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Abstract

In this paper we summarize research issues for spatial environmental sampling stem-

ming from a NISS/USEPA workshop held September 21-22, 1994 at Chapel Hill, NC.
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1 Introduction.

The problem of choosing a spatial sampling design arises in many contexts in environ-
mental statistics, e.g., determining where to take measurements at a hazardous waste
site for the purpose of surface soil characterization and remediation, for planning
large scale studies such as the National Resources Inventory (NRI) or the Environ-
mental Monitoring and Assessment Program (EMAP), or for selecting locations for
air quality monitoring stations. To address some of these issues, the National Institute
of Statistical Sciences (NISS), the Center for Statistical Ecology and Environmental
Statistics of the Pennsylvania State University, and the U.S. Environmental Protec-
tion Agency (US EPA) jointly organized a Workshop on Spatial Sampling for the
Environment that was held September 21-22, 1994 in Chapel Hill, NC. The program

covered the following topics:

(1) The theory of spatial statistics and spatial sampling designs with consideration

for issues such as design criteria, robustness, and computation;
(2) Tradeoffs between design and analysis;
(3) Adaptive and multi-phase sampling;

4) Applications to brush fire forecasting, site remediation, atmospheric monitoring,
PP g p g

and natural/environmental resources measurement and assessment.

In this paper we report on issues stemming from the workshop and examine topics
and questions which merit further investigation. Before launching into any theory, it
1s instructive to look at some environmental applications which were discussed at the

workshop.



1.1 Surface Soil Remediation.

In surface soil remediation it is usually necessary to characterize the pre-remediation
and/or post-remediation distribution of contaminant concentrations. It may also be
necessary to determine which portions of the site require remediation. An exhaustive
sampling procedure may not be feasible, often because of the high cost of obtaining
the samples (e.g., when it is necessary to use drilling equipment to obtain cores).
Sampling design in this setting entails balancing the costs of acquiring the information
with the costs of making mistakes as a result of insufficient information. Typical
issues to be considered include the spatial distribution of contamination, area and
depth heterogeneity, physical extraction of the sample, and performing the chemical
analysis.

An instructive example presented at the workshop by Max Morris is based on
work by the late Toby Mitchell (West, Siegrist, Mitchell, Pickering, Muhr, Greene,
and Jenkins 1993). A sampling plan was undertaken to select of sites at which to drill
soil sample cores for the purpose of estimating the distribution of Volatile Organic
Compounds (VOC’s) in a hazardous waste site. It was projected that the entire site
was to be remediated, but the remediation method was untested. The purpose of
the study was to characterize the preremediation distribution of contaminants and to
select regions of the site for demonstration of the proposed remediation technology.
This design is discussed in Section 3.6.

A similar example that was presented at the workshop by E. J. Englund (En-
glund and Heravi (1993)) involved the use of conditional simulation (i.e., simulation
from a spatial model fit to the observations) to compute sampling locations for the
purpose of estimating where the contaminant concentration exceeds a given level.
The sampling procedure was iterative: an initial spatial model was fit to the data;

conditional simulations were conducted using the estimated model; the expected loss



was computed; the sampling units with the highest expected loss were selected for

measurement; and, the process was repeated.

1.2 National Resources Inventory and Related Studies.

The National Resources Inventory (NRI) is a survey conducted periodically by the Soil
Conservation Service (SCS) of the U.S. Department of Agriculture with the assistance
of the Survey Section of the Statistical Laboratory at Iowa State University. The goals
of the survey are to assess soil characteristics, land use, erosion, and conservation
needs for all nonfederal land in the U.S., Puerto Rico, and the U.S. Virgin Islands.
The SCS began conducting surveys of this nature in 1934, but NRI surveys of 1982,
1987, and 1992 were conducted on a much larger scale and with broader assessment
goals than any previous efforts. The NRI is based on a probability sample similar to
ones used in inference about finite populations.

A related study is the Environmental Monitoring and Assessment Program (EMAP).
EMAP is a multi-agency program of the U.S. government organized by the U.S. Envi-
ronmental Protection Agency. EMAP involves extensive data collection on the status
and trends of ecological resources, including wetlands, lakes and streams, forests,
and agroecosystems. Some EMAP data collection is based on a multi-stage proba-
bility sampling design. The probability sampling strategies for NRI and EMAP are

discussed in Section 3.1.

1.3 Air Quality Monitoring.

Regional air quality monitoring is typically done with expensive equipment placed
at monitoring stations located at fixed sites in the region of interest. Monitoring
networks need to be evaluated for factors including accuracy and cost-effectiveness.

As monitoring data are frequently used for other, non-regulatory, purposes, such



as estimating and modeling human exposure to various pollutants, estimation of
trends in pollutant concentrations (Gao, Sacks, and Welch 1994), and investigation
of source-receptor relationships (Spiegelman and Dettner 1993), the appropriateness
of such networks and their limitations for these purposes also needs to evaluated. The
design of an air quality monitoring network offers challenges not encountered in other
environmental applications. For one, the sites are generally fixed in space (although
mobile monitoring stations may also be utilized) and observations are taken for a long
period of time. The rapid transport of pollutants and their relationship with other

variables such as meteorological variables raise other issues.

2 Spatial Statistics: Theory

There are two disparate approaches to spatial statistical inference, the model based and
design based approaches. The model based approach begins with a stochastic process
model for the spatial process and uses this model for prediction after estimating
unknown parameters. The design based approach typically proceeds from a simple
random sample or other probability based method of generating observation sites and
then bases inferences on the randomness of the design. Design based inferences are
generally elementary from a statistical point of view and are arguably more robust
across variables of interest and across time than model based inferences. However,
one expécts that a good model based analysis can do no worse than a design based
analysis and can perform substantially better when there is spatial correlation.
Some model based methods incorporate design based approaches. For example,
Englund and Heravi (1995) use design based methods to select a grid within which
an (unobserved) sample location is selected randomly. Qian (1995) selects (unob-
served) sample locations by successive random sampling from conditional posterior

t-distributions. We give a brief synopsis of the model based approach (see Cressie



1991) in what follows.

2.1 Stochastic Process Model.

A spatial process is a real (or vector valued) process {Z(s) : s € D} where D C IRF
for some k, typically k = 2 or k = 3. There are various models that are widely used
for Z, but the following will suffice for our discussion. Assume the mean function or

trend is of the form

E[Z(s)] = u(s) = 3 f;By(s), 1)

i=1

where the B; are given functions. For instance, a constant unknown mean is obtained
by taking p = 1 and B; = 1, and a mean function which is linear is specified by

p=k+1, By =1, and Bj;,(s) = s; for 1 < j < k. Write the covariance function as

Cov[Z(s),Z(t)] = C(s,t). (2)

Virtually all models make use of a stationary covariance function, i.e., one of the form
C(s,t) = c(s —1t),

where ¢(-) is known as the covariogram, which is related to the popular variogram 2+

by 2v(h) = 2[c(0) — ¢(h)]. Possible covariance functions include

Ci(s,t) = olexp [—i&-(s;—t;)"’], (3)

Cls,t) = wesp[-plls ¢, B
Ca(s,t) = cs[1 = (3/2)|ls — t||/a + (1/2)(||s — t||/a)?] ff Is — t|| < a, o
0 i ||s—¢| > aq,

where in (5) it is assumed that the dimension k of the variables s, ¢ is no more than
3. In the above, o2, 6;, w?, ¥, c,, and a are positive and 0 < p < 2. Note that all of

these are stationary covariances, and C; and Cj are also isotropic, i.e. depend only
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on ||s — t||. Anisotropic covariances are useful when variables (components of s) are
not equally important (Sacks, Welch, Mitchell, and Wynn 1989). Other candidate
covariance functions may be found in Cressie (1991).

Covariances such as those in (3) and (4) were used by several workshop presenters
including Ylvisaker and Morris. See Sacks et al. (1989) for other applications of these
particular covariance functions. The covariance in (5) is known as the “spherical
model” in geostatistics (equation (2.3.8), p. 61 of Cressie 1991).

Construction of (optimal) linear estimators and their conditional variances do not
require specific distributional assumptions, whereas nonlinear estimation and predic-
tion regions do. Almost always, the Gaussian distribution is used.

Is it reasonable to model the chemical concentration at a hazardous waste site
as a random process? Such an approach is basically Bayesian — one can often select
the mean and covariance functions to reflect properties one believes the process sat-
isfies. For instance, sample paths of a process with covariance as in (3) are infinitely
differentiable and have a different variation in different directions (depending on the
magnitudes of the 6;’s). The sample paths of a process with covariance as in (4)
have common variability in all directions and variable roughness controlled by the
parameter p. For instance, a Gaussian process with p = 1 in k = 1 dimension is an
Ornstein—Uhlenbeck process which is nowhere differentiable and approaches a white
noise process as ¥ — 0o. From a pragmatic perspective, such spatial stochastic pro-
cess models have been successfully used in numerous applications (see, e.g., Cressie

1991; Currin, Mitchell, Morris, and Ylvisaker 1991; or Gao et al. 1994).

2.2 Prediction.

We will suppose that the data consist of observations Z(s1), Z(sz2), ..., Z(8,) of the

process at sites {s, S3, ..., S,} in a region D. A list of possible objectives is given



next. Below, Dy is a given subregion of D.
(O-1) Given t € D, predict (or estimate) the value of the process Z(t) at a point ¢.

(O-2) Predict the the integral
I = Z(t)dt
[, 2

or the average, I/|Do|.

(O-3) Predict the integral of a nonlinear function of the process, i.e.

J = / 9(Z(t)) dt.
Do
A typical example would be g(z) = exp|[z].

(O—4) Predict the maximum of the process over Dy, i.e.

max Z(t).
tEDo

(O-5) Estimate the unknown subset of D where the process exceeds some given
threshold, i.e.
D(A) = {t: Z(t) > A}

In each of the above estimation problems, one would of course desire prediction in-
tervals as well as point predictions.

Objective (O-1) is fundamental. Contour plots based on such point predictions
are popular with practitioners (see, e.g., Flatman 1984). Objective (O-2) arises, e.g.,
in soil abatement/remediation if Z(s) is the contaminant concentration at s and one
wishes to estimate the total amount of contaminant in a certain area. However, it
may be more reasonable to take Z as the logarithm of the contaminant concentration,
in which case (O-3) becomes relevant. In air quality monitoring, regulatory require-

ments are based on the maximum ambient ozone levels observed at the monitoring
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stations, but the true maximum concentration (i.e., (O—4)) is also needed in order to
model human or ecological exposure in the region. It is also important to estimate
where the concentration exceeds some threshold, thus giving rise to (O-5). Objectives
(O—4) and (O-5) are related to location of “hot spots” in soil abatement applications
(Chapter 10 of Gilbert 1987).

Most commonly used predictors of Z(t) for (O-1) are linear unbiased predictors.

Letting Z(t) denote a predictor of Z(t), we say Z(t) is linear if it is of the form

Z(t) = ia,'Z(S.')

for some coefficients a; which depend on ¢t. Unbiasedness is equivalent to the require-
ment that 37, a;B;(s;) = 0,1 < j < p, where the B; are given in (1). The Best
Linear Unbiased Predictor (BLUP) of Z(t) (also known as the kriging predictor) is
the one which minimizes the variance of the prediction error. It is given by

-1

. F
2t) = [ Bey] :
® Be' ||,
= B(t)'8 + v(t)'V"'(z - FB)
where the superscript t denotes matrix transpose, and
vi(t) = [ C(t,s1) C(t,s2) --- C(t,sn) ]
B'(t) = [B() Bt) - By ]
V;" = C(S,‘,Sj), 1< 17] <n
B = (FVIF)FVz

z = [Z(sl) Z(s3) --- Z(s,,)]-



Note that ﬂA is the generalized least squares estimator of 5. Discussion of covariance
estimation is deferred to Section 2.3.

The mean squared error of prediction is

MSE({) = MSE(t|s:,ss,...,8,) (6)
= E[(Z(t) - Z2(t))*| 2] . (7)

F v
= C(tt) — [v(t)‘ B(t)‘] oo B((tt)) : (8)

Note that M SE(t) does not depend on the actual observed values z, but only on the
observation sites (or design) s;, S, ..., s, and the covariance. Also, we do not need
to know the vector of regression coefficients 3, and can compute MSE(t) up to a
scale if we specify the covariance up to a scale. If one is willing to assume a Gaussian
process for Z, then using the formulae above we can obtain prediction intervals for
expressing the accuracy of Z(t). For instance, a 95% prediction interval would be
Z(t) + I.QGJFE(t) . These factors make M SE(t) a handy tool for spatial design.

We will of course typically be interested in predicting the process at more than
one point. It is useful to know that the conditional covariance of the prediction error

at two sites i1s given by

Cov|Z(ty) — Z(t1), Z(ts) — Z(t;) | 2]

I

C(tl, tl) C(tl,tz)
C(ts,t1) C(t2,t2)

t -1

V F
Ft 0

v(ty) v(t2)
B(t,) B(t,)

v(t) o(ts)
B(t:) B(t,)
For (O-2), it is not hard to show that the BLUP of an integral is

- (9)

i(Do) = /D 2y,  (10)
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which has mean squared prediction error

E [(/D (2(8) - Z(t)}dt)2 z] (11)

= /D o E[{2(t) - Z()}{Z(s) — Z(s)} | 2] dtds. (12)

The situation for (0-3), (O—4), and (O-5) is somewhat more complicated as they
are not linear functionals of the sample path. For instance, consider (O-4). A naive
estimator of supgcp, Z(t) is the maximum of the BLUP, i.e. supycp, Z(t), but this
estimator will typically underestimate the true maximum with high probability (e.g,,
predicting the future maximum of a discrete time Gaussian random walk with no
drift).

A general approach for estimation of nonlinear functionals is conditional simula-
tion (Englund and Heravi 1993). We describe a conditional simulation approach for
(O-4) assuming a Gaussian process. As pointed out by Handcock and Stein (1993),
assuming an improper prior on the coefficient vector B in the mean function, the
BLUP gives the conditional mean and (9) gives the conditional covariance. One may
then simulate the process conditional on the observations on a very fine grid and
obtain from each simulation a maximum on the grid. The empirical distribution of
the simulated maxima can be used to approximate the posterior distribution of the
true maximum on the grid. The mean or median of the simulated maxima may be
used as a point estimate of the true maximum. The 95th percentile of the simulated
maxima provides an upper 95% prediction bound on the true maximum on the grid.

For (O-3), the idea is basically the same — compute J for each simulated sample
path. One approach for (O-5) is to compute

p(t) = P[Z(t)> )\lZ(sl),Z(Sz),...,Z(Sn)]

for each t € D from the conditional normal distribution of Z(t) given the data (no
simulation required). Then use {t: p(t) > 1/2} as an estimate of the set D(}).

10



2.3 Estimation of the Covariance Function.

It is only necessary to know the covariance up to scale factor in order to compute the
BLUP. For instance, if one uses the covariance function C; in (3), then it is neces-
sary to know the 6;’s but not o2 to compute Z(t). One will typically not be willing
to specify values a priori for the covariance parameters. The most commonly used
methodology for getting around this difficulty is to estimate the unknown covariance
parameters and then plug these estimated values into the BLUP computation. Clas-
sically, the covariance (or equivalently the variogram) has been estimated by method
of moments, but various difficulties arise (pp. 69-70 of Cressie 1991). With mod-
ern computing, it is easy to fit a parametric model such as those in (3) through
(5) by maximum likelihood (assuming a Gaussian model) (Sacks et al. 1989). A
nonparametric approach to covariance estimation, presented by Keh-Shin Li, avoids
prespecification of the covariance model by estimating the spectral density (Chow
and Lii 1992). Chow, Lii, and Fujioka (1992) illustrate the method using fire weather
data.

As pointed out by Le and Zidek (1992), “classical kriging methodology fails
to incorporate uncertainty about the covariance in the prediction error variance.
This deficiency leads to ...seemingly valid decisions or regulatory actions which are
...unjustified.” These authors present a conjugate prior Bayesian approach which
does include uncertainty about the covariance. However, their analysis is restricted
to a preselected finite grid of sites and does not extend to a spatial continuum. Hand-
cock and Stein (1993) position priors on the covariance in a manner more consistent
with spatial statistics and give further results on the coverage probability of predic-
tion intervals. Qian (1995) applies this technique to an environmental water quality

problem.
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3 Sampling Design.

Classically, spatial sampling designs have either been derived from probability sam-
pling or from “geometric” designs. Optimal design in the spatial setting has only

recently received much attention. Other sampling design strategies are in use as well.

3.1 Probability Sampling.

In the probability sampling approach the domain of interest is taken as the “popula-
tion,” and it may be further split into “strata,” etc. See Provost (1984) or Chapters
4 through 9 of Gilbert (1987). Of course, the inference from data collected by a
probability sampling design can be design based, but can also be model based. For
instance, to estimate mean or total contamination as in (0O-2) from a “simple random
sample” (i.e., sites selected independently and uniformly in D), the mean concen-
tration of the sample would be an unbiased estimator (w.r.t. the design) of the mean
concentration of the region. A model based estimator would involve kriging the data
(which utilizes the locations of the sites as well as the observed concentrations at the
sites). If one uses a nonrandom design, then only model based inferences are valid.
As mentioned in the introduction, the National Resources Inventory survey is
based on a probability sample. The 1992 NRI used a stratified 2 stage area sample.
Strata are essentially 1/3 of a township — a 2 x 6 mile region. Strata were subdivided
into 0.5 X 0.5 mile Primary Sampling Units (PSU’s). In all, approximately 300,000
PSU’s were selected for the 1992 NRI. Sampling rates vary somewhat and are deter-
mined by landscape/use characteristics, with special consideration for regions that
don’t conform to the standard Public Land Survey, irrigated regions in the West,
and Alaska. The nominal rate involves drawing 2 PSUs at random per stratum and
then 3 points selected randomly within each selected PSU. The 3 points are not se-
lected independently, however: the first point is randomly selected within a PSU;
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then the other two points are selected in a manner which separates them from the
first point and from each other. The data collected include some PSU-wide data and
detailed data collected at the 3 points. Both the design and the selected PSUs have
remained relatively constant since the 1982 survey. Special modules are appended to
the survey in particular areas such as those where land use is known to have changed
significantly.

Some samples for the U.S. Environmental Monitoring and Assessment Program
will be collected at long term research sites selected purposively based on their eco-
logical importance rather than randomly. The probability sample based portion of
EMAP is designed as follows. The EMAP sampling strategy is multistage and in-
volves aspects of stratified and systematic sampling. The first stage of the design
is a triangular grid covering the conterminous United States. The grid is randomly
situated over the U.S. land mass; the inter-point distance along the grid is approx-
imately 27 km and the ratio of area to number of grid points is approximately 635
km? per grid point. The grid design is appropriate to the task of measuring ecologi-
cal resources whose position does not change over the time of the survey and to the
need for repeated sampling and reporting over time. The multistage design permits
tailoring a design to the resource(s) of interests and purposes of the reporting. Data
may be collected at a random sample of grid points during the first stage, on the basis
of which informed choices for the definition, stratification, etc. of second and lower
stage units can be made. In preparation for the second stage, a randomly placed
hexagonal template is constructed over the region. The typical size of the template
1s sixteen hexagons per grid point.

EMAP distinguishes between two types of ecological resources: extensive and dis-
crete. Extensive resources include large rivers and streams, and forests and Great
Lakes, represented by lengths and areas, respectively. Discrete resources include

small lakes, represented as points. A first stage sample of grid points identifies a
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corresponding set of resources containing or coincident with the grid points. At the
second stage, the centers of randomly selected hexagons are used to identify a random
sample of discrete resources or a random set of locations for collecting data on exten-
sive resources. As reporting is typically done on a regional basis, it is undesirable to
oversample spatially contiguous areas. This is partially controlled by organizing first
stage units within groups of contiguous hexagonal templates, randomizing the order
of groups, templates, and first stage grid points separately, and applying random-
start systematic sampling to the resulting linear list of first stage units. See Stevens

(1994) for a complete description of the EMAP probability based design.

3.2 Geometrical Designs.

Probability sampling designs offer the advantages of simplicity and robustness (from
the lack of dependence on a model), but can suffer from a lack of efficiency. Accord-
ing to Cressie (p. 319, Cressie 1991), “Regular (random and nonrandom) sampling
plans are usually more efficient than simple and stratified random sampling ... where
efficiency here is measured in terms of the average and maximum kriging variances.”

Many practitioners of geostatistical environmetrics have used regular or geometric
designs such as a triangular, square, or hexagonal grid. See for instance the “bull’s
eyes” in Figure 5 of Flatman (1984), which center on the observation sites, as noted
in Figure 1 of Journel (1984), indicating the use of a square sampling grid. In a
study by Olea (1984), two design criterion functions (IMSE and MMSE, introduced
below) were compared for various geometric designs and some probability sampling
designs. His results suggest that the hexagonal tiling design is universally best (among
those he conmsiders) for both criteria. Yfantis, Flatman, and Baher (1987) found
that equilateral triangles provide the most efficient design for kriging among regular

triangles, rectangles and hexagons. An historical example of an optimal geometric
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design (in a very special setting) may be found in Dalenius, Hajek, and Zubrzycki
(1960).

3.3 Optimal Designs.

Given a spatial model as in the previous section, and given a (linear) method of
prediction, one can formulate various optimal design criteria. We state here only
design criteria that admit a reasonable mathematical formulation. Assume that Z (t)
is a linear unbiased predictor of Z(t), which may or may not be the BLUP. Then the
mean squared error of the prediction depends only on the covariance of the process.
We assume that the covariance has been specified, at least up to a scale factor. We

will now enumerate several design criteria.

(D-1) The Integrated Mean Squared Error (IMSE) criterion is to minimize
IMSE(s1,52,...,80) = [ B{Z(H) - 2(®)})de.

This may be modified by including a weight function in the integral or integrat-

ing over another domain.

(D-2) The Maximum MSE (MMSE) criterion is to minimize

MMSE(sy,83,...,8,) = sup E[{Z(t) - Z(t)}?).
€

(D-3) The entropy criterion is to maximize
H (31, 52,4, Sn) =E [; log {f(Z(sl)’ Z(S2), SR Z(s"))}] ’
where f denotes the probability density function of (Z(s1),Z(s2),...,Z(sn)).

We will speak of an IMSE optimal design to be one which minimizes the criterion

in (D-1), and similarly for the other criteria. In most cases, the computation of
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an actual design will require numerical optimization, and evaluation of any of the
criterion functions for a specific design will typically involve numerical integration or
optimization, so obtaining optimal designs is by no means simple.

The IMSE design criterion (D-1), which minimizes average kriging variance, has
been widely used (see e.g., Sacks and Ylvisaker 1985; Sacks, Schiller, and Welch
1988; and Sacks et al. 1989), perhaps because it is easy to formulate and intuitively
appealing. Basically, one seeks the design that does “best” on the average, where
“best” is measured by smallness of the mean squared prediction error. Similarly, the
MMSE design criterion (D-2) seeks to minimize the worst case. See Johnson (1996)
for discussion of this criterion and its similarities with the entropy criterion.

The entropy criterion is usually considered in the setting where there are only
finitely many sites available. Assuming Z(t) is a Gaussian process, maximization of H
is equivalent to maximization of the determinant of the covariance of Z(S) (Shewry
and Wynn 1987). For this reason, the entropy optimal designs are also known as
D-optimal designs in analogy with linear models. In a Bayesian framework, one can
include uncertainty about unknown parameters in the entropy criterion (Le and Zidek
1994). The entropy criterion has been used by Shewry and Wynn (1987) and Currin
et al. (1991). The proponents of the entropy criterion claim that it is appropriate
for situations where there is not a single objective (e.g., Le and Zidek 1994), as is the
case with most environmental data.

As emphasized at the workshop by Ylvisaker, one should not only optimize the
design for prediction error within the model but should also address the issue of
model validation. As discussed previously, classical kriging ignores the error inherent

in estimating the variogram and the propagation of this error through the prediction.
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3.4 Multi-Phase Sampling.

Englund and Heravi (1995) investigated design optimization for soil remediation,
using a linear cost function comprising: 1) per remediation unit remediation cost
(clean-up is done, or not, within each of several predetermined remediation units
within the site); 2) per sampling unit sampling cost; and, 3) a per remediation unit
environmental cost per unit of concentration for unremediated false negatives. Specif-
ically, the region is divided into remediation units of 100 m?. Using a spatial model
of contaminant concentration, the total concentration in each remediation unit can
be estimated by kriging. If the estimated contaminant concentration exceeds an ac-
tion level, then the unit is remediated at a remediation cost of $10,000. Otherwise,
there is a cost of $10,000 per unit of concentration per remediation unit cost for in
remediation units which are not remediated. Finally, the cost per sample is $500.
Costs are designed so that false positives and false negatives incur higher cost than
correct decisions, and that costs for false postives and false negatives are equal (to
$10,000 per unit) at the action level. One noisy surrogate site model (similar to that
encountered with natural trace elements in soil) and one smooth site model (similar to
that representing geological structural surfaces) of 19,800 points each were simulated
for the analysis. Three alternative sampling approaches, each involving a total of N
sampling units, were investigated: one-phase sampling, two-phase sampling (N; < N
units in the first phase), and N-phase (sequential) sampling.

The one-phase sampling algorithm simply partitions the site into N regions of
equal area and samples one point randomly per region. After selecting N;, the two-
phase algorithm first repeats the one-phase algorithm, but only for the first phase
sample of N; units. The first phase sample values are kriged to estimate soil contam-
ination concentration Z; and associated standard error s; in each remediation unit.

Contamination concentration in remediation unit ¢ is assumed to follow a triangular
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distribution with mean Z; and half-width 3s;, from which the expected loss L; due
to a false negative decision for remediation unit : can be calculated relative to a pre-
determined action level. The (N; + 1)st sample unit is selected randomly within the
remediation unit with highest expected loss. The estimated kriged standard devia-
tions are updated, and the procedure is repeated to select the next sample unit, etc.,
until a total of N sample units have been assigned. Final kriged estimates per reme-
diation unit and estimated total remediation cost are then computed. Beginning with
default estimates of Z; and s; equal to the action level and the population standard
deviation, respectively, the N-phase algorithm constructs the first, second, etc., sam-
ples in the same manner as the two-phase algorithm, except that the concentration
estimates are updated along with the standard deviations as each new sample unit is
selected.

Englund and Heravi (1995) report results based on intensive simulation of the
three sampling algorithms over the two simulated surrogate site models. They con-
cluded that, for fixed N, better decisions result from more sampling phases, but only
marginally so. This, combined with limitations in current technology for real-time
analysis of samples and related quality assurance problems, favors few-phase sam-
pling. For one-phase designs, they determined that equal probability sampling is
marginally inferior to designs based on iterative minimization of the maximum krig-
ing variance. Major conclusions were that the optimum number of samples, N, is
independent of the number of phases, and that best results are obtained when 70-
80% of the samples are allocated in the first phase of a two-phase design (indeed,
designs based on only 10-20% of the samples were deemed counter-productive). This
enables a simple rule of thumb approach to cost optimization: first, select N based
on cost optimization for a one-phase design; second, allocate 70-80% of the N units
to the first phase. Englund and Heravi (1993) report an earlier approach to these

problems involving site-specific models based on conditional simulation.
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3.5 Adaptive Sampling

Adaptive sampling methods (Thompson 1992) are useful for characterizing spatial
phenomena that are clustered, or rare, or both. A typical example is to estimate
population size within a region of animal species or ecological resource that may be
rare but tends to cluster. Adaptive sampling begins here with a first phase sample,
such as a random sample (or complete enumeration) within each unit of a simple
random sample of equal area subregions. If the phenomenon is observed in a sample
region, neighboring regions are added to the sample and examined. Based on theory
developed by Thompson (1992), revised probabilities of selection for all included units
can be computed, leading to consistent estimators of population size. In many cases,
these estimators exhibit efficiencies many times grea.t'er than that of simple random
sampling (with the equivalent total number of units).

In addition to ecological resource estimation, adaptive sampling applies naturally
to estimation of communicable disease. Here, relationships may be spatial not only in
the traditional (geographic sense) but also in terms of familial or occupational rela-
tionships. It appears to us that adaptive sampling could be used in conjunction with
trajectory-based optimization for hot-spot identification and estimation in environ-
mental applications. However, the only application of this sort of which we are aware
is that of Johnson (1996), discussed below (and the details of the adaptive design re-
ported therein are sketchy). It may be that current theory needs to be extended (e.g.,
adaptive sampling combined with line-transect sampling) to further use of adaptive

sampling in the spatial context.

3.6 Other Design Strategies.

Still other categories of designs are “judgemental” and “hybrid” designs. In pp.
101-102 of Barth and Mason (1984), there is a good discussion of using random,
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judgmental, and systematic design methodologies in a study. The example presented
there concerns leaching of a contaminant from a known point source into ground
water used for irrigation of crop land. The authors recommend establishing a radial
grid system centered at the source, selection of rays emanating from the source at
regular angular intervals (as in a systematic design) with extra such rays aligned
with the hydraulic gradient (incorporating one’s judgment about the direction the
contaminant will most likely move), and random selection of sites along the selected
rays.

Bayesian methods may also be employed. Qian (1995) applies Bayesian kriging
to water quality assessment. Johnson (1996) combines Bayesian and geostatistical
methods with adaptive sampling in search of low cost designs for waste site charac-
terization.

In practice, it is sensible to employ a mixture of design strategies as a hedge against
misspecification of the spatial model and to provide necessary data to estimate and
investigate the covariance on a variety of scales. The design constructed by Mitchell
(West et al. 1993) for estimating the pre-remediation distribution of VOC’s at a
hazardous waste site may be called a hybrid design. It includes a large scale geometric
design of more or less regularly spaced bore holes combined with a “local” design of
more closely spaced bore holes. This sampling plan facilitated modeling of local,

midrange and longrange variability.

3.7 Extracting Representative Soil Samples.

In population sampling, “representative sample” is synonomous with “probability
sample.” In environmental and other spatial applications, the representativeness of
probability designs can be overshadowed by lack of information on correlation struc-

ture. In materials sampling such as soil sampling for waste site characterization, rep-
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resentativeness is often more in the eye of the expert (e.g., the risk assessor) than in a
statistical formula, and judgmental sampling may be favored (although this situation
is improving, see, e.g. US EPA (1994)). The main obstacles to obtaining representa-
tive samples in soil sampling are: area and depth heterogeneity, physical extraction
of the sample (e.g., core diameter), mixing of extracted core (e.g., repeated quarter-
ing), quantity sent to laboratory and quantity analyzed, analytical method used (e.g.,
dissolved, filtered), and lack of understanding of the effects of spatial variability on
the part of risk assessors. The three principal methods for extracting representative
soil samples are to sample "hot spots” only, Gy sampling, and composite sampling.

Hot spots are often selected using expert or prior knowledge, such as knowldege
of sources of the contamination or topography or by visual inspection. This may
be augmented by random grid sampling. A pattern for the contamination (e.g.,
elliptical) may be assumed, as well as the relative size of hot spots to grids. To the
extent that true hot spots are located, hot spot sampling addresses the problem of area
heterogeneity. Hot spot sampling is simple to execute, often yields a large number of
samples, and is supported by well-documented procedures (Gilbert 1987). However,
it can be costly, and, for Superfund applications, results must be reinterpreted in
terms of average contamination.

Gy sampling focuses on the physical aspects of extracting soil samples, including
particle size (Gy 1982; Pitard 1989). Gy’s theory is based on a hierarchy of sampling
errors, e.g., delimitation error, extraction error and preparation error. Delimitation
error arises from physical collection and particle size determination; extraction error
includes factors such as sampling from moving media; and, preparation error deals
with errors introduced in processes such as crushing, drying and screening physical
samples. Gy sampling addresses the problems of mixing extracted core, quantity sent
to laboratory, and amount extracted for analysis but may suffer from empirical biases

and assumptions about particles.
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Composite sampling involves the mixing of several physical samples prior to ex-
traction of the final physical sample for laboratory analysis. This sampling strategy
addresses area and depth heterogeneity and problems of mixing the extracted core.
Boomer, Erickson, Swanson, Kelso, Cox, and Schultz (1985) and Boswell and Patil
(1990) concluded that approximately square groups should be used to create com-
posites. The interplay between the physical and spatial aspects of soil sampling
was demonstrated in a simulation study of Radium-226 contamination by Williams,
Leggett, Espegren, and Little (1989): consistent with theory, composite sampling
demonstrated improved performance over random sampling, but less than theory

would predict.

4 Research Issues.

The preceding discussion raises several issues and questions for research in spatial

design and analysis.

4.1 Design.

Geometric and other regularly spaced spatial designs have been studied for several
decades (see, e.g., Dalenius et al. 1960). These designs, including space-filling designs
(Johnson, Moore, and Ylvisaker 1990) are optimal for some spatial problems. It is
conjectured that such designs may be “good enough” for many problems, particularly
when combined with trenchant methods for spatial analysis. If this is true, then
regular designs would be robust over a range of applications and evaluation criteria.
These notions need to be quantified and evaluated. Specific research questions include
evaluating the robustness of regular designs across different criteria (e.g., maximum

or average concentration, entropy) and in specific environmental settings such as
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hazardous waste site characterization and air quality monitoring. Also important is
the ability of regular designs to detect change, i.e., trends.

Asymptotic designs are based on paradigms for the asymptotic behavior of certain
criteria, e.g., the expected number of samples per unit area remains constant, or goes
to zero, or goes to infinity; the ratio of signal variance to error variance remains con-
stant, or goes to zero, or goes to infinity. It would be useful to identify environmental
problems that fit such paradigms (e.g., signal variance to error variance goes to zero
as size of region increases), and to determine if there are asymptotic designs that are
optimal or “good enough” for environmental applications.

Sequential sampling including multi-phase sampling (Englund and Heravi 1995)
and adaptive sampling (Thompson 1992) have been applied successfully to environ-
mental problems including waste site characterization and ecological monitoring. Ap-
plications of these techniques to air and water quality monitoring should prove fruitful
and instructive. Related questions include: What is the role for sequential sampling
in the evaluation of regular and other fixed location designs? How can fixed location
and sequential designs be combined for environmental applications?

Designs that are optimal with respect to standard criteria (e.g., maximum or
average concentration) under standard covariance models (e.g., spherical, Ornstein-
Uhlenbeck process) need to be identified and their capabilities and limitations studied.
The applicability of space-filling and other process optimization designs to environ-
mental monitoring and assessment problems and the robustness of these designs needs
to be investigated. Further, the use of composite sampling, Gy sampling, and other
methods for physically constructing samples warrants additional scientific scrutiny.

Furthermore, what role do covariates play in determining optimal designs and ef-
fective sample sizes? In general, a suite of contaminants are measured in conjunction
with physical site characteristics and meteorological variables, e.g., soil porosity, direc-

tion of ground water flow, predominant wind direction, temperature and the location

23



of the source of the pollutants. An optimal design with respect to one contaminant is
not necessarily optimal with respect to all contaminants. How can covariate informa-

tion assist in determining an optimal and robust design for the primary pollutants?

4.2 Evaluation.

Sources and effects of bias in environmental sampling need to be identified and stud-
ied. Techniques for examining correlation structure to determine the effective sample
size of a design are needed. The issues surrounding combining design-based (e.g.,
regular designs) and model-based (e.g., conditional simulation) approaches in spatial
design and analysis need to be stated and examined. For example, can soil pollution
concentrate data collected on different designs be combined across all or a sample
of the hazardous waste sites in a region to provide meaningful regional pollution
characterization and remediation cost information?

Most environmental spatial designs will have multiple unforeseen future uses. For
example, data from monitoring networks designed for regulatory purposes to detect
local maxima are routinely used to model average environmental exposure. Such
model biases need to be identified and corrected for, if possible. Robustness of stan-
dard spatial designs and analysis procedures across standard evaluation criteria need
to be quantified. Methods to evaluate the robustness of designs against realistic
changes to covariance structure are needed. These issues are of paramount impor-
tance.

Correlation structures are often assumed or approximated in spatial environmental
models: estimates of bias or demonstration of model robustness due to such errors
are needed. Including uncertainty in the covariance model through Bayesian methods
warrants further exploration.

How useful is it and when is it necessary to include replication in environmental
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monitoring designs or in designs for evaluating monitoring designs? How useful and
when should the precise location of samples be “jiggled” through local randomization
in order to capture small scale spatial variation?

Are entropy criteria useful in creating designs that will be robust against other
evaluation criteria? It would be beneficial to identify a category of model based de-
signs that performs acceptably across a range of criteria and applications, analogous
to the efficiency of equilateral triangular designs among regular designs (Cressie, Got-
way, and Grandona 1990; Yfantis et al. (1987)). Can entropy measures be used to

determine effective sample size?

4.3 Computation.

Improved computational methods (e.g., for all-subsets kriging) need to be developed
to facilitate the evaluation and fine-tuning of spatial designs. Designs that are sub-
optimal but robust and easy to compute need to be identified.

The computational experience of the first author and others (Sacks et al. (1989))
in searching for optimal IMSE designs supports the results of Olea (1984), namely,
that good designs tend to spread points uniformly in the design region. Using stan-
dard optimization algorithms with a random initial design, the algorithm usually
makes substantial improvement over the initial design with the first few iterations,
but quickly reaches a broad valley in the high dimensional search space and takes an
extremely long time to converge to the optimal design. Investigation of the progress
of the algorithm suggests that the initial gains are made by moving apart points that
are too close together, moving some points into regions where the initial random de-
sign is sparse, and making some adjustments for the boundaries. This observation
suggests that it is relatively easy to obtain a “good” design, but difficult to get the
“best” design. The robustness study reported in Sacks et al. (1988) show that some-
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times optimal designs for one covariance may work well across a range of covariances.
The “good” design may actually prove to be a robust design under variations in the
original assumptions.

What is the role of mathematical optimization methods such as dynamic and linear
programming in problems such as optimal sequential spatial design and all-subsets
kriging? Christakos and Killam (1993), for example, illustrate the use of simulated
annealing for spatial sampling design.

What is the role of geographic information systems (GIS) for sample stratifica-
tion, design, optimization and selection (e.g., in the NRI)? Methods, perhaps involv-
ing GIS, for incorporating location and auxiliary and conditional information should
be investigated. What is the role of computer graphics and the human/computer
interface in spatial sample design for environmental applications? How useful are in-
teractive graphics and GIS as tools for spatial design? One use of these visualization
and representation tools would be to model location(s) of pollution source(s) and
the probable extent and shape(s) of the plumes. Ensor, Scott, Boeckenhaurer, and
Bedient (1995), for example, demonstrate how graphical methods facilitate ground

water site characterization and sampling.
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