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Abstract

Bayesian inference for the Multinomial probit model, using the Gibbs sampler with data augmen-
tation, has been recently considered by some authors. The present paper introduces a modification
of the sampling technique, by defining a hybrid Markov chain in which, after each Gibbs sampling
cycle, a Metropolis step is carried out along a direction of constant likelihood. Several candidate
distributions for the Metropolis step are considered. Examples with two simulated and one real
data sets motivate and illustrate the new technique. A proof of the ergodicity of the hybrid Markov

chain is also given.
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1 Introduction

The multinomial probit (MNP) model belongs to the wider class of discrete choice models. In these
models, see e.g. Ben-Akiva and Lerman (1985) and Anderson, de Palma and Thisse (1992), it is
assumed that n agents (individuals, households, etc.) choose between p alternatives in a way to
maximize their utility, which is modeled as some function (usually linear) of covariates and noise.
MNP occurs when the noise is additive and multivariate normal.

The appeal of the MNP model is that it does not imply the independence of irrelevant alterna-
tives (IIA) property, unlike other models, such as the multinomial logit. The ITA property says that,
for any two alternatives in the set of alternatives, the ratio between their choice probabilities is left
unaffected by adding some alternatives to (removing some alternatives from) the set. When it ap-
plies, ITA affords useful restrictions on the structure of the model, see, e.g., McFadden (1984). The
property fails to hold when some alternatives are substitutes of others, thus, in many applications,
ITA is considered as an unrealistic assumption.

Despite its appeal, MNP has been used relatively little because of the difficulties associated
with its estimation, when the number of alternatives is not very small. Recently several simula-
tion methods have been proposed to carry out the computations (McFadden 1989, Geweke 1991,
Hajivassilou and McFadden 1990, Keane 1994, Albert and Chib 1993, McCulloch and Rossi 1994),
thus rekindling the interest in MNP. This paper concerns a modification of the Gibbs sampling
with data augmentation scheme advocated by McCulloch and Rossi (1994) to perform a Bayesian
analysis of the MNP model. Section 2 reviews the MNP model and some issues related to its use.
Section 3 describes the Bayesian approach, giving the prior distributions of the parameters and the
full conditional distributions used by the Gibbs sampler. Some binomial probit examples motivate
the proposed modification, illustrated in Section 4, and consisting in performing, after each Gibbs
cycle, a Metropolis step ‘a,long a subset of constant likelihood. Proof that the resulting Markov

chain is ergodic is given in the appendix.



2 The Multinomial Probit Model

Let y; = (ya,- - .,y,-p)T be a multinomial vector, with y;; = 1 if agent 7 chooses alternative j, y;; = 0
otherwise. A more compact representation of the choices is afforded by a vector d = (dy,...,d,)T
containing the indexes of the chosen alternatives: d; = j if y;; = 1. Agent ¢ is assumed to maximize

its (unobserved) utility z;; over the alternatives’ set, so that
di=j <= z; > i 1
) J 25 2 lrgl?g; 2ib ( )
The vector of utilities z; of agent ¢ satisfies:
zi = R + u; i=1,...,m; (2)

where R; is a p X k matrix of covariates and

t.3.d.

u KRN0, V). (3)

Equations (1), (2), (3) specify the multinomial probit model. More general specifications are
possible, see, e.g., Geweke, Keane and Runkle (1994a, 1994b). The one given above suffices for
the purpose of the present paper, the extension of the proposed technique to more general models
being straightforward.

Note that one can add an arbitrary constant to both sides of (2) while leaving the distribution of
the data vector d unchanged. This identification problem (Dansie 1985, Bunch 1991) is commonly
dealt with by subtracting the p-th equation in (2) from the first p — 1, obtaining;:

w; = X;08+ ¢ i=1,...,m; (4)
id.d.

& ~° N(0,%), (5)

where w;; = zij — Zip, Xijn = Rijn — Riph, € = Ui; — u;p and the covariance matrix of the new
error term satisfies:

S = [Lp-1, ~1p-1] V [Ip-1, —1p-1]",



with I denoting the identity matrix and 1 a vector of 1’s. The choice vector d can be re-expressed
in terms of the utility differentials w;; as follows:

0 if 15%15"‘3‘_1 wip < 0
Yet, the model given by (4), (5) and (6) is still lacking identification since multiplication of both
sides of (4) by a positive constant leaves unaltered the distribution of d. The usual way this problem
is solved consists in restricting the (1,1) element of ¥ to be unity: 04,1 = 1, thus implicitly assigning
the arbitrary multiplicative constant.

The multinomial choice probability vector of agent i is easily shown to be

Py = Prld; = j] = /EJ_ N(60,5)de  1<j<p (7)
where the sets E; in the above (p — 1)-dimensional multivariate normal integrals are given by
E; = ﬂ {ij —€p > (Tp — :z:,-j)Tﬂ} n {Gij > x;";,@}
bstj
and x;-'; denotes the j —th row of X;. Unless the number of alternatives is very small, computation
by quadrature of the integrals in (7) is difficult. Since the likelihood function of (3, X) is
n p
46,%) = JT 1 P48, D" (8)
i=1 j=1
the method of maximum likelihood requires very accurate estimates of the choice probability, gen-
erally unavailable by quadrature.

Lerman and Manski (1981) suggested the method of simulated maximum likelihood (SML),
where Monte Carlo estimates of the choice probabilities, obtained from a relative frequency estima-
tor, are used. However, they found that a very large simulation sample size is needed when P;; is
small. McFadden (1989) introduced the method of simulated moments (MSM), based on the solu-

tion of some moments conditions involving the choice probabilities, which he suggested to estimate

using a smoothed version of the frequency estimator. Both SML and MSM have greatly benefited



by the development of the GHK probability simulator (Geweke 1991, Hajivassilou and McFad-
den 1990, Keane 1994). McCulloch and Rossi (1994) have developed a Bayesian approach using
Gibbs sampling with data augmentation, expanding upon earlier work of Albert and Chib (1993).
Geweke, Keane and Runkle (1994a) compare the performance of SML using the GHK simulator,
MSM using the GHK simulator and the Bayesian approach using Gibbs sampling, by means of
some Monte Carlo experiments. The overall conclusion is that the Bayesian method seems to have
a clear edge on the other methods, especially when covariates are correlated and error variances
vary across alternatives. Similar conclusions are reached by Geweke, Keane and Runkle (1994b)
in comparing the relative performance of the above methods when estimating the multinomial

multiperiod probit model.

3 The Bayesian approach

This section summarizes the Bayesian approach of McCulloch and Rossi (1994): the reader is
referred to their paper for more details as well as extensions, such as hierarchical models, of the
basic MNP.

In a Bayesian approach, the specification of a model is complete only after the assignment of
a prior distribution for the parameter. A convenient prior specification for the MNP is as follows:
G = Y7! is assumed to have Wishart distribution with v > p degrees of freedom and precision

matrix P (see e.g. DeGroot (1970)):
=G~ Wyi(y, P). (9)
Indepedently of X, § is assumed multivariate normal with mean vector (0) and covariance matrix
A(_Ol):
BIZ ~ Ni(B0), Ag))- (10)
On occasion the parameter vector will be denoted by 6 and the prior (9)-(10) by = (8).

The hyperparameters v and A(g) can be chosen so that the prior distribution is proper and at the

same time rather diffuse. This will yield a posterior distribution mostly reflecting the shape of the
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likelihood and not depending much on the prior location parameters P and B(o)- Though convenient,
the above prior specification does not impose the identifying constraint o;; = 1. Therefore the
sampling part of the model is still lacking identification, which is achieved only by the use of a
proper prior. This allows one to sample from the posterior distribution of (8,X) and then make
inference about some “identified” functionals, such as 8//011, 0i;/011 and p;; = oy;/ Nt
Sampling from the posterior distribution of (3,%) is done using the Gibbs sampler with data
augmentation (Gelfand and Smith 1990, Tanner and Wong 1987 are basic references on these
methods). The general idea of Gibbs sampling is that if the parameter vector # can be partitioned

as 0 = {64,...,0,} and the full conditional distributions

[eil{oj,j # 1}, Data) (11)

are available, then successively drawing from these distributions will asymptotically yield a draw
from the posterior of . In some cases the distributions (11) are available only conditional on some
vector W of latent variables. Then, one augments the available data with W and also simulates

from the conditional distribution of W, thus employing, in place of (11),
0:1{6;,7 # i}, W, Data]

(W16, Data] .

The first application of these sampling methods to the MNP model is in Albert and Chib (1993),
who propose a rejection technique to sample from the truncated multivariate normal distribution
of the utility differentials w;. McCulloch and Rossi (1994), instead, use the following partitioning

of the variables to be successively simulated using the Gibbs sampler:

{wu, W12, .-+ wn,p—l>ﬂ7 E}-

This amounts to replacing the difficult draw from [w;|3, X, d] with simpler univariate draws that
will converge to a draw from it. The full conditional distributions in the McCulloch and Rossi

scheme are reported below.



The distribution of the utility differential w;; given the other w’s, ¥ , 3, and the data d, is a
truncated normal distribution with truncation point depending on whether the alternative j is the

one selected by agent i. To write it down explicitely, some notation is needed. Let

ek be the j-th row of X;

X;—;  be X; with the j-th row deleted;

W4, —j be w; with w;; deleted;

0j—;  be the j-th column of ¥ with o;; deleted;

Y_j—j be ¥ with the j-th row and column deleted;

also let
-1
S .. T -1 ..
9ii = [UJJ_Uj,—jE—j,—jUJ,—J] J
_ -1 g
9i—j = —¥I1;-;9%-i9ij-
Then

w,'j['wi,_j, 3, ,B,d ~ N(m”,TZ) [I{dizj}I[max(w,’,_j,O),oo)(wij) + I{di;éj}I(—oo,max(w,"_j,0)](wij)] ’
(12)
where 7% :vgj_jl and my; = e5f - g5 9] _j(wi—j — Xi—iB).

The distribution of G given the w’s, § and the data is Wishart:

GIW,B,d ~ W, (1/—!— n, P+ Zele,T) , (13)

=1

where W = {wq,...,wy}.

Finally, the full conditional of 3 is multivariate normal:
BIW,Z,d ~ Ni(Bay, Ag))s (14)

where
Bay = Aq) (A(O)ﬂ(o)+ZX;"Tw2‘);
=1
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n

Ay = Ao+ Y XX
=1

Xy = ITXx;

wf = LTw;

and G = LL" is the Cholesky decomposition of G.

Ezample 1. As an illustration, n = 2000 observation were generated from the model (1)-(3)
with p = 2, § = —2, the covariate R sampled from a Uniform(-0.5,0.5) distribution and V equal to
I,. Then the error variance in the model (4)-(6) is ¢ = 2 and one is interested in making inference
about the “identified” parameter 3/4/7, with true value —/2. This special case (binomial probit
with only two parameters) was chosen for two reasons: first, in a binomial probit model choice
probabilities are readily computed, involving only a univariate normal distribution; second, with
only two parameters, prior, likelihood and posterior are easily displayed. Figure 1 (a) is a contour
plot of the prior distribution, with 3 on the horizontal axis and /o on the vertical axis. The
following values of the hyperparameters were employed: v = 3, P = 3, ) = 0, A(g) = 0.01. The
ratio between function values on adjacent contour lines is 1/4. Figure 1 (b) contains a contour plot
of the likelihood function: it is constant over lines out of the origin: the likelihood is only informative
about the ratio §/+/0. Part (c) of Figure 1 is a countour plot of the posterior distribution, which,
although a proper distribution, is seen to be rather concentrated about the line 3//d = —/2,
where the likelihood is largest.

Figure 2 reproposes the contour plots of the posterior distribution of (8,+/0), using a doubly
logarithmic scale on the axes, for better resolution. Superimposed on the posterior contour plots
are points representing the pairs (3,+/0) yielded by the first 2000 draws from two Gibbs sampling
with data augmentation chains, one started at the true parameter values (—2,/2) (part (a)), the
other started relatively far fom it, at (—20,10) (part (b)). The same stream of random numbers
was used in both runs. One may note that the second chain quickly moves close to 3/1/d = —v/2,
yet finds it somewhat difficult to move along this line to the region where the posterior is highest.

Since one is only interested in the posterior of the identified paramater §/4/o, one may wonder



about the relevance of the above observation, and in fact in the present example the estimates from
the two chains are practically the same. This need not be true in general, though, since, unlike the

likelihood, the prior 7(8,+/0) = 7(0) does not posses the following property:

m(c) _ 7(c'8)
m(cd) ()

Ve, >0, V6,0

FEzample 2. To illustrate these difficulties, consider a binomial probit model with one covariate,
B =5, 0 = 2, the covariates R were generated using draws from a Binomial(1/2) distribution. As
in the previous example, 2000 observations were generated from this model and the same prior
for 3,0 was used. Prior, likelihood and posterior contour plots are displayed in Figure 3. Since
in this example the magnitute of the systematic part of the utility is much larger than the error
term’s (Bz € {-5,0,5}), the likelihood function, for the given sample, is not very informative. It is
approximately constant for 3/4/0 above a certain value and decreases very fast for smaller values,
thus in practice only ruling out a region of the parameter space. As a result, the posterior is much
more widespread than in the former example, as it is evident from part (c) of Figure 3. Figure 4
displays again contour plots of the posterior distribution, with superimposed the first 20000 pairs
(B,+4/0) obtained from two sampling chains run with the same stream of random numbers and
different starting points: (5,1/2) and (25,5). It is clear that, if started away from the region of high
posterior, the chain finds it difficult to move towards it. This time, moreover, the inferences from
the two chains are rather different, as attested by the histograms of the sampled §/+/0 reported in
Figure 5.

This second exdmple is perhaps extreme, in that the likelihood only gives a lower bound to
B/+/c. However one should note that it was produced using a very simple model: it would not be
wise to rule out similar situations to arise in models with many more alternatives and covariates,
espacially when the latter comprise dummy variables. These remarks somewhat echo the concers of
Keane (1992) about the “extremely tenuous” parameter identification in the MNP, meaning that an
identified model may have a likelihood which does not vary much over a wide range of parameters

including the maximizer. These are cases where the prior distribution may matter, e.g. a more



diffuse prior in the precedeing example would lead to a posterior giving more mass to higher values
of #//0. Still, once the prior is assigned, one would expect the simulation procedure to yield, after
discarding enough observations from the sampling chain (burn-in), a sample representative of the
posterior, irrespective of the starting values. It just seems that, using the procedure described in

this section, burn-in times may be very long.

4 A hybrid chain

In this section a modification of the sampling scheme described in Section 3 is proposed and its
performance in the examples therein is examined. The idea is very simple: after each Gibbs cycle
through the full conditional distributions of W and 6, perform a Metropolis step to change the
scale of the current state. This allows the chain to move faster across the parameter/latent data
space. The additional computational cost is minimal since the Metropolis candidate is selected in
a difection of constant likelihood, so that .one needs only to evaluate the prior density.

The Metropolis algorithm was introduced by Metropolis et al. (1953) and generalized by Hast-
ings (1970). Tierney (1994) illustrates the flexibility of the algorithm and its use in combined
simulation strategies.

Suppose Mone wants to sample from a distribution with density f(1)), with respect to some o-
~ finite measure p, and let $(©) be an initial state vector. The Metropolis algorithm moves from the
current state 9™ to the next one (1), by first selecting a candidate state * according to some
distribution H (4*|4(™), with density h(1*|4() with respect to p. The candidate is accepted, and
(" +1) = y* with probability
FR(H™]yr)
FEENR(P*|p™)" |

If the candidate is rejected, the chain remains at the current state: (™t = (), Note that f

a(¢("), ¥*) = min (15)

enters in the acceptance probability only as the ratio f(1*)/ (), so that one need only be able

to evaluate f up to a proportionaly constant.



Turning to sampling for the MNP model, let’s redefine, for the sake of simplicity, the parameter
vector as § = (vecr,(S), 5), where S is the lower triangular Cholesky factor of ¥ and vecy, stacks in
a vector s;;, 7 < . Since one needs to sample from the joint posterior distribution of # and W, it
is ¢ = (8,W) and

f(4) x =(6) - g(W16) - m(d|6, W),

where 7 is the prior and g and m have obvious meaning. Consider the Markov chain which
progresses from the current state (™ = {0("),W(”)} to the next one by first using the Gibbs
sampling procedure of Section 3 and then rescaling the resulting state ¢’ = {6', W'} as follows. A
Metropolis step is performed with the candidate ¥* = {6*, W*} sampled from some distribution
Hyge g/ (¢*|4') with support

Sy ={P* :9* = cy’, e > 0}.

With probability a(t’,*) the candidate is accepted, in which case ¥("+t1) = o*; if it is rejected
then the next state is the outcome of the Gibbs cycle: "+ = ¢,

Because of the particular form of the support Sy, the term f(4*)/f(¢4') in the acceptance
probability reduces to 7(6*)/7(8'), due to the lack of identification noted following (6). Therefore
one needs only evaluate the ratio of prior densities at the parameter yielded by the Gibbs cycle and

at the parameter sampled from the candidate distribution:

m(6*)

m(0)
exp{=3(6" = B(0))T A0)(B" = Bo))} 1571~ +7) TT5_] 83,7~ exp{~} trP(5*5*T)~1}
exp{—3(8' — B(0))TAw)(8' — (o))} |8'|=(w+») TIEZ{ s ;f Texp{-1 trP(5'57)-1}

= c—(p—l)(l/+g) exp {_§ [(C - ].)ﬁ,TA(O),B had 2(6 - 1),8 A(O)ﬂ(O) + (Cm2 — ].) tI'P(S,S/T)_l]} )

where §* = ¢’ and, in the first equation, use was made of the prior distribution of §, 7(5)
| P2 S|~ [T2] 257 exp{—} trP(S57)71}.
Concerning the candidate distribution H, it is assumed that h(¢*|¢') > 0 <= h(¢'|¢*) > 0,

so that a certain move is allowed if and only if the move in the reverse direction is also allowed.
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Because of the form of Sy, sampling of the candidate 1* is done easiest by sampling the scale

factor C' according to some univariate distribution Fiz and then setting ¥* = C'¥’. Then

Hyuy (*[9") = Pr[¥ < "8 = 9]

Pr[CY < ¢*| ¥’ = ]

- 7 (%)

where, in the first two lines, the inequalities are componentwise and the last passage can be done

because of the special form of Sys. If u is Lebesgue measure and F¢ has density fc with respect

to u, then

B ) = fo (:f; ) e

Some possible choices for Fiy are reported below, along with the corresponding values of the ratio
h(y'|9*)/h(1*|¥") needed to compute the acceptance probability.
(a) Fo is a mixture of a point mass at ¥ and a point mass at y~. The density, with respect to

counting measure, is:
fo(e) = AMp(e) + (1 = A)Iy-13(c) v €(1,0), A€ (0,1);

rlyr) _ ) A=N/r if i/ =
MY -t =

(b) F¢ is a finite mixture of two uniform distributions on the intervals (1,7) and (y~1,1):

fole) = A= 1)1r(m)(c)+(1 ) 1_1) S0 7€ (100), A€ (0,1);

Pk B

h(@l¢™) _ w W
h(p*ly') IR R
Toagr e

€(1,7)
€(v7H1) |

(c) C equals U with probability A and U~! with probability 1 — A, where U is uniform on (1,7):

fole) = I(m)(c)+ (-0, L la(e) 7€ (1,0, A€ (0,1);

11
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(d) F¢ is a gamma distribution with parameters § and 7:

»
fe(e) = ﬂé—)cﬁ—le'"c;

A5 ()" o -5
h(*9")  \4f YT

In cases (a), (b) and (c), values of v very close to 1 are likely to result in a high acceptance
rates, yet the chain will not move much, in any step, from the output of the Gibbs cycle. Values of
v very large will instead result in very low acceptance rates, since most of the proposals will fall in
a region of relatively low prior probability. Extreme values of A should be avoided. In case (d), one
may recommend using a gamma distribution with unit mean, for example the Ezp(1) distribution.

The appendix contains a proof that the hybrid Markov chain, consisting of the combina,ti:)n of
the Gibbs cycle of Section 3 and the rescaling Metropolis step, is ergodic (positive Harris recurrent
and aperiodic).

The simulation technique described above, using F¢ equal to the Ezp(1) distribution, was
employed with the two artificial data sets of Section 3. Figure 6 displays two sets of 2000 simulated
pairs (f,+/0), superimposed on a contour plot of the posterior distribution, for the first example.
The simulation was carried out twice, using different starting points, the same as used in the
simulations displayed in Figure 2. Comparing the panels in Figure 6 and Figure 2 suggests that
the influence of the starting point is greatly reduced, moreover the distributions of sampled points
in Figure 6 seem to better match the posterior distribution, as described by the countour lines.

Figure 7 displays the results for the second example. It contains plots of two sets of 20000
pairs (,+/0) obtained by running the hybrid sampling chain using the two different starting points
already used in Section 3. Compared with the ones in Figure 4, the results of the new technique

appear much less dependent on the simulation starting point and the overall fit between the pos-
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terior contours and the sampled points is greatly improved. Figure 8 contains histograms of the
“identified” parameter §/4/0 obtained from the two simulations. There is a great improvement in
the agreement between the results of the two runs, with respect to the results reported in Figure 5.

Fzample 3. 1 next illustrate the relevance of the new technique using a MNP model with three
alternatives estimated on a real data set. Data from wave 7 of the Dutch mobility panel (see, e.g.,
Van Wissen and Meurs 1989), was used to model car ownership level (1, 2 or more, 0 cars) in terms
of socio-demographic characteristics of the households. Details on the specification of the model will
be reported elsewhere, along with estimates based on several waves in the panel. Here I concentrate
on the differences between the posterior samples obtained using the Gibbs sampler and the hybrid
Markov chain. Two runs, each consisting of 20000 simulation cycles and with the same stream of
random numbers, were performed using the two methods. The Ezp(1) distribution was used as
candidate distribution for the scale factor C in the hybrid chain. Some of the results are reported
in Figure 9, which displays time series plots of some identified parameters in the model. Each panel
contains two series: larger dots denote the output of the Gibbs sampler, smaller dots the output
of the hybrid chain. Panel (a) refers to the constant term in the equation for 2 or more cars, while
panel (b) refers to the ratio between the variances and panel (c) to the correlation coefficient in
the bivariate normal error term. In all panels the time series produced by the hybrid chain reaches
rather quickly its average level and exhibits a stationary behavior. The Gibbs sampler output seems
to require longer times to reach the steady state and in all panels some evidence of trend, either in
mean or in variance, is apparent. Using the simulation sample size of 20000, inferences from the
two simulation techniques are not very different, for the quantities in panels (a) and (b). However,

inferences about the correlation coefficient differ greatly.

5 Conclusions

In this paper I described a modification of the Gibbs sampler used for the Bayesian analysis of

the multinomial probit model. The modification consists in performing, after each Gibbs cycle, a
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Metropolis step along a direction of constant likelihood. It is relatively inexpensive and, in some
examples with artificial and real data sets, seemed to improve considerably the sampler’s ability of

exploring the posterior distribution.

Appendix: convergence of the hybrid chain

Let E be the state space of the sampling chain: FE is the direct product of the parameter space of
0 = (vecr(S), ) and the subset of R™P~1)_ determined by the observed choices, where the utilities
differentials w; live. The letters z,y, z will be used to denote elements of E. Let £ be the Borel
o-field on E.

Denote by Pg : E x £ — [0,1] the transition probability kernel on (E; &) associated with the
Gibbs sampler: Pg(z,A) is the probability of making a transition from z € E to A € £ by means
of a Gibbs cycle. It is assumed that Pg(-, A) is an £-measurable function for any A € £, and that
Ps(z,-) is a probability on (E,€) for any = € E.

Similar definitions apply to Pas, the transition kernel associated with the Metropolis step.
Denote by Q(y, A) the candidate transition kernel (in terms of the notation of Section 4, Q(y, A) =
[4 H(dz|y)) and let a(y, z) be the probability of accepting the candidate » sampled according to

Q(y,dz). Then Py can be written as
Pa(y,4) = [ a3, 2)Q(y,d2) + (3)6,(4)
where §, is a point mass at y and r(y) is the marginal probability of rejecting the candidate:
r(9) =1~ [ aly, 5)Q(y, dz).
The transition kernel of the hybrid chain is
(PPar)(a, A) = [ Pele,dy)Pu(y, A) (16)

Let ¢ denote the posterior distribution and p the Lebesgue measure, mutually absolutely continu-
ous, on F.

The following results hold:

14



(i) ¢ is invariant for (PgPur).

It follows from the fact that ¢ is invariant for both Pz and Pyy.

(ii) For every z € E, for every A € & with ¢(A) > 0, (PgPu)(z,A) > 0.
Consider
B={y: Py(y,A)>0}={y:y=cz, ce{1}UD, z € A} (17)
where D C IR* (for the candidate distributions reported in Section 4, one has: (a) D =
{7747} (band ¢) D = (v"1,1)U(L,7); (d) D = R*). Clearly B D A so that ¢(B) > 0.
Now the Gibbs transition kernel Pg is defined in terms of strictly positive densities with

respect to p (see McCulloch and Rossi 1994). Therefore for all z € E, Pg(z, B) > 0. It then

follows, from the definition (16), that (PgPa)(z, A) > 0.

(iii) (PgPu) is g-irreducible.

It follows from (ii).

(iv) (PgPu) is aperiodic.

It follows from (ii).

(v) (PgPu) is absolutely continuous with respect to ¢: (PgPa)(z, ) € @, forall z € E.
Let A € £ with pu(A) = 0. We show that (PgPa)(z,A) = 0 for all z € E, separately for the

case of @ < p and @ discrete.

Consider first the case where the candidate transition kernel ¢ is absolutely continuous with
respect to , as in (b), (c) and (d) of Section 4. Then [, a(y, 2)Q(y,dz) < Q(y,A) = 0, for
all y € E. Therefore Py(y, A) = r(y)6y(A), so that

(PaPur)(z, A) = /A r(y)Ps(z,dy) < Po(e,A)=0 Ve €E

since Pg(z,-) < p.

If the candidate transition kernel @ is discrete, as in (a) of Section 4, then Py is discrete and

D in (17) is a countable set. Then p(A) = 0 implies u(B) = 0, so that Pg(z,B) = 0, for all
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z € E, follows. Hence (PgPup)(z,A)=0,Yz € E.

(vi) (PaPp) is Harris recurrent.

It follows from (i), (iii), (v) and Corollary 1 in Tierney (1994).

Finally, using (i), (iii), (iv) and (vi) as the conditions of Theorem 1 in Tierney (1994), one can

conclude that (PgPas) is positive Harris recurrent, ¢ is the unique invariant distribution and
I(PaPa)"(2,+) — ¢l| = 0 Vz € E,

where (PgPp)™ is the n-th iterate of the transition kernel and || - || denotes the total variation

distance.
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Figure 1: Example 1. Contour plots of: (a) the prior; (b) the likelihood; (c) the posterior.

19



log(v/0)

log(1/o)

(b)

Figure 2: Example 1. Contour plots of the posterior distribution with superimposed 2000 draws

from the Gibbs sampler started at: (a) (8,/7) = (=2,v2); (b) (8,+/7) = (=20, 10).
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Figure 3: Example 2. Contour plots of: (a) the prior; (b) the likelihood; (c) the posterior.
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Figure 4: Example 2.Contour plots of the posterior distribution with superimposed 20000 draws
from the Gibbs sampler started at: (a) (8,1/7) = (5,v2); (b) (8,v7) = (25, 5).
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Figure 5: Example 2. Histograms of §/4/0 computed on 20000 draws from the Gibbs sampler
started at: (a) (8,v/7) = (5,v2); (b) (8,+/7) = (25,5).

23



log(+/a)

(@)

log(v/a)

(b)

Figure 6: Example 1. Contour plots of the posterior distribution with superimposed 2000 draws

from the hybrid chain with exponential candidate distribution in the Metropolis step, started at:

(2) (8,v) = (=2,v2); (b) (8,/7) = (~20,10).
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Figure 7: Example 2.Contour plots of the posterior distribution with superimposed 20000 draws

from the hybrid chain with exponential candidate distribution in the Metropolis step, started at:

(a) (8,v/a) = (5,v2); (b) (B,+/7) = (25,5).
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Figure 8: Example 2. Histograms of 3/,/c computed on 20000 draws from hybrid chain with

exponential candidate distribution in the Metropolis step, started at: (a) (8,+/0) = (5,/2); (b)

(8,v/) = (25,5).
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Figure 9: Example 3. Time series plots of some identified parameters in the car ownership model:
(a) constant in the equation for 2 or more cars; (b) ratio of the variances of the error term; (c)
correlation coefficient of the error term. Larger dots denote the output of the Gibbs sampler with

data augmentation, smaller dots the output of the hybrid chain.
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