can only
approximate imperfectly because we will never have enough individu-
als to estimate its parameters. This is, of course, Platonic Idealism.
Nevertheless the notion that individuals have their own regression co-
efficients, and that these do not vary too wildly, seems useful.

We formalize this by using the notion of random coeflicients. The
model is

(4) _Qi = 5'3;/_3, + &

where §; are independent and identically distributed with zero expected
value and dispersion ). Moreover they are independent of the ¢;. Thus
y has expectation X(, as in the fixed coefficient model, but we now
have heteroscedasticity because

(6) A% (gz) = ziQz; + o°.

Thus the variance of y, is a linear function of the squared length of z;,
in the metric 2. We should be able to see such an effect in residual
plots.

Once again we emphasize that the distinction between fixed and
random coefficients is important, because it changes the definition of
the population over which we generalize. If we repeat our experiment,
then we do not expect individual 7 to have the same regression co-
efficients in each hypothetical replication. The regression coefficients
vary, both within individuals and between individuals, around a pop-
ulation mean. Some applications of these “models of the second kind
in regression analysis” are discussed by Fisk [25].

4. REGRESSION IN MULTIPLE POPULATIONS

We now analyze the more general situation in which there are m
groups, indexed by j. A straightforward generalization of (1) is

(7) _y_j = X]'/Bj + £;.

Now the Y, and the ¢; are vectors of length n;, the number of individuals

in group j. Matrix X; is n; x m. It conceivably makes sense also to
assume

(8) E(¢) =0,
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and
(9) \'% (Qj) = O'?I.

Finally we assume the different ¢; are independent of each other.
There is nothing wrong with model (7). It merely says that the same
regressors apply to each of the groups. But if we fit the model, we can fit
it to each of the m groups separately, because none of the parameters
are common to the groups. Especially if there is a large number of
relatively small groups, for instance students from many school classes,
where each class has somewhere around 10 — 20 students, this is not
very attractive. We ignore the fact that schools are all part of the
same system, and that consequently the regressions are likely to have
something in common. We would like to incorporate this communality
into the model. One way to do this is requiring that some of the
parameters are equal in all groups. There are two obvious choices

(10) Pr=PFr="" =P,

(11) ol=o0l=--=a2.

But this is a clear case of throwing the baby out with the bath water.
Although schools are related, and must have something in common,
we do not want to assume they are identical. There are a number of
ways out of this dilemma. We discuss three of them in this section.
The first one assumes partial parameter identity. The second solution
simply fits model (7), and then tests if the additional specifications in
(10)-(11) are true. The third one uses a random coefficient model that
takes the hierarchical structure of students in schools into account.

The Analysis of Covariance is an example of the first approach. We
assume (11), and we assume that all slopes, but not all intercepts,
are equal. More generally, we can require 3; = Z;v, where the Z;
are chosen in such a way that some elements of the 3; are equal. In
ANCOVA, for instance, we have mp parameters f;;, and we replace
them by p — 1 slopes and m intercepts. If the slopes are in a vector 3
and the intercepts in a vector o, we can set

. w-20- (49 (2)

with e; the j-th unit vector. Thus we see that the partial identity
approach leads to linear constraints on the 3;. Combining these con-
straints with (7) simply gives the fixed-effects linear model

(13) Yy, = X;Ziv + ¢,

which can be fitted with ordinary least squares methods.
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To illustrate the second approach, suppose we compute, with any
one of our trusted OLS programs, estimates 3; and &f. Then we know
that, under normality, and assuming (10)-(11),

(14) B; ~ N{B, 0% (X, X;) 7}

Thus it is simple to test equality, because (14) is just a simple lin-
ear model for the coefficients. In the same way we can test equality
of the 0]2, which are independent chi-squares under normality. These
tests correspond nicely with a partitioning of the normal log-likelihood
into within-group and between-group regressions. What we see from
this analysis is that from the data analysis point of view this two-step
procedure, which first fits a model for each group separately, and then
analyzes the parameter estimates in a second step is potentially much
more informative then the one-step procedure, which just plugs in (10)-
(11) into (7)-(9) and fits the resulting model. The two-step approach
allows us to partition the log-likelihood (or, equivalently, the residual
sum of squares), and it allows us to look at residuals at two levels.
Of course if there are many regressors, and the groups are small, the
within-group regression coeflicients will be unstable, or even unidenti-
fied.

In random coefficient models, we go a slightly different route. We
take a position which is in between “separate models for all schools”
and “complete equality”. In an excellent review paper Spjgtvoll [62]
discusses an example in which length and thickness of a number of
cucumbers at five points in time are compared.

It is seen that the points for each cucumber almost lie on a

straight line. Hence a straight line can be used to represent the
relationship between thickness and length for a given cucumber.
But each cucumber seems to have its own line. The cucumbers
are chosen at random from a large number of cucumbers of a
certain variety. Hence the regression lines must be considered
as random. The individual cucumbers can be characterized by
their straight-line relationships. To characterize the whole pop-
ulation of cucumbers it is natural to look at the distribution of
these lines. The expected values of the regression coefficients,
their variances and covariances are then the parameters of in-
terest.

To make the quotation relevant for educational statistics, just sub-
stitute “student” for “cucumber”. We see the reason for using random
coefficients here. If we do another hypothetical replication, we do not
use the same cucumbers, but we draw a new sample and watch them
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grow. More discussion of this is under the heading “Fixed or Random”
in textbooks such as [55], [53].
The model becomes

(15) Qj :ngj—l_éj’
with
(16) 8,=B+5.

Compare this with (4)-(5). In the earlier model we assume that each
individual has her own regression coefficients, and these coeflicients are
independent between individuals. In (15) we assume each group has
its own regression coefficients, which are independent over groups. But
the coefficients are identical for different individuals in the same group.
We model the coefficients as random, which means that we modify our
definition of a population (our hypothetical sequence of replications).
The slopes and intercepts are no longer fixed numbers, which are con-
stant within schools and maybe even between schools, but they also
vary over replications. In order to complete the specification we also
assume that the second-level disturbances §; are independent, are in-
dependent of the first-level disturbances ¢;, have zero expectation, and
have dispersion matrix Q. If the second level disturbances are identi-
cally equal to zero, then we are back in the situation (10)-(11).

Observe that the parameters 0]2 are not usually modeled as random,
but are considered to be fixed, and in most cases actually the same. The
paper by Aragon [2] is an exception. The only obvious reason for this is
mathematical convenience, because assuming random individual level
dispersions takes us out of the usual normal theory framework. Also,
observe that using fixed regressors is mathematically very convenient in
the random coefficient context. If both regressors and coefficients are
random, then, even if they are both normal, their product is certainly
not normal. This makes multilevel path analysis models [20] inherently
more complicated.

By combining (15) and (16) we see that

(17) y; = XiB+ X4, + ¢,
which implies
(18) \'% (gj) = X;0X} 4+ 07T

Individuals in the same school have correlated disturbances, and the
correlation will be larger if their predictor profiles are more similar, in
the metric . This is an interesting consequence of the specification
(15)-(16), but understanding (15)-(16) itself is clearly more basic. It
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will be difficult, even for sophisticated users, to interpret the variance
and covariance components in (18) directly.

5. MULTILEVEL DATA AND MODELS

We have seen, in the previous section, that random coefficient models
are a convenient compromise between separate fixed coefficient models
for each group, and models with all coefficients equal for each group.
They are a convenient compromise, because we expect them to give
more stable estimates than separate models and more interesting pa-
rameters than equal coefficients. They are also more plausible, because
we they reflect the structure in which many educational data sets are
put together. Plausibility, by the way, is nice, but it cannot be the only
criterion. The more parameters we add, the more plausible the model
becomes, and if we continue long enough each individual has her own
set of parameters which can be used to get a very good fit, that will
never stand up to replication. Thus we also need Parsimony, Plausi-
bility’s eternal enemy. Statistics is the battle between Plausibility and
Parsimony.

Our regression situation becomes more complicated, but also more
interesting, if we have variables describing individuals (students) as
well as variables describing groups (schools). Combining them in a
single analysis is called multilevel analysis. In multilevel analysis we
combine the approaches discussed in the previous section. We use the
linear restrictions of the form §; = Z;y to reduce the number of free
regression parameters, and we use the idea of random coefficients to
model the idea that schools are sampled and that we cannot expect to
explain all relevant variation with only a few regressors. The combined
model, which replaces (15)-(16), is

(19) Ej :ngj-l_éja
(20) B, =2Ziv+4;

We now clearly see two different regression models on two different
levels. The first level model (19) is complemented by the second level
model (20).

We have now collected enough ammunition to turn to NCES question
number four.

Some analysts are more comfortable presenting HLM results
in terms of a combined model, i.e., a single regression equation
containing interaction terms. Others prefer to discuss the co-
efficients without recourse to a single regression equation. Are
the two approaches equally valid ?
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Let us translate this into formulas, because at least partly it is a
question about formulas. If we substitute (20) into (19) we have

(21) Yy, = XiZjv+ X;8; + ¢
If we look at the fixed part of (21) we see that
(22) E(y,) = XiZj.

In (22) the cross-level interactions are formed as products of the first-
level regressors xs and the second-level regressors z,. In a sense, there
is not much to choose. The single-equation and the two-equation for-
mulation describe the same model. From the point of view of interpre-
tation, however, the two formulations are quite different. We feel it is
very difficult, perhaps impossible, to interpret (21) without going back
o (19)-(20). It is of course possible to interpret the fixed effects in
(21), because we have a lot of experience with interpreting interactions
in fixed effect situations. Compare the useful reviews by Aiken and
West [1] and Cox [16]. It is however quite impossible to come up with
a convincing interpretation of the structure of the disturbance term
in (21) without referring to (19)-(20). The disturbance term in ques-
tion is X;4; + ¢;, and its dispersion matrix is XjQX]{ + O'?I. We have
seen, in the previous section, that it is difficult to make direct sense of
especially the covariance components.

For completeness, the multilevel random coefficient model explained
above must be distinguished from two-level models using fitted coef-
ficients. In the “slopes-as-outcomes” approaches of Burstein and his
co-authors [10] it seems that the model is (1)-(3), but with in addition

A

(23) Bi = Zjy + 4,
with
(24) B; = (X X)Xy,

which are just the fitted regression coefficients. These assumptions
imply that 8; = Z;v, and that

(25) V(5)) = (XIX,) .

As a consequence, this fitted coefficients model is identical to the model
(13), i.e. a model with cross-level interactions, but no intraclass covari-
ance component structure. The Gauss-Markov estimates are the one-
step OLS estimates, and not the two-step estimates typically used in
slopes-as-outcomes. A nice treatment of slopes-as-outcomes was pub-
lished in 1974 by Hanushek [28]. He assumes (in a simple special case)
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both (19) and (20), and then adds
(26) B; =B, +n,

where n; is the sampling error of the regression coefficients, given by
(25).

6. ESTIMATES, LOSS FUNCTIONS, AND GLOBAL FIT MEASURES

The one-step and the two-step model, discussed in the previous sec-
tion, suggest two different ordinary least squares methods for fitting the
model. This was already discussed in detail by Boyd and Iverson [6].
We follow the treatment of [19]. The two-step method first estimates
the 3; by

(27) B = (X}X,;)™ Xy,

and then vy by

(28) ¥ = 212,)7 3 2B
=1 i=1

The one-step method estimates « directly from (21) as
(29)

y=0.ZIX/X,Z;)" E ZiXjy. = Z ZXIX, 2Ny ZLX X By
7=1 j=1 7=1

Both methods provide unbiased estimates of v, they are non-iterative,
easy to implement, and because they are linear in the observations it
is trivial to give an expression for their (unknown) dispersion matrices.
Nevertheless they have fallen into disgrace, because they are neither
BLUE nor BLUP [27], [49]. On the basis of the computational expe-
rience we have so far (which is quite minimal) we feel that they still
deserve a fighting chance.

The next candidate that comes to mind is based on the BLUE, i.e.
the best linear unbiased estimate. If we knew af- and €, then we could

compute the BLUE by
(30)

{Z ZiXUX0X) + )X, Z,) Z ZIXUX0X, + 02T) 7y
This looks horrible, but it can be s1mphfied to

(31) {Zz’ lz} ZZ’W‘IB],
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where
(32) W; =0+ a]?(X]'.Xj)‘l.

Observe that W; is the dispersion of the OLS estimate Bj. The formal
similarity of (28), (29), and (31) is clear. They can all be thought
of as two-step methods, which first compute the Bj, and then do a
weighted regression of the Bj on the Z;. Of course (31) is useless by
itself, because we do not know what ¢? and Q are, but a method to
compute consistent estimates of these variance parameters from the
OLS residuals is discussed in [19]. This adapts a method proposed by
Swamy [60] to the multilevel model. Again, we think a more detailed
comparison of these simpler methods with the complicated iterative
methods such as HLM [8], or VARCL [42], or ML2 [47] would be useful.
The least squares methods are computationally simpler, and easier to
understand and explain. Moreover it is generally simpler to study
their statistical properties. For the case in which we first estimate the
variance components, the statistics are still quite complicated [35].
This also brings us to the next question asked by NCES.

Most discussion of HLM results centers on the individual
coefficients: the betas and gammas. There is of course some
interest in the overall measures, such as the proportion of vari-
ance explained. What is the best way to obtain and present
overall measures when using HLM ?

Each of the methods discussed above gives one way to compute the
“proportion of variance explained”. We have residual sums of squares
in each of the two steps. We get a somewhat more integrated picture
by using the Analysis of Deviance, which is based on the multinor-
mal likelihood function. Let us combine fixed and random coeflicient
models to

(33) Qj = Xj/[ij + €,
(34) ﬁj =B+ éj'

The two additional specifications we can either impose, or test, or both,
within this model are

(35) ﬂj = Zj77
and

(36) Q=0.
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A special case of (35) is equality of the §;, another special case is
(random effects) ANCOVA. Of course (36) is the hypothesis that the
regression coeflicients have no random variation.

The multinormal deviance for model (33)-(36) is, ignoring the usual
constants,

(37)
A=) log| X;0X] + O'?I |+ (y; — X;0;)'[X;9X; + U?I]_l(yj — X;B;).
j:]_ j:].

This can be simplified by writing y; = Xj[ij + r;, where Bj is any OLS
estimate. We find that, except again for some constants,

(38)
& = 3-{log | W | +n; = p)lon + 20+ (3= W75, )
Here &? is the OLS estimate of the residual variance, i.e.
(39) 2o Tl
nj —p

The derivation of (38) from (37) is, for example, in [19]. It seems that
most “overall measures” that are “useful” are components of (38). We
see the residual individual level variance 012 in each group, while the
two components of W; are the parameter variance Q and the estimation
variance o3(X;X;)~". These components are discussed extensively in
[7].

If we want to establish how much variance of the [3’]' is “explained”
by the Z; we merely have to compute the matrix

(40) > WG - 2 - 23,

and look at its diagonal or trace. Here Wj and 4 are the maximum
likelihood estimates, computed by minimizing the deviance (38) over
the free parameters.

In HLM, and in some of the other multilevel programs as well, the
deviance that is actually minimized is defined slightly differently. In-
stead of minimizing the deviance of the data, we minimize the deviance
of the least squares residuals. This leads to Restricted Maximum Like-
lihood or REML estimates [29]. In the multilevel context the relevant
algebra is in the appendix of the book by Bryk and Raudenbush [7],
or in the paper by De Leeuw and Liu [21]. REML estimates are gen-
erally considered to be superior to the maximum likelihood estimates
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based on the deviance of the data, but the evidence of their superiority
in complicated cases, and in multilevel analysis in particular, is not
too convincing. The precise asymptotics for both ML and REML has
been worked out [44], [17] but as usual the results are not very help-
ful. Careful Monte Carlo studies in simpler cases [59] do not lead to
unambiguous recommendations. Clearly a great deal more of research,
of the theoretical and the Monte Carlo variety, is needed here.
Another question which is of some interest from the practical point of

view is how we estimate the gj. Obviously we can use the unbiased and

consistent estimates ,Bj or Bj = Z;7, just as we would do in the fixed
coeflicient case. This is not what is normally done, however. One of
the key selling points of multilevel approaches is the shrinkage estima-
tor which is used to borrow strength from the other contexts (groups,
schools). In this approach we estimate 3; by using the conditional ex-
pectation (or the linear regression, in the non-normal case) of ﬁj given

y. The shrinkage estimate has the simple expression

(41) Bi = 0,6, + (T - 6,)Z4,
with
(42) 0; = QW

Thus the shrinkage estimator ,B]‘ is in the class of “matrix weighted
averages”, and the algebra and geometry derived in Chamberlain and
Leamer [12] apply. Using the weighted average interpretation can help
in the understanding of the regression coefficients. It can also help in
understanding the frustration of the principal of an excellent school,
who sees the predictions of success of her students shrunken towards
the mean.

The fact that we actually have three different estimates of 3; offers
many opportunities for diagnostics which have not really been explored
so far. In fact, the emphasis in the literature has been on the appropri-
ateness and the plausibility of the model, and not on the ways in which
it can be violated. This is perhaps a useful attitude in the initial stages
of development, but the time has come to become more realistic. One
possibility is to relax the assumptions and to fit more general models.
As we know, going this route means going further into the minefield
of Plausibility, declaring war on Parsimony and its faithful ally Sta-
bility. The other possibility is to use diagnostics, either graphical or
computational. There have been a few attempts to develop tools for
the mixed linear model [4], [14], [40], but their usefulness has not really
been explored.
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7. ALGORITHMS AND COMPUTER PROGRAMS

Some people think, perhaps, that it is irrelevant for the ordinary
user which algorithm is used to compute, say, maximum likelihood es-
timates. Moreover, it is equally irrelevant which computer program is
used to compute the estimates. But this is true in the same sense that
it is irrelevant which means of transportation you use to get to your
work. Eventually you will get there alright, no matter what means of
transportation you use, but walking takes hours, the bus is unpleas-
ant, and an old car breaks down all the time. The review by Kreft,
De Leeuw, and Kim [39] shows that algorithms do matter, and that
consequently the NCES question about software makes perfect sense.
Related comparisons are in Van der Leeden, Vrijburg, and De Leeuw
[63]. On the basis of this comparison, the answer to

Are there alternatives to the HLM software that NCES should
consider using ?

is a resounding “yes”.

In the first place, this is a “yes” in the general sense. The two-
step ordinary and weighted least squares methods deserve, at the very
least, some additional study. The nonparametric and semiparametric
methods, and the path analysis and latent variable versions of the
multilevel models should also be studied in detail. And, perhaps most
importantly, software should be developed that studies the deviations
from the multilevel model, preferably in a graphical and interactive
way.

Secondly, it is a “yes” in the narrow sense. As far as algorithms
for maximum likelihood estimation are concerned, the alternatives are
clear. We can choose between the scoring method in Longford’s VARCL,
the iterative generalized least squares (IGLS) methods in Goldstein’s
ML/2 and ML/3, and the EM algorithm in HLM and Mason’s GEN-
MOD. It is also obvious that there is no uniformly best method, and
that none of the three may provide the final answer. In a recent paper
Mak [43] proposes a method that does not require much more compu-
tation than a single EM iteration, and that basically finishes after one
or two iterations.

If we compare advantages and disadvantages, then EM has global
convergence from any starting point to a solution which is always fea-
sible (no negative variances). This advantage, however, is also its un-
doing in other situations. Global convergence means small steps, and
thus slow convergence. If there is convergence to a boundary point,
EM slows down to a crawl, and it will not get there in our lifetime.
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Technically, EM becomes sublinear in such circumstances. The user
will have stopped long before this, at a point which looks stationary
because nothing is really changing any more. Since EM typically does
not give information about the quadratic component of the likelihood
function in the region in which it meanders, there is very little infor-
mation available that can be used to diagnose this situation. Scoring
is often said to have locally quadratic convergence. But this is true
only if the model is true, which it is not, and if convergence is not to
a boundary point or a point where the information matrix is singu-
lar. In examples that are ill-conditioned, VARCL also slows down and
becomes linear or worse. Both VARCL and IGLS, however, give bet-
ter indications that something is wrong. Variances become negative,
inverses explode, and so on.

From the results of [39] we conclude that VARCL is more difficult
to use than HLM, but it gets one to the same solution faster if the
model is well-conditioned. If the model is way off, then VARCL has
better ways of showing this. More or less the same thing is true for
ML/3, but ML/3 is really an interactive software package with a much
more general range than HLM. Within ML/3 we can study residuals,
compute summary statistics, make plots, and so on. The learning curve
is much steeper, but this is unavoidable. Even steeper learning curves
result, if the user decides to write multilevel software in Xlisp-Stat or S-
Plus, the interactive statistical environments that are rapidly becoming
more popular. This gives the maximum amount of user control, but
requires also the maximum amount of prior knowledge.

To put it somewhat differently, the HLM program assumes from the
start that the basic model is correct, and the number of variations
and tests within the basic model that can be tried out is consequently
quite limited. Clearly, the developers of HLM have a different class of
“users” in mind. Since NCES also has to deal with more sophisticated
users, who want to explore their data, experiment with models, and
investigate the residuals, we think ML/3 should be available as well.
We see the simple order, in terms of precookedness,

HLM > VARCL > ML/3 > XLISP.
This ordering implies that the programs cater to different groups of
users.
8. HISTORY

In this section we collect some remarks about the history of multilevel
models. This completes and improves the remarks on history given in
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[19]. We shall try to give the key papers in various areas, and to show
what their relationships are. In particular, we concentrate on review
papers and textbooks. The purpose of this section is to show that
developments similar to the ones in educational statistics are going on,
or have been going on, elsewhere as well. Tools developed in one area
can often be used in other areas as well. We think one of the useful
functions of statistics as an academic discipline is to coordinate and
document data analysis developments that are going on in different
disciplines.

8.1. Variance Components. Variance component analysis (and mixed
model analysis) has a long and complicated history, which is discussed
in considerable detail in the book by Searle [55]. The first use of the
technique was in astronomy by Airy around 1860. But, of course, the
seminal work was by Fisher in his basic 1918 quantitative genetics pa-
per, and in his 1925 book. The distinction between fixed effects and
random effects, and the birth of the mixed model, can be dated to the
work of Eisenhart around 1945. Between 1950 and 1970 the field was
dominated by the Henderson methods for estimating the variance com-
ponents, and around 1970 the computational revolution made it pos-
sible to compute maximum likelihood estimates (Hartley, Rao, Hem-
merle, Harville, Thomson, Searle). Since 1970 there has been a lot of
emphasis on computation, for which we refer to the excellent review
paper by Engel [24], and some progress towards a deeper understanding
of what we mean by an “analysis of variance”. Two interesting papers
on this last topic are by Speed [57] and Samuels, Casella, and McCabe
[51].

8.2. Random Coeflicients. We have seen that random coefficient
models were proposed in econometrics in the Cowles Commission days
by Wald in 1947 and by Rubin in 1950. The computational revolution
made these models also practically relevant, and in the early seventies
there were review papers of Rosenberg [50], Spjgtvoll [62], and a mono-
graph by Swamy [60]. A bibliography has been published by Johnson
[36], [37]. Recently there have been some attempts to make random
coefficient models semiparametric, in the sense that the distribution of
the random effects is not assumed to be normal, but is estimated from
the data. In the linear case, see [5], for the nonlinear case, see [18].

8.3. Variable Coefficients. This is a very general class of models
which can be described by

(43) Qz = x;ﬂ(z,,(‘)) + &,
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Each individual has her own vector of regression coefficients, which
depends on a number of parameters, possibly in a nonlinear way. In
this generality the model depends heavily on computational tools such
as smoothing. It has been discussed recently by Hastie and Tibshirani
[31], and related to the generalized additive models they discuss in their
book [30]. Observe that the coefficients in these models are fixed.

8.4. Changing Coeflicients. Consider the following random coeffi-
cient model, where the index ¢ replaces i+ and now stands for time-
points.

(44) y, =B, + &,
(45) @.t = M_ﬁ_t_l + 1,

Thus regression coefficients satisfy an autoregressive path model. There
is a lot of recent interest in this model. The literature until 1984 is
reviewed by Chow [13]. There is a close relationship with the Kalman
filter of control system theory fame.

8.5. Panel Data. In economics, at least micro-economics, panel data,
which follow a number of individuals in time, have received a great deal
of attention. We refer to the review paper by Chamberlain [11], and the
books by Hsiao [33] and Dielman [22]. The models are usually variable
coefficient regression models, sometimes with random coefficients. In
many cases they are fairly straightforward mixed models or variance
components models [65].

8.6. Growth Curves and Repeated Measurements. Growth curve
models have been studied in biometry since Wishart. The key paper
here is Pothoff and Roy [46]. They introduce the model Y = XI'Z + E,
which can actually be written as a balanced version of the two-level
model (19)-(20), without the random component at the second level.
Rao [48] linked growth curves with random coefficient modeling. The
MANOVA approach to growth curve modeling, and related modeling
of repeated measurements, is discussed in the Handbook chapters by
Geisser [26] and Timm [61]. The relation with multilevel models is
discussed in detail in [58] and [34].

8.7. Bayesian Linear Models and Empirical Bayes Estimation.
There is a strong formal relationship between multilevel modeling and
the Bayesian analysis of the linear model discussed extensively by Lind-
ley, Smith, Leamer, Zellner and others [41], [56]. We call the rela-
tionship “formal” because there is nothing inherently Bayesian about
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assuming coefficients to be random. The models can be interpreted
equally well as frequentist mixture models.

The use of shrinkage estimators in linear models can also be moti-
vated from mean-square-error considerations, using the basic James-
Stein theory. Classical papers by Efron and Morris [23], [45] explain
the data analysis aspects of shrinkage estimation. A recent National
Research Council report discusses the notion of “borrowing strength”
in considerable detail [15]. The report concentrates on meta-analysis
as the main area of application, but the methodological discussion is
quite general.

8.8. Moderator Variables. The concept of a moderator variable is
not easily defined. There is a thoughtful review in [3]. Velicer [64] dis-
cusses the concept in terms of different-regressions-in-different-groups,
and in an early paper Saunders [52] explicitly takes the point of view
that regression coeflicients in an equation are themselves dependent
variables in a second set of equations.

8.9. Slopes as Outcomes. “Slopes-as-outcomes” analysis was pro-
posed in the late seventies by Burstein and his co-workers as an alter-
native to the variance decomposition techniques of Cronbach. A nice
historical review of the approach is in [9]. The technique is two-step
OLS, but it was quite unclear what the precise statistical model behind
the computations was. In a sense, the random coefficients models are
one attempt to make slopes-as-outcomes rigorous.
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