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Perspectives on Statistics for Educational Research:
Proceedings of a Workshop

Preface

This report presents abbreviated versions of the research papers presented and discussed
at the Workshop, Perspectives on Statistics for Education Research, in Research Triangle Park,
NC, April 7-8, 1995, sponsored by the National Institute of Statistical Sciences (NISS). The
workshop focussed on current issues in educational statistics. It was organized by Lyle V. Jones
of the University of North Carolina at Chapel Hill, Ingram Olkin of Stanford University, and
Jerome Sacks of NISS, and was supported in part by a grant to NISS from the National Science
Foundation.

The National Institute of Statistical Sciences was established in 1991 at the initiative of
the national statistical community and a consortium of institutions in North Carolina. NISS exists
to develop and facilitate collaborative cross-disciplinary statistical research. NISS projects address
large-scale, complex problems of a statistical nature on which statisticians and other scientists
from diverse disciplines can constructively collaborate.

In January, 1992, Ingram Olkin convened a workshop in Alexandria, VA, to explore needs
for methodological and statistical advances in educational research. A primary focus became
statistical problems faced by the National Center for Education Statistics (NCES) and how NISS
might address those concerns. Following that workshop, a proposal was submitted to and
subsequently funded by the National Science Foundation, to study a set of issues pertaining to
education statistics. The Principal Investigators are Jerome Sacks, Ingram Olkin, Lyle Jones, and
Daniel Horvitz.

This Workshop, Perspectives on Statistics for Education Research, provides a forum to
report progress on problems that have been addressed, to invite critical comment from discussants
who have dealt with the same problems from different perspectives, to promote active discussion
among other participants, and to stimulate thought and critical reactions from readers of this
report.

Sections 1, 2, and 3 constitute progress reports by NISS researchers on work largely
stimulated by problems encountered at NCES. Section 1 addresses the topic of multiplicity and

multiple comparisons, and considers adopting the "false discovery rate" as an alternative to
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"familywise error rate" when selecting a criterion in multiple hypothesis testing. Section 2 reports
methodological and applied research findings related to multilevel modeling. Section 3 describes
two projects designed to link the results from regularly administered educational assessments to
results from the less frequent and more costly National Assessment of Educational Progress.

Section 4 is a discussion of some of the issues raised during the course of the Workshop.
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1 Controlling the Proportion of False Discoveries for Multiple

Comparisons
A more extensive report is available; see Williams, Jones, and Tukey (1994).
1.1 Introduction and Empirical Findings (Lyle V. Jones)

Multiple comparison procedures are defined as adjustments intended to control the
probability of erroneous inferences under conditions of multiplicity, that is, when more than one
statistical inference is drawn, or might be drawn, from a given body of data. Data from the
National Center for Education Statistics (NCES) typically involve a large number of variables and
large number of comparisons. For example, in the Trial State Assessment (TSA), a component
of the National Assessment of Educational Progress (NAEP), comparisons are reported on
achievement change from one year of administration to another for each state, and states are
compared, each with each other.

Traditional multiple comparison procedures control the familywise error rate at a
traditional significance level, often at o = 0.05, thereby assuring that, in the long run, fewer than
1 in 20 reports will contain even a single "false discovery." A family is defined as a set of related
inferences or comparisons as, for example, all pairwise comparisons between the states. Family
size is the total number of those comparisons. Using traditional procedures, statistical power
decreases as family size increases; as the family size becomes indefinitely large the power
approaches zero.

Two rather different questions may be asked about comparisons. First, can we be
confident about the direction — that is, the sign — of the underlying population comparison?
This is analogous to a significance test. Also, for what interval of values can we be confident that
the value of the population comparison is contained therein? This is the confidence interval
approach.

Assume that we choose to control some error rate for statements of confidence about the
direction of a population comparison; o/2 for that comparison is a bound on the probability that
we decide with confidence that the population comparison has one sign when in reality it has the
opposite sign. This is somewhat different from the traditional formulation — it accepts Tukey’s
(1991, 1993) admonition that for real-world populations and for real-world comparisons the null
hypothesis of zero difference is never, in fact, true (if one records enough decimal places). Thus,
we replace the unrealistic null hypothesis of a zero population comparison with what may be a

more realistic perinull hypothesis, namely, that the population comparison is near zero, but not



precisely zero. If the population comparison were truly zero, a declaration in either direction
would be erroneous; however, if the population comparison is not precisely zero, as in the perinull
situation, the population value has either one sign or the other, and then only one directional
statement of confident difference is erroneous. We are right about half the time by chance. Here,
o is a bound on twice the probability of being erroneously confident about the sign of the
population comparison.

With multiplicity, the probability that a declaration of confident direction for any one or
more comparisons will be in error will exceed /2, often very substantially if we make many
comparisons. It is therefore necessary to adjust for this increased probability. Methods for
accomplishing this may rely on either single-stage or sequential procedures.

The Bonferroni technique is the traditional, single-stage procedure that controls the
familywise error rate. There is a single critical p-value, 0/2m, where m is the family size. If the
observed p-value is less than the critical p-value, a confident direction is declared. To increase
power while still controlling the familywise error rate, Hochberg (1988) proposed a procedure that
employs a sequential adaptation of the Bonferroni technique.

The Benjamini-Hochberg (1995) procedure is a sequential technique which controls the
proportion of all discoveries that are false; that is, of the comparisons declared to be confident in
direction in the population, a certain proportion will be in error. The proportion expected to be
in error is no greater than o/2. This is a different criterion from the traditional familywise error
control, but it is analogous to a/2 as the probability of error in the single comparison case. It
assures that the expected value of the false discovery rate is no greater than o/2:

False Discovery Rate = False Discoveries/(1+Total Discoveries)
where the denominator of the ratio is 1 plus the total number of declarations of confidence and
the numerator is the number of declarations that are in fact erroneous. (The addition of 1 in the
denominator serves to avoid the possibility of dividing by zero.)

The Bonferroni and the Hochberg procedures control the familywise error rate at o/2,
thereby assuring that the probability of one or more erroneous declarations of confidence per
family is no greater than o/2. The Benjamini-Hochberg method assures that o/2 is an
approximate bound on the expected value of a false discovery ratio. For example, if a = 0.05,
we expect no more than 2%z percent of all declarations to be erroneous declarations. NCES has
traditionally used the Bonferroni approach for all reporting purposes, and the Educational Testing

Service has used the Bonferroni method in reporting NAEP results.



Table 1.1

Decision rules for four alternative criteria

For m ordered p-values, p, < ... <p,,, m being the number of comparisons in the family:
Criterion Rule
Unadjusted Declare a confident direction for the ith comparison if p;, < o/2 .
Bonferroni ~ Declare a confident direction for the ith comparison if p; < o/2m .
Hochberg (1988) Declare a confident direction for the ith comparison if, beginning
with i = m (largest p-value) and continuing toward i = 1 (smallest
p-value),

p; < 0/2(m-i+1) ;
declare confidence in direction for all j < i remaining comparisons.

Benjamini-Hochberg Declare a confident direction for the ith comparison if, beginning
(1995) with { = m and continuing toward i = 1,
p; < iof2m ;
declare confidence in direction for all j < i remaining comparisons.

Table 1.1 summarizes the decision rules for these alternative criteria. Table 1.2 provides
a display of the change in average eighth-grade mathematics achievement scores for the 34 states
that participated in both the 1990 and the 1992 NAEP Trial State Assessments. The 34 states are
ordered from the largest p-value, or smallest contrast, at the top, to the smallest observed p-value
at the bottom.

For both the Hochberg and Benjamini-Hochberg sequential techniques, the critical p-value |
varies as a function of the ordered size of the mean difference. Starting at the top of Table 1.2
with the largest p-value, the p-values for both techniques are equivalent to the unadjusted p-value;
at the bottom of the table, with the largest mean difference, both techniques have the same critical
p-values as the traditional Bonferroni correction. To implement these sequential procedures, we
begin with the largest p-value and move down the column until the p-value associated with the
test statistic is less than the critical value. For the Benjamini-Hochberg procedure, the first
evidence of an increase in mathematics performance is that for the state of Kentucky; every
remaining p-value also denotes a confident direction. For the Benjamini-Hochberg technique,
there are 11 confident directions as compared with 15 for the unadjusted per-comparison approach;
both the Hochberg and the Bonferroni procedures yield only 4 differences that are sufficiently

large to be declared confident in direction.



Table 1.2

Mean achievement change for m = 34 states in eighth-grade mathematics,

1990 to 1992, and pcm-valués for alternative criteria:

Unadjusted (UNA), Benjamini-Hochberg (B-H), Hochberg (HOC), Bonferroni (BON),

State Xop-Xop (s€) t p-valuet  pyxa Peu() Proc(d) Pron
GA -0.32 (1.8)  -0.18 42814  .025 .025000 .025000 .000735
AR -0.78 (1.5)  -0.52 .30141  .025 .024265 012500 .000735
AL -1.57 2.0)  -0.78 .22004  .025 .023529 .008333 .000735
NJ 1.57 (1.9) 0.81 .20999 .025 022794 .006250 .000735
NE 1.33 (1.5) 0.87 .19320 .025 .022059 .005000 .000735
ND 1.53 (1.7) 091 .18445 .025 021324 004167 .000735
DE 1.37 (1.3) 1.02 .15581  .025 .020588 .003571 .000735
MI 2.22 (1.8) 1.20 .11761  .025 .019853 .003125 .000735
LA 2.64 (2.1) 127 .10482  .025 019118 .002778 .000735
IN 2.15 (1.6) 1.31  .09694  .025 .018382 .002500 .000735
WI 2.80 (2.0) 143 .07936  .025 .017647 .002273 .000735
VA 2.86 (1.9) 148 07187 .025 .016912 .002083 .000735
\'AY% 233 (1.4) 1.67 .05013  .025 .016176 .001923 .000735
MD 3.40 (1.9) 1.77 .04113  .025 015441 .001786 .000735
CA 3.78 (2.1) 1.79 .03956  .025 014706 .001667 .000735
OH 3.47 (1.9) 1.87 .03295 .025 013971 .001563 .000735
NY 4.89 (2.5) 193 .02901 .025 .013235 001471 .000735
PA 4.30 (2.2) 195 .02786  .025 .012500 .001389 .000735
FL 3.78 (1.9) 1.96 .02745 .025 011765 .001316 .000735
wY 223 (1.1) 2.03 .02339 .025*  .011029 .001250 .000735
NM 2.33 (1.1) 2.03 .02325 .025% .010294 .001190 .000735
CT 3.20 (1.5) 2.09 .02052 .025%  .009559 .001136 .000735
OK 4.18 (1.8) 238 01018 .025%  .008824 .001087 .000735
KY 4.33 (1.6) 2.67 .00482  .025%  .008088* .001042 .000735
AZ 4.99 (1.9) 2,70 .00452  .025%  .007353* .001000 .000735
ID 2.96 (1.1) 277 .00374 .025%  .006618* .000962 .000735
TX 5.65(1.9) 299 .00202 .025%  .005882* .000926 .000735
CcO 433 (1.4) 3.12  .00141  .025*  .005147* .000893 .000735
IA 4.81 (1.5) 3.23 .00100 .025*  .004412* .000862 .000735
NH 442 (1.4) 3.27 .00090 .025*  .003676* .000833 .000735
NC 7.27 (1.6) 458 .00001  .025*  .002941* .000806* .000735*
HI 5.55(1.2) 4.74 .00001 .025*  .002206* .000781* .000735*
MN 642 (1.4) 475 .00001 .025%  .001471%* .000758* .000735*
RI 5.10 (0.9) 537 .00000 .025*  .000735* .000735* .000735*

1 The p-values are obtained using Student’s ¢, df = 60.

*  Confident direction with error rate < 0.025.



If one is willing to sacrifice control of familywise error in favor of control of the
proportion of false discoveries, a great deal of power can be gained. This is demonstrated in
another example of all pairwise comparisons among the 41 states participating in the 1992 Trial
State Assessment for m = 41x40/2 = 820. By the traditional Bonferroni adjustment there are 480
confident directions between states; the Hochberg technique admits an additional 13 declarations,
and the use of the Benjamini-Hochberg results in an additional 159, while the unadjusted per-
comparison approach increases the number of confident directions beyond the Benjamini-Hochberg
by only 6.

Using either the Hochberg or the Bonferroni procedure, the probability is 0.025 that there
are one or more erroneous statements in the whole set; using the Benjamini-Hochberg approach,
it is expected that about 2.5% of the declarations will be incorrect. A willingness to accept that

risk gains considerable additional information.
1.2 Simulation Results (Valerie S. L. Williams)

Because our interest in multiple comparisons was largely stimulated by the problems
posed by the National Assessment of Educational Progress, we set out to design simulations based
upon the structure of these data. True "achievement levels," p,, were defined for 48 states as the
approximate median values in repeated realizations of each of 48 ordered observations from a
normal distribution with mean 0 and variance 6-. In order to generate an observed mean, X, for
each state, a random (standard normal) deviate was added to each p,. By manipulating the value
of 6,, five conditions of effect size were studied: the perinull condition of negligible differences
among the y, where 6, = 0.001, and four non-null conditions of increasingly larger effect sizes,
o, = {03, 1.0, 3.0, 5.0}. |

Two types of families of comparisons were investigated: uncorrelated differences (m = 48
independent comparisons, p; — M), conceptualized as the 48 states compared with a constant
national mean (M), and all pairwise differences among the 48 states (m = 48x47/2 = 1128
nonindependent comparisons, ; — p,). The value of o was set to 0.05, with 10,000 replications.

Each of the three adjustment techniques — the Bonferroni, the Hochberg (1988), and the
Benjamini-Hochberg (1995) — do maintain a false discovery rate bounded by o/2 with
independent hypotheses (or uncorrelated differences) and all pairwise differences, in all effect-size
conditions; for all three procedures, the maximum false discovery rate is in the perinull situation,

diminishing rapidly as effect size increases.



For our simulations, we considered what is referred to as all-pairs power, the probability
of claiming significance for all differences among all pairs. For both uncorrelated and pairwise
nonindependent families, the Benjamini-Hochberg technique generally results in greater power
than that for the Hochberg or Bonferroni procedures, providing a substantial increase in power for
the large effect sizes. The increase in power of the sequential Bonferroni technique over the
traditional Bonferroni becomes detectable only for very large effect sizes.

All three procedures maintain familywise error rates at approximately /2 in the perinull
situation. However, whereas the Benjamini-Hochberg technique does not maintain the familywise
error rate at o/2 with increased effect size, the Hochberg and Bonferroni adjustments become
excessively conservative.

Further simulations demonstrated that the Benjamini-Hochberg advantage in power is
associated with increasing family size and is little affected by the degree of dependence among
the contrasts. It appears to be the larger family size that is driving the Benjamini-Hochberg
procedure’s increased familywise error rate.

To summarize the simulation results, the Benjamini-Hochberg technique provides only
weak control of the familywise error rate, whereas the Hochberg and Bonferroni techniques are
excessively conservative. All three procedures maintain a false discovery rate bounded above by
o/2 under all conditions, although the control of the false discovery rate becomes extremely
conservative in the large effect-size conditions for all three adjustment procedures. The
Benjamini-Hochberg technique provides substantially greater statistical power than either the
Hochberg or Bonferroni procedures for the larger effect sizes and with very large families of

comparisons.
1.3 Future Directions (John W. Tukey)

In politics, a young man' is often supposed to start on the left wing, but to turn more
conservative with age. In conclusions, perhaps some young men will always tend to begin
by believing that null hypotheses really can — and even do — happen, but they should
learn better as fast as their world view permits.”

skosksgeoskoskok sk skoskok
Pidgin confidence is defined as the condition in which a data analyst is confident that the
direction is either negative or positive, or is unsure. Pidgin confidence about direction

corresponds much more closely to the real world than an unoriented accept-or-reject decision and

! young man or young woman

2 A test for the existence of ESP is, pethaps, the sole exception.
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it has serious consequences, for example, for asymptotics. So, all should "accept” that:
 Everything is different (at some decimal place), although we may not know the sign of
each difference.
* 5% means one-sided 2.5%.
 If we are concerned with direction and not amount — either because we have too little
data to go further or because we have no need to go further — pidgin confidence is called
for.
 The next step about confidence in direction is full confidence, complete with a full set of
confidence intervals, explicit or implicit.
* We must learn how to combine pidgin confidence with full confidence.
A major contribution of Benjamini and Hochberg (1995) is taking the false discovery rate
(FDR) seriously as an alternative error rate to control. For the simple false definite rate, or false
discovery rate as conceived of by Benjamini and Hochberg, there are some clear benefits:

(1) When very few comparisons are definite, the Benjamini-Hochberg procedure is similar
to the Bonferroni adjustment or the Studentized Range, and you worry whether any are definite,
particularly in the context of a large number of comparisons.

(2) If there are only a very few that are not definite, then the Benjamini-Hochberg procedure
behaves very much like individual comparisons, and this is reasonable, too, because if you are
convinced that all but one of the differences is real, then there is no reason for that one to have
any multiplicity to it because it is the only thing of importance. (This is very different from
increasing o from 5% to 20%.)

(3) The Benjamini-Hochberg procedure satisfies a relatively simple nominal requirement,
making it moderately easy to describe — some of the fancier procedures people are inventing
these days to sop up the last little drops of the Bonferroni procedure do not satisfy this
requirement of simplicity.

(4) Often, the Benjamini-Hochberg procedure greatly reduces dependence on the definition
of family size because it is not too far, in many practical cases, from the unadjusted per-
comparison approach which is independent of family size.

On the negative side, the disadvantages of the Benjamini-Hochberg procedure are:

(1) Benjamini-Hochberg’s weakest definite statements have larger error rates than the nominal
familywise error rate. This is inevitable in a technique that does not correspond to techniques
which control the familywise error rate in the strong sense, such as the Bonferroni procedure,

Hochberg (1988) procedure, and Studentized Range technique.



(2) With Gaussian true values (and Gaussian errors), the Benjamini-Hochberg procedure
expends only a fraction of what its nominal error rate provides when differences among effect
sizes are substantial.

Any definite statements in a perinull situation have about a 50% chance of being wrong.
(A perinull situation is close to, but not at, the null case.) Accordingly, there has to be an initial
"bump" in what the cutoffs of FDR-controlling procedures provide. The Benjamini-Hochberg
procedure seems to be a plausible way to include that initial bump.

A procedure which also controls the false definite rate can be combined with the
Studentized Range to create a "compound" FDR procedure. Such a technique would enable
claims of confident direction of very unequal strength to be sorted out, and well-measured
differences to be recognized. However, a disadvantage of a compound FDR technique is that it
will introduce a somewhat larger initial bump and the overall error rate will be increased.

How the two levels in a single compound procedure should be related will require
continuing thought. Two pidgin-compatible choices that seem plausible because the FDR-
confidence is at o/2 are:

» pidgin-confidence at 0/2 and full confidence at /2 familywise,

» pidgin-confidence at 0/2 and full confidence at sufficiently less than o/2 to average o/2

erroneous statements per family.

As the supporting data grow stronger, the appropriate confidence procedures for controlling
familywise error rates start with pidgin Studentized Range, continue with pidgin Welsch (1977)
technology, then progress through pidgin complex techniques (e.g., the Braun and Tukey (1983)
maximum subrange procedure), and eventually reach the full (non-pidgin) Studentized Range.
How should this be reflected in procedures that control the FDR? Other alternatives should be
considered; it is unclear whether compound methods will eventually be replaced by more
integrated methods.

It is important to gain some understanding of whether a modified procedure for controlling
the false discovery rate can come closer to the nominal error behavior in a Gaussian-Gaussian
situation without pushing error rates for other situations too far above the nominal level — this
must be assured for pidgin confidence. It is also necessary to determine the distribution of the
number of errors for the Studentized Range at 1% and 10% familywise for assorted family sizes
and degrees of freedom, and to study the error rates for comparisons at the margins of the

Benjamini-Hochberg procedure which are dependent on the configuration of the hypotheses.
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Once upon a time, we accepted the F-test as an omnibus procedure — a procedure that
too often, in practice, degenerated into three steps:
(1) perform the omnibus F-test,
(2) if positive, believe all apparent differences,
(3) consider, as the only error to be considered, being definite when there are no
differences at all.
This degeneration was clearly unacceptable. Today, we — or most of us — look to individual
comparisons, adjusting our looking for multiplicity, and begin with confidence about direction of
individual differences.
A two-sided #-test can degenerate in a similar way:
(1) perform the omnibus (two-sided) #-test,
(2) if positive, believe the sign with no thought of error,
(3) consider, as the only error, being definite () when there is no difference.
With luck, we will soon regard this strategy as almost equally unacceptable, and we will then

begin with confidence about direction, and often proceed to full confidence.
1.4 Discussion (Juliet P. Shaffer)

Many have stated in the literature that the null hypothesis is never true, but before now
there has not been a thorough reinterpretation of multiple hypothesis testing from this perspective.
The authors here should be complimented for fleshing out the implications of their approach.

Given the assumption that the null hypothesis is never true, H;: © = 0 can be replaced by
the two incompatible hypotheses that H: 8 > 0 and H: 6 < 0. An error is rejecting the wrong
hypothesis; lack of rejection means we don’t know which is true. If we use a procedure that
assures a low probability of errors, a rejection is then a statement that we are confident that we
have a correct rejection.

Another issue is often confused with this one when the results of surveys are involved:
It is true that the means of two finite populations are virtually never equal, and it doesn’t make
sense to test the hypothesis that they are. To quote Cochran (1963, pp. 37-38):

It is seldom of scientific interest to ask whether y; = y, because these means would not

be exactly equal in a finite population, except by a rare chance, even if the data in both

domains were drawn at random from the same infinite population. Instead, we test the
null hypothesis that the two domains were drawn from infinite populations having the

same mearn.



Examples are the mean achievement in two schools, or the means of boys and girls within a single
school.

It does sometimes make sense to assume that some intervention makes no difference.
Another possibility is that the effect is so minute that it would take millions of observations to
detect it — we would, therefore, like to treat it as zero. Consider also the cases in which one
assumes that means must be ordered in a given way (u, < p, < ... < p,) and we would like
evidence that at least one of the inequalities is strict. If one accepts that the null hypothesis is
never true, it seems there is nothing to test in this case — should these tests be abandoned?

The appropriate formulation of the null hypothesis depends upon the situation:

» In some situations it may be reasonable to assume that the null hypothesis is true; then
rejecting it in any direction is an error. Usually, we also want to state a direction, but not
necessarily.

» In some situations the only errors we care about are errors in direction. Then we can
think of the two hypotheses as H: 6 < 0 and H: 6 > 0. (If 6 is exactly zero, we can reject either
hypothesis without it counting as an error.)

With a single hypothesis or a pair of directional hypotheses referring to a single parameter,
it is relatively simple to move from one formulation to another and determine the change in error
properties. However, with a stepwise multiple comparison procedure involving a number of
parameters, this isn’t necessarily so.

For directional inferences, it is unknown whether the FDR-controlling methods are valid.
For stepwise methods with multiple hypotheses, it is not clear that the o is maintained when
rejection of the null hypothesis of equality is followed by directional decisions. A counterexample
in Shaffer (1980) shows that the probability of making a directional error can be even greater than
0.05 under some distributional assumptions. Does the o/2 limit always hold under the perinull
assumption?

If all parameters are zero (or very close to zero, as in the perinull situation) the familywise
error rates (FWE) are:

* FWE under the null hypothesis is equal to o ,

* FWE under the perinull hypothesis is equal to o/2 ,

* FWE with consideration of directional error only is O (when the parameters are all exactly

0),

* FWE under the null hypothesis but with directional conclusions : unknown.
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If all the parameters are nonzero, then the FWE under the null hypothesis is 0, but the other FWE
rates are all equal and we don’t know what they are. It is important to investigate different
combinations of null and non-null configurations and alternative definitions of error.
Both the Hochberg (1988) and Benjamini-Hochberg (1995) methods are based on the
Simes (1986) equality. Simes proved that if all the null hypotheses are true, and the significance
probabilities are independent, then for p, < p, < ... <p,,
Prob{p, > io/m for all i} =1 -«
or,
Prob{p, < io/m for any i} = o . )
Therefore, if the tests are independent, we can reject the global hypothesis that all m hypotheses
are true at level o if p, < io/m for any i.
Simulation results suggest that the probability (1) is less than o for pairwise comparisons.
But it is known that the probability (1) is greater than o for some patterns of nonindependent test
statistics. In fact, the upper limit of the probability (1) is min{1, 0% 1/}, and this bound is sharp.
For what types of test statistics is the probability (1) greater than o? Table 1.3 gives the upper
limit of the probability (1) for selected family sizes.

Table 1.3
Maximum probability (1) for selected values of m
Maximum

m Probability (1)
2 0.075
3 0.09
10 0.15
20 0.18
100 0.26
1000 0.37

Another issue to consider is robustness under asymmetry. The z-statistic is symmetric
around zero when the parent distribution is symmetric — if the nondirectional level is
approximately oo = 0.05, the test can be reinterpreted as a directional test at the 0.025 level.

However, if the parent distribution is asymmetric, the directional test is much less robust than the
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nondirectional test, and the two-sided level may still be approximately 0.05 whereas the one-sided
level is considerably different from 0.025. Although it may be possible to use robust procedures,
the computational burden in large surveys makes this difficult in practice.

Appropriateness of the FDR criterion. In small studies in which the results must be
interpreted as a whole, we would sometimes like the assurance that all our assertions are correct
with a high probability. In that case, the familywise control of Type I error is the appropriate
criterion. But in large surveys, with large families of comparisons, it seems unnecessary to have
such an assurance — control of the false discovery rate may be more appropriate in such cases.
Note that the FDR-controlling method of Benjamini and Hochberg (1995) is conservative.
Benjamini and Hochberg have proposed FDR-controlling methods with greater power and higher
familywise error.

The interpretation of the FDR criterion is often ambiguous. When there are many
hypotheses, and many of these are false and easily rejected, the interpretation of an FDR-
controlling technique is approximately valid: Not more than 5% of rejected hypotheses are
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