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1. INTRODUCTION

Achieving desired levels of accuracy in the outcome of travel demand forecasts produced by
micro-simulation of household behavior may require a large sample of households. This may
happen when: high levels of spatial or temporal resolution are required of the outcome; sample
households do not have a desirable geographical distribution; demand by a small population
segments is desired; or a high level of accuracy is desired. In such instances the number of
households available in the data set at hand may not be sufficiently large and generation of
synthetic households may be required. When the micro-simulation expects daily travel patterns
of household members as input data, it calls for generation of synthetic daily travel patterns.

An approach to the problem of synthetic travel pattern generation is proposed in this
report.  The approach adopted here is sequential. The proposed model system can be
decomposed into components to which certain aspects of observed activity-travel behavior
correspond. This establishes a link between the mathematical models and chservational data.
The model components are each relatively simple and can be estimated using commonly used
estimation methods and existing data sets.

The problem of synthetic travel pattern generation is first formulated and presented
formally in Section 2. The knowledge that has been accumulated on the characteristics of daily
travel patterns is briefly reviewed in Section 3. Following this, Section 4 is devoted to the
discussion of the relative advantages of sequential and simultaneous modeling approaches. The
formulation of the model system and its components is described in Section 5. Significant

portions of Section 5 are dedicated to the discussion of behavioral and statistical issues associated
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Highway Administration's Travel Mode!l Improvement Program.
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with modeling daily activity-travel patterns. Section 6 offers an explorative analysis of history

dependence in activity engagement. Section 7 is a conclusion.

2. PROBLEM DESCRIPTION

Consider a household member, i, whose daily activity-travel pattern can be characterized as

(X, TLLy) = (Xip, Xigy «evees Xins Tits Tigy eeees Tins Lits Ligy ooy L) (D)

where

X;; = the type of the j-th activity pursued by i,

T; = the duration of the j-th activity pursued by i,

Ly = the location of the j-th activity pursued by i (if the activity is travel, then L; refers

to the destination of trip j; in this case L;; = X|;,,), and

n= the number of activities involved in i's daily activity-travel pattern.
Note that travel is included here as one of the activity types. Also note that travel mode, which
may be stored in another vector, say M,, is not included in the system here. The discussions of
this report will be limited to general discussions of travel mode choice in daily travel behavior.
A framework to introduce travel mode into the stochastic process mode system described in this
report will be presented separately in another report.

The generation of a synthetic daily activity-travel pattern implies generating vectors X,

T, and L; given:

ey

. attributes of the individual i,
2. attributes of the household to which i belongs,
3. residence and work location of i,
4. demographic and socio-economics characteristics of the region,
5. land use characteristics of the region, and
6. transportation network and travel time characteristics of the region.
Since it is most likely that synthetic activity-travel patterns will be generated for synthetic

individuals and households, items 1 through 3 will comprise synthetic data. Generating synthetic
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individuals and households is, however, outside the scope of this report; it is assumed here that
all personal and household attributes, as well as work location, are known for i. The latter three
items will consist of projected values in cases where synthetic activity-travel patterns are

generated for forecasting.

3. ACCUMULATED KNOWLEDGE
The following discussions offer a brief summary of what is know about n, which also is a
variable to be determined, and each of the three vectors, X, T;, and L.

n: It is often said that the total number of activity episodes captured in time use surveys
tends to be 20 to 25 per person per day, including travel activities. More detailed results, e.g.,
how this total varies across sample sub-groups, need to be obtained through a survey of the
literature in the time use analysis field.

In the transportation field, the number of trips, which makes up a part of n, is known to
be 4 to 5, per person per day. It is known that the number of trips captured varies greatly
depending on the survey instruments and survey administration. It has been well established that
the total number of trips is associated with age with mid-age individuals as a group making the
largest number of trips per day.

Xi: There are certain regularities in the sequence with whick individuals engage in
different types of activities. For example, one may anticipate that the sequénce of activities
performed before leaving home for work or after coming back home from work, is fairly uniform
across individuals. Again, the literature in time use analysis needs to be explored to detérmine
what tendencies have been found for activity sequences involving both in-home and out-of-home
activities.

Kitamura (1983) examined the sequence of trip purposes using standard trip diary data
from Detroit. The trip purpose was used to identify the primary out-of-home activity type at each
destination location. No information on in-home activities was available in the data set. The
analysis examined how out-of-home activities were sequenced in a home-based trip chain, i.e.,

the home-to-home series of trips which involves one or more stops to pursue activities. The
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results indicated the tendency that activities of more mandatory nature tend to be pursued first
in a trip chain. The sequencing tendencies indicated the following hierarchy:

- work and school, work-related

- chauffeuring

- personal business (e.g., banking, dental and medical)

- shopping

- social and recreational
The presence of the same sequencing hierarchy was later found for activities throughout the day
(Kitamura & Kermanshah, 1983, 1984). Another important tendency is that the activities
pursued in the same trip chain tend to be similar (Kitamura, 1983).

T;: Several studies investigated the duration of activity. In a semi-Markov process model
of trip chaining, Lerman (1979) used gamma distributions for the duration of sojourns at
destination locations. Survival models have recently been applied to the time dimension in
activity-travel patterns (e.g., Mannering et al., 1993; Niemeier & Morita, 1995). These studies
are based on the assumption that durations of successive activities are independent.

In addition, it is expected that a substantial body of literature is available from the time
use research community on the duration of activity episodes. Again, this literature needs to be
explored in the course of the project.

Activity durations have been examined from the viewpoint of resource allocation. A
theoretical model of activity duration can be found in Kitamura et al. (1995) where the duration
of an activity episode was analytically derived while assuming that the total daily activity pattern
is optimized and that each activity episode has a logarithmic utility function. The model was
estimated using a time use data set from the United States. Although the model is based on the
assumption thaf the daily time use is optimized as a whole, the resulting model applies to each
activity episode. Golob and McNally (1995) examined the allocation of time to different activity
types using a structural-equations model system. This approach facilitates the inference of causal
relationships that exist among activities of different types.

Critical in the analysis of activity durations is the correlations across the durations of
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respective activity episodes. Since the total amount of time available is fixed at 24 hours a day,
in general negative associations can be expected. At the same time, the duration of each episode
is also a function of n, the total number of episodes. The inter-relationships among durations of
different types of activities and the number of activities, n, need to be explored in the future.

L;: Non-home activity locations have traditionally been estimated using the gravity
model of spatial interaction, formulated after the law of gravitation. The multinomial logit model
of destination choice can be viewed as a special case of the gravity model family. In principle,
these models depict that, ceteris paribus, more intense interaction exists between a pair of
locations that are closer to each other, and the intensity of the interaction is positively related to
the attraction level of the destination and the number of trips originating from the origin.

One important issue is how to characterize destination choice for non-home-based trips,
i.e., trips whose origin and destination are both non-home. For home-based destination choice
underlying a simple trip chain involving only one stop (i.e., home-activity-home), the only spatial
element to be considered is the separation between the destination and the home base. In case
of non-home-based choice, this is not the case. For example consider the choice of a shopping
opportunity on the way home from work; in this case the home location and the deviation from
the regular commute route would be important considerations. Kitamura and Kermanshah (1984)
constructed a non-home-based destination choice medel which included both the usual
origin-to-destination travel time, t;, and the destination-to-home travel time, t;,, in a multinomial
logit choice model. Their estimation results offered a clear indication that t; and t;, are equally
important for non-home-based destination choice. This finding is readily applicable to the
generation of synthetic activity-travel patterns.

There are numerous studies on travel mode choice. Most studies, however, are seriously
limited because they are trip-based, i.e., they analyzed each trip separately in isolation from
other trips. For example, one may choose to commute by car because a car is needed for work.
Then this mode choice behavior cannot be explained by just looking at the home-to-work
commute trip and comparing the attributes of the travel modes available for the trip.

One of the critical requirements in the generation of synthetic activity-travel patterns is
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to observe the constraints imposed on the transition between travel modes. For example,
transition from public transit to driving alone is in general not possible unless the transition takes
place at the home or work base where a private car had been placed. For a trip chain that
originates and terminates at the home base, the sequence of travel modes tends to be governed
by the boundary condition that the mode of the first trip from home is identical to that of the last
trip to home. These regularities and tendencies serve as.a set of constraints in the generation of

activity-travel patterns.

4. SEQUENTIAL VS. SIMULTANEOUS APPROACHES

There are two broad classes of approaches to the generation of synthetic activity-travel patterns:
sequential (incremental) approaches vs. simultaneous (holistic) approaches. The former
approaches adopt rules to generate, one by one, the activity that will immediately follow, given
the history of activity generation so far. The latter approaches, on the other hand, deploy
behavioral paradigms that are each concerned with the entire daily activity-travel pattern.

One paradigm for the latter approaches is that an individual of given attributes has a
probability vector that depicts the likelihoods with which he or she will exhibit respective
activity-travel patterns. A study by Pas (1983) is readily applicable to operationalize this
paradigm. Another paradigm is utility maximization: the individual chosses that activity-travel
pattern, from among a set of all feasible patterns, which has the maximum utility. Studies based
on this assumption include Adler and Ben-Akiva (1979), Recker et al. (1986), and Recker (1995).
The two paradigms can be integrated to produce probabilities for alternative daily activity-travel
patterns.

One important advantage of sequential approaches is the ease of implementation they
offer. The size of the problem to be handled at a time is much smaller because a daily pattern
is synthesized incrementally. Simultaneous approaches, on the other hand, have theoretical
elegance. They can be expected to be more sensitive to parameters that characterize the travel
environment. In addition, simultaneous approaches can better reflect individuals' planning effort.

Despite the advantages offered by simultaneous modeling approaches, it is proposed that
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a sequential approach be taken in this study. There are three major reasons.

- Practicality: The first is practicality. When viewed as an optimization problem, daily
activity-travel behavior is very complex (Pas, 1990). Exact formulation of this behavior
produces an overwhelmingly complex mathematical problem. Even when the behavior is viewed
as a discrete choice behavior with a choice set of feasible activity-travel patterns, the number of
possible patterns would be astronomical because of the time dimensions brought into the problem
by the inclusion of activity durations and activity starting times (theoretically speaking, each
activity offers infinitely many possible starting times and durations, as time is continuous).

Behavioral Basis: The second reason is behavioral. As Simon noted when he proposed
the paradigm of satisficing, a person is not capable of enumerating all possible alternatives or
discerning minute differences among them. Furthermore, more often than not the person will not
have all the information associated with the alternatives. It rests on a very dubious behavioral
basis to assume that an observed activity-travel pattern is an optimum pattern selected from
among a set of theoretically infinitely many alternative patterns.

Irrelevance of Policy Sensitivity: The third reason concerns what exactly is needed from
synthetic activity-travel patterns. As noted earlier, simultaneous approaches can better represent
travelers' planning efforts and therefore can be more sensitive to changes in the travel
environment, leading to more policy-sensitive models. The superior policy sensitivity cifered
by simultaneous approaches, however, is not of much importance in the context of this study.
Indeed what is desired is that synthetic activity-travel patterns generated truthfully represent

associations among all pertinent variables, not policy sensitivity.

5. FORMULATION OF A SYNTHETIC ACTIVITY-TRAVEL PATTERN GENERATION PROCEDURE

The sequential approach is based on the identity that, given n,

PriX,, T L] = Pr{Xi;, Xig oeees Kins Tits Tigs -ovees Tins Lits Ligy veeees Linl

Pr{Xin, Tiy LialXips ooevs Xi,n-l; Tis ey Ti,n-l; L, oo > Li,n~l]
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..... Pr[X,, Ti, L. 2)

Each probability on the right-hand side can be formulated as a model for activity type,
location and duration, given the past history of activity and travel. As noted above,
knowledge has been accumulated on characteristics of activity-travel behavior, which can be

incorporated in this modeling effort.

5.1. MODELING ISSUES
There are several major modeling issues to be addressed in the effort.

Decomposing the X-T-L Triple: Each activity (or travel) episode is characterized by X,
T; and L. These three may be treated simultaneously, which however would lead to the same
enumeration problem dis;:ussed earlier because Tj; is continuous. Thus, one may use one of the

following permutations:

Pr[le Tlp L !Xl,j 1> =-ij- 17 =i,j- 1]
= Pr[Lileij: Ty Xijotr Tijers Lijo I T3 X, Xijos i Li,j-l]Pr[Xijl Xij-to Tijors Lijal
= Pr[T;j|Xy, L Xijoir Lijors Li,jd]Pr[Lileij: Xijos Lijots Li,j-l]Pr[Xijl Xijs Lijors L]

..... &)

etc., where X, = (Xij, Xig, +vnes Xij1)s €tC.

Since all permutations of Xj;, T; and L; lead to the same joint probability, the model's

ijs
replication capability should not depend on which permutation is adopted. Therefore that
permutation which can be theoretically supported and/or which offers most modeling flexibility
and sensitivity can be selected.

Exploration of History Dependence: This is a critical task for the development of a
model system that accurately represent observed behavioral characteristics. History dependence

is likely for X;;. For example, it is highly unlikely that an eat-meal activity is followed by

another eat-meal activity (although it is not impossible as one may have a meal in a restaurant
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then visit a coffee shop for dessert). The sequencing pattern discussed earlier that more
mandatory activities tend to be pursued earlier also implies history dependence. If a less
mandatory acﬁvity has been pursued in the past, then the probability will be smaller that a more
mandatory activity will be pursued in the future. In fact Kitamura (1983) demonstrated the
presence of history dependence in trip chains by estimating alternative models that assumed
different levels of stationarity and history dependence. In the same study, it was also shown that
the series of trip purposes in a trip chain is a Markov chain of at least the second-order of history
dependence. Even though a large data set was used in the study, it was not possible to show the
presence of higher order of history dependence due to the scarcity of trip chains with many
stops. Furthermore, available results (Kitamura, 1995) suggest that different tendencies of
history dependence are associated with different types of activities. Further discussions on this
issue can be found in Section 6. :

History dependence is likely also for T;. One may anticipate that if a large amount of
time has already been spent for a type of activity, then the probability that more time will be
allocated for that type of activity in the future is smaller. Yet the knowledge of the history
dependence in T appears to be extremely limited. |

Nor is the nature of history dependence in L;; well explored. There is ample evidence that
movement patterns are at least first-order history dependent. Namely the destinaticn le.ation ()
depends on the origin location (i). There have been models that described travelers' movement
patterns in an urban area as a Markov chain of the first order (e.g., Horton and Shuldiner, 1967;
Nystuen, 1967; Hanson & Marble, 1971; Sasaki, 1972; Kondo, 1974). Whether the degree of
dependence is of a higher order, however, has not been explored. In addition, L;; may exhibit
future dependence because of the aforementioned effect of the home location on destination
choice.

Time-of-Day Dependence: Activity engagement is strongly dependent on the time of day.
‘Tabulations of time use data (e.g., Robinson, et al., 1992) show surprising homogeneity in
activity engagement across individuals. This is partly institutional (e.g., work and school) and

partly physiological (e.g., meals, sleeping). The comparative analysis of Dutch and Californian

-9- - c:\lani\syn_hhld\synthesi.wp



time use data sets shows that over 98% of the Dutch respondents were asleep at 4:00 A.M., and
at 9:00 P.M. about 40% of respondents in California watched TV. Eating meals shows three
sharp peaks, with the peak for supper most concentrated.

The time-of-day dependence of activity engagement can be represented by formulating
engagement probabilities as time-dependent functions. An example can be found in Kitamura
and Kermanshah (1983), where time of day, t, and its logarithm, In(t), are used in multinomial
logit models of activity type choice by time of day. Work activities are excluded from the
analysis. The results using a 1977 travel diary data set from Baltimore show clear tendencies that
personal-business activities tend to be pursued earlier in the day; social-recreational activities
toward the end of the day; and shopping engagement peaks in the early afternoon. Similar
approaches can be adopted for the development of a synthetic activity-travel pattern generator.

Inter-Dependence across Activity Episodes: As noted earlier, activity episodes are inter-
related due to time budget constraints and possibly for many other reasons. It is anticipated that
this inter-dependence can be accounted for by properly representing history and time-of-day
dependence of activity engagement.

Spatial and Temporal Fixities: Different activities have different levels of fixity in terms
of (i) engagement, (ii) duration, (iii) location, and (iv) timing. Typically associated with work
and school activities are higher levels of engagement and duration fixities. It is logical to assume
that other, more flexible activities are organized around these activities. Chauffeuring people
often involves fixities in location and timing. Typical example would be taking a child to school,
for which the destination location is fixed, and the timing is restricted to a relatively narrow time
window. Or consider a carpool member picking up other members; again, the location is fixed,
and the timing has to be precise for a successful carpool. These activities also have high levels
of engagement fixity, although they may be performed by other individuals, e.g., other family
members.

Some types of activities have large degrees of flexibility in terms of engagement,
duration, location and timing. For example banking may be performed at any ATM in an urban

area, and grocery shopping at any grocery store. These opportunities are often available 24 hours
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a day, providing high levels of timing flexibility. Some recreational activities (e.g., going to a
concert) may have least fixity in engagement, but once engagement decision is made, then
location, timing, and duration are all fixed (unless one chooses to be late for a concert or decides
to léave early). In this case, high levels of fixities may be associated with engagement as well,
especially once some commitment (e.g., purchasing the tickets) has been made.

Many types of activities may have high levels of fixity when they are pursued with prior
commitment, e.g., a medical appointment or meeting a friend at a certain time at a certain
location. This is the case where fixities are determined by how activity engagement was
committed and arranged beforehand, not by activity type. Likewise engagement flexibilities may
be determined by the needs for the activity, not necessarily by activity type alone. For example,
performing grocery shopping may be absolutely necessary when there is no food in the house,
and there happen to be no restaurants open in town or no neighbors kind enough to offer to share
a meal.

These examples illustrate that fixities associated with activity engagement vary
significantly depending on institutional and situational factors (e.g., store hours), prior
arrangement and commitment, as well as the type of activity. Many contributing factors are
situational for which adequate levels of detail may not be available. An issue for the
development of a procedure for activity-travel pattern generation is whether fixities associated
with each activity should be explicitly considered and modeled, or they should be treated as
random elements. Considering data availability, only the latter approach seems to be feasible.
Attention should be given, howeyer, to fixities of events that recur with regularity such as work
and school starting times and lunch hours.

Planned vs. Unplanned Activities: Some activities are routine, some are planned ahead,
yet some are unplanned and are pursued in response to unanticipated events. For example, a
business meeting may end earlier than expected, allowing the business-person to visit a nearby
café for quick lunch. Also conceivable is unplanned disengagement; the business meeting may
take longer than anticipated, forcing the business-person to give up a visit to a gym he had

intended to make.

-11- B c:\lanl\syn_hhld\synthesi.wp



It is desirable that the degree of plannedness can be represented when synthesizing an
individual's travel pattern. In particular, the ability to describe how a daily activity-travel pattern
is planned implies the ability to represent the future dependence of activity-travel decision which
arises through the individual's act of planning. This ability is important when analyzing how
transportation policy measures affect travel behavior. In the context of generating synthetic
activity-travel patterns, however, representing the level of plannedness in activity engagement
is of lesser importance, given the fixities associated with activities are well understood. Based
on these considerations, it is decided not to incorporate the degree of plannedness into the model
system of this study.

Travel Tihe Budget: History dependence in L; as well as in T, would arise if a traveler
. allocates a certain amount of time for traveling. This leads to the notion of travel time budgets
(e.g., see Beckmann et al., 1983). There have been disputes about the notion proposed earlier
that individuals have a fixed time budget that is invariant across individuals. However, more
recent results offer evidence that when the duration of a trip is reduced by, say, reduced
congestion, then a portion of the time saving tends to be used to travel more (RDC, 1993; Golob
& McNally, 1995).

Modal Continuity, Permissible Transitions and Time-of-Day Dependence: Despite the
voluminous studies on travel mode choice, little is known of history dependence and time-ot-day
dependence of travel mode choice. This is largely because most past studies are trip-based, i.e.,
the choice of travel mode for a particular trip is studied in isolation without considering the
preceding or subsequent trips. Consequently modal continuity and modal transition have rarely
been addressed in the literature (a rare example can be found in Kondo, 1974).

The travel modes used by an individual in a series of trips tend to be governed by the
condition that certain modal transitions are not permissible. As noted earlier, if a traveler leaves
home by public transit, then in general the drive-alone mode cannot be adopted in subsequent
trips before he returns home. This implies strong history dependence in modal transition.
Exceptions, however, exist. For example, suppose a traveler leaves home driving his car, parks

the car at the work place, goes out for lunch on foot, returns to the work place on foot, then drives
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the car back home after work. The series of modes used in this case are: drive alone - walk -
walk - drive alone. What facilitated the transition from walk to drive alone is the fact that the
private car had been parked at the work base. This condition must be appropriately accounted
for in analyzing modal transition. It is also noted that theoretically impermissible transitions can
in fact occur, e.g., a transit traveler meets and travels with a friend who is driving a car.

Both transit and highway levels of service vary along the time of day. Most obviously
public transit is often unavailable during certain parts of the day, while highway travel time
increases substantially during peak periods due to traffic congestion. It is conceivable that such
variations in transit and highway levels of service produce apparent time-of-day dependence in
mode choice. Testing whether this time-of-day dependence is genuine or spurious, is difficult
because time-of-day variations in network service levels are rarely well measured. One will
probably have to resort to the position of accepting observed time-of-day dependence even if it
is spurious.

Another challenge is to develop a method of assigning travel modes to a series of trips
made by a traveler, which is sensitive to policy measures. If one only wishes to replicate and
does not seek policy sensitivity in the resulting model system, then one may determine travel
mode in a sequential manner. If one wishes to account for the interplay, in response to policy
measures, of mode choice, destination choice and activity duration choice associated with 4 series
of trips, it would require a much more elaborate approach. This issue will be addressed in a

separate report.
5.2. PROPOSED FORMULATION
For X;; which is not travel, the following decomposition of X-T-L triple will be adopted in the

study:

Pr[Xija Tij: Lij|XiJ-1a Ii.j-l: Li,j-l]
= Pr[LijIXij: Ty, Xijo> Tijers Li,j-l]Pr[Tileij, Xijis Lijs Li,j-l]PrD(ijl Xi,j-l: Ii,j-l: I_Jm] )

-~ .
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Namely an activity type is first selected; given the type, its duration is determined; and finally,
a location is chosen for activity engagement given the type and duration. Each of these decision
elements is assumed to be dependent on the past history of behavior.

This formulation is based on the view that activity engagement is the most fundamental
decision that drives duration and location choice. Given the activity type, the time needed to
perform the activity can be assessed and an activity duration can be determined. Also given the
activity type, the suitability of respective opportunities for the activity can be evaluated and a
location can be selected.

Of course a daily activity-travel pattern may not always evolve in this manner. For
example, an individual may choose to pursue a certain type of acﬁvity because he or she
happened to be close to a suitable opportunity (L; conditioning X;). Or one may select a type
of activi;cy and pursue it because it fits into a time window which happened to be available (T
conditioning X;). The proposed decomposition, however, can be considered to be most
representative of activity engagement decision.

When X is travel, the following decomposition would be more appropriate:

Pl”[Xij, Tij: LijI—X—i,j-l: Ti,j-l: —I—‘i,j<1]

= Pr[Tileij: Llj’ X—i,j-l: I—i.j-l’ Li,j-l]Pr[LijIXij: -X-i,j-b Ii,j-l’ Li,j-l]Pr[Xiji Xi,j-l: Ii,j-la L—ij-l] 4
Namely, the destination, L;, is determined before travel time, T;;. This reflects the view that
travel time cannot be determined before destination and mode are determined.

So far the discussion of this section has not touched on the travel mode. An approach that
can be most readily integrated into the model system discussed here is that (i) a model is
developed to determine the travel mode for the first trip of each home-based series of trips, and
(ii) a travel mode transition matrix is developed and applied to subsequent trips on a trip-by-trip
basis. As noted earlier, the issue will be further explored in a separate report. The modeling

approach for each of the three probability components is presented below.

-14- - c:\anl\syn_hhld\synthesi.wp



5.2.1. Pr(X| Xijio Lot Lijal
The history dependence of activity type transition will be represented by formulating the

probability of an activity type as a function of the series of activities so far engaged, X

ij-1» and
the time that has been allocated to them, T;;.;. In the discussion here, the transition probability
is assumed to be dependent on the current location, L;;;, but independent of the prior history of
activity locations, L;;,, namely,

p T[Xijl —X-i,j-la Ii,j-l: Li,j-l] = PT[Xij[ Xi,j-n T Li,j-l]' Q)

The adequacy of this assumption needs to be examined through statistical analysis of
empirical data.
A simplified representation of the past history of activity engagement may be adopted.

For example, let k be the number of activity categories and let

—IJ -1 (DIIJ 1> Hi2j-15 seeee > Dik,j-l) (6)

; = 1, if activity type m is included in X,
= (, otherwise.

Likewise, let

Sii1 = Sitjos Siggets +eeeer Sikjer) @)

where

S.

im,j-1

= total activity duration for typeminT;; .

Then, letting t be the time of the day when the (j - 1)th activity ended,

Pr[Xij = mIXiJ-la Ti,j-ls Li,j-l] =F(m:t, Li,j-b DaJ.i, SiJ-l: Z), m=1,2,..,k 3
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where Z, is the vector of person attributes and other explanatory variables. Of course X, ., and

i,j-1
T;., themselves may be used in function F. Discrete choice models such as multinomial logit

models and nested logit models will be suitable for F.

5.2.2. Pr[Tileip Xi,j-l’ Tiits -I-’-i,j-I]
Given that X;; = m, T; will have a probability distribution function whose parameters will be

determmed as a function of t, X;;;, and T .;:

Pr{T; < qXy=m, X, Tij, Liju] = Gu(q: t, Xijo, Tijo, Lijy, Z), q20,m=1,2, ...,k (9)
where G, is a distribution function.

Some distribution functions may be preferred over others for activity durations. For
example, suppose an activity comprises the éompletion of n tasks, and suppose task completion
times are identically and independently distributed (i.1.d.) with a negative exponential distribution
for all tasks. Then the distribution of the duration of this activity is a type-n Erlang distribution.
Other distributions, including negative exponential, Weibull, and log-normal distributions, have
geneses that offer interpretations that are suitable for activity durations; see Appendix to this

report.

5.2.3. PriLyX, Ty, X0 Tijos Lijil

The problem here is to determine the probability that the destination of the j-th activity is g, given
the type and duration of the activity, the completion time of (j - 1)th activity, t, and X;;, T,
L;;,. Itis proposed as an initial assumption of the model development effort that this probability

be formulated as conditionally independent of X, T;;.;, and L, given t, X;; (= m), T;; (= q),

L; (=) and home location, h. Namely,

Pr[L;= gl t, h, Xy, Ty, Xiji, Tijoi» Lija] = Pr[Ly =gl t, h, Xy = m, T;; = q, L., = 1]

=H (gt hfqA,S,Z). (10)
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where A is a vector of attractiveness measures of alternative destinations, and-S is a matrix of
origin-to-destination travel times.

Measures of spatial separation between the current activity location and potential next
activity locations, such as distance and travel time, are considered to be the true determinants of
the location to visit. Another reason for the above formulation is that future activity locations
are conditioned on the location of the home base, simply because the individual in most cases
eventually returns to the home base. In comparison, a typical model of spatial interaction takes
on the form, H_'(g: £, A, S, Z)).

The conditional history independence of course implies that, given t, h, f and q, whether
a zone has been visited in the past does not affect the selection of the next destination location
in any way. This may be the case when the model is formulated using geographical zones. Since
a zone is an artificial construct which contains many opportunities, whether the next destination
location falls in a particular zone is to some extent random. Likewise, the set of locations visited
in the past is represented by a set of zones which again are designated rather randomly; e.g., three
locations visited in the past may happen to fall in one zone, or in three separate zones. This
randomness, or ambiguity, in zone assignment is one reason for the assumption of conditional
history dependence.

However there are reasons to believe that L; is history dependent. For example, if a
worker makes a work-based trip chain, then he or she will for sure return to the zone in which
the work base lies, generating history dependence. On the other hand, a worker who is not
making a work-based chain may never return to the work zone after the work is over. This
creates history dependence in the opposite direction. Thus different causal relations are
conceivable for the nature of history dependence in L;. As noted earlier, little effort has been
made on this subject in the past. Exploring the presence and nature of history dependence in L,
is one of the challenges of the present project. A few additional modeling issues are introduced
below.

Prism Constraints. The spatial expanse that is accessible to an individual for activity

engagement is determined by the speed of movement and the amount of time available.
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Hagerstrand (1970) defined this expanse in the time-space dimension and called it time-space
"prism." The prism contains all possible locations where activities can be engaged, and defines
the amount of time available for activities at each location within it. The latter varies from
location to location depending on the amount of time spent for traveling. Kondo and Kitamura
(1987) adopted the prism concept in the analysis of trip chaining behavior. A similar concept
can be found in Beckmann et al. (1983) which is concerned with the definition of accessibility
measures. In the present context, the prism concept is important because it defines the state
space for the transition that defines the evolution of L;.

Trade-off between Activity Duration and Travel Time: Another aspect which deserves
attention is the trade-off between the duration of activity and the time spent to reach the activity
location. One may choose to visit a nearby opportunity and spend more time on the activity
there, or visit a farther, but better opportunity and spend less time there. In general, a farther
destination opportunity that is visited can be considered to offer a larger utility than opportunities
that are closer because otherwise the former opportunity would not be visited. This consideration
is adopted by Kitamura et al. (1995) in the formulation of time-utility functions. The formulation
of this study accounts for this by making the probability of L; conditional on T;. Whether this

is adequate is a subject for future investigation.
5.3. STATISTICAL ISSUES
Exploring these issues statistically imposes difficulties because the models at hand involve
endogenous variables. Suppose
Prp(ijl Xi,j-l: Ii,j-l: Li,j-l] = Pr{Xﬁj[ Kijets Ti,j-la Li,j-l]: i=12,..,n (11)

Then X;; is said to be conditionally independent of the past history, given X, ;,, T;;,, Lij;. If

Pr{Xyl Xiji Lijurs Ljl= Pr[Xij], i=L,2,.,n (12)
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then X is purely random. Unless the process is purely random, a model to describe the
evolution of X; would involve variables that represent past states, X, X;,,, ..., which are
endogenous, lagged-dependent variables.

The presence of lagged-dependent variables in a model creates estimation problems when
serial correlation is present. Suppose X is discrete and let {1, 2, ..., J} = Q be the state space.
LetZ

be a latent variable associated with state q and individual i (-» < Z;, < =). Suppose

ijq iiq

Xy=q iffZyy>Zy, q€Q, TeQ, r2q (13)

Zijr = F(Xi,j-b T —L-i.j-l, Wijr: ®) * e, TEQ (14)

where © is unknown parameter vectors, Wy, is a vector of explanatory variables measured for
state r and traveler i, and e, is a random error term. This formulation leads to a discrete
choice model for the next state, Xj;.

Consider a series of random error terms, (&g, €i2q; -+ €ijg)- Since all these error terms
are associated with state g, it is probable that they are serially correlated. If the traveler prefers
activity type q, then e;q, €iq ----» €q Will all tend to be positive and are serially positively
correlated. When the model is linear, i.e., Y, = 'V, + 1Y+ €, then the simultaneous presence
of lagged-dependent variables and serially correlated errors will lead to the loss of efficiency,
unless a proper method is used to account for serial correlation. Yet, the ordinary least squares
estimator will retain its consistency. This is not the case when the model is non-linear, which
discrete choice models are. In this case lagged-dependent variables combined with serially
correlated errors lead to inconsistent estimates, again unless a proper method is taken to account
for serial correlation. Accounting for serial correlation in a system of discrete choice models is
not a trivial task, however. An example can be found in Kitamura and Bunch (1988) where error
components are used in a series of ordered-response probit models. This, however, is a
relatively simple problem. Accounting for serial correlation in general discrete choice models
when Q contains several states (say, five or more), is difficult.

State Dependence versus Heterogeneity: One critical issue in developing longitudinal
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models is discerning true state dependence from spurious state dependence due to heterogeneity.
The former refers to the case where the probability of being in a state depends on the past history,
especially on previous visits at the state itself. The latter, on the other hand, refers to the case
that a particular state is visited more often because the individual is predisposed to do so.
Heterogeneity may be classified into observed heterogeneity and unobserved
heterogeneity. The former refers to the case where the individual's predisposition to visit a state
more, or less, frequently, can be accounted for by measured variables. The latter, no the other
hand, refers to the case where this disposition is associated with unmeasured variables, or random
effects. Observed heterogeneity can therefore be accounted for by introducing pertinent
explanatory variables into the model system to explain differences in the probability of visiting
respective states. Unobserved heterogeneity can be represented by introducing individual
specific error terms. For example, Kitamura and Bunch (1988) used an error component to
account for unexplained differences in the orientation toward vehicle ownership across
households. An alternative in longitudinal analysis is the use of serially correlated error terms.
With non-linear models with limited-dependent variables such as discrete choice models,

incorporation of correlated errors often impose estimation difficulties.

5.4. DATA AND VALIDATION
The time-use portion of the AMOS survey conducted in the Metropolitan Washington Council
of Governments (MWCOG) area will be used in aspatial analysis and model development. The
sample of this time-use data set, however, contains only commuters. Furthermore this data set
has a relatively small sample size. Consequently possible use of the time use data sets from the
U.S. and California that are available to the research team, will be considered. It is anticipated
that the use of these time-use data that offer information on in-home activities as well as out-of-
home activities, will enhance the analysis of activity engagement and duration.

AMOS survey results have not been geo-coded, and therefore the data file is not usable
for spatial analysis. Because the availability of geo-coded time-use data is questionable, existing

trip diary data and accompanying land use and network data collected and maintained by
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metropolitan planning organizations (MPOs) will be used in spatial analyses. Recently collected
trip diary data are available from the San Francisco-San Jose metropolitan area (collected in
1990) and Washington, D.C., metropolitan area (collected in 1994). Currently data collection
efforts are ongoing in Portland, Oregon, Dallas-Fort Worth, Texas, and San Francisco-San Jose,
California. The survey instruments used in these current efforts involve time-use elements and
offer information on in-home activities at varying levels of detail.

Availability of these data sets offers the possibility of rigorously validating synthetic
activity-travel patterns. For example, marginal distributions of activity durations or transition
frequencies of trip purposes can be compared between observed and synthetic activity-travel
patterns. Whether synthetic patterns replicate more complex relationships, e.g., daily time
allocation, can be examined by estimating a model system on a data set of observed patterns and

on a data set of synthetic patterns, then comparing resulting coefficients vectors.

6. AN EXPLORATION OF HISTORY DEPENDENCE
Kitamura (1995) explored the issue of history dependence using the 1990 National Person Travel
Survey (NPTS) data set and showed that the nature of history dependence in activity choice
varies depending on the activity type. This section offers salient results from the 1995 report.

The question addressed is how the fact of engaging in out-of-home activities of a given
type affects the probability of engaging again in the same type of activity during the same day.
Different types of history dependence are conceivable for different activities. Certain activities
may be engaged just once during a day, thus past engagement would almost certainly preclude
recurrent engagement in the future. Having lunch is an example. Other types of activities, on
the other hand, may have the tendency that past engagement leads to higher probabilities of
engagement in the future. Comparison shopping for a durable good is an example.

The 1990 NPTS data set is used to probe these issues. Three activity types -- shopping,
other family and personal business, and social or recreational activity -- are used in the analysis.
Conditional probabilities of engaging in these activities in the future, given the engagement in

activities of the same type in the past, are evaluated at three time points of the day, 12:00 noon,
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3:00 p.m. and 6:00 p.m. Results are summarized in Table 1, where each entry represents the
conditional probability of engaging (E) or not engaging (N) in the activity of the same type given
past engagement.

The conditional probabilities, evaluated at three time points of the day, display the clear
tendency that the probability of engaging in an out-of-home activity decreases as the day
progresses, irrespective of past activity engagement. This is not at all surprising as the chance
of pursuing an activity will decrease as the time that remains during the day decreases. Social
and recreational activities, which are dominant activities during the evening period, show the
weakest tendency of this type.

The conditional probabilities evaluated for shopping show that past engagement in
shopping does not affect future engagement. The conditional probabilities shown in the first row
(given past engagement) and those in the second row (given non-engagement) are surprisingly
similar. Shopping engagement appears to be history independent. Its engagement probability,
however, is dependent on the time of day with its value decreasing from over 0.25 at 12:00 noon
to less than 0.08 at 6:00 p.m.

Conditional probabilities for both family or personal business and social or recreational
activity indicate strong history dependence, with engagement probabilities much greater with
past engagement than without engagement. This is more pronounced for family or personal
business. For example, as of 12:00 noon, the probability of engaging in this activity in the future
is 0.486, given that family or personal business has been pursued by then, but the probability is
only 0.205 given that no such activity has been engaged. The corresponding values evaluated
as of 3:00 p.m. are 0.302 versus 0.131, and at 6:00 p.m. 0.134 versus 0.054.

The result found for family or personal business and social or recreational activity that
conditional engagement probabilities are greater given that activities of the same type have been
engaged in the past, implies that individuals tend to be split into two groups, one of which
consisting of those who do not engage in these activities at all, and the other consisting of those
who engage in them multiple times in the course of the day. Obviously properly capturing these

history dependencies is critically important for model development.
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Table 1
Conditional Probabilities of Activity Engagement by
Past Engagement and Time of Day

a. Shopping
At 12:00 Noon At 3:00 P.M. At 6:00 P.M.
Past Engagement
E N Total E N Total E N Total
Engaged (E) 0.257 ¢ 0.743 : 1.000 | 0.157 { 0.843 { 1.000 | 0.069 i 0.931 i 1.000
Not Engaged (N) 0.256 i 0.744 ¢ 1.000 | 0.177 : 0.823 i 1.000 | 0.079 { 0.921 i 1.000
Total 0.256 i 0.744 : 1.000 | 0.173 ¢ 0.827 : 1.000 | 0.076 i 0.924 i 1.000

b. Other Family or Personal Business

At 12:00 Noon At 3:00 P.M. At 6:00 P.M.
Past Engagement
E N Total E N Total E N Total
Engaged (E) 0.486 i 0.514 i 1.000 { 0.302 : 0.698 i 1.000 | 0.134 i 0.866 i 1.000
Not Engaged (N) 0.205 ¢ 0.795 i 1.000 | 0.131 : 0.869 i 1.000 | 0.054 i 0.946 i 1.000
Total 0.244 i 0.756 i 1.000 | 0.167 : 0.823 i 1.000 | 0.076 i 0.924 | 1.000
¢. Other Social or Recreational
At 12:00 Noon At 3:00 P.M. At 6:00 PM.
Past Engagement
E N Total E N Total E N Total
Engaged (E) 0.375 ¢ 0.625 i 1.000 | 0.267 : 0.733 i 1.000 | 0.167 i 0.833 i 1.000
Not Engaged (N) 0.200 i 0.800 : 1.000 | 0.154 i 0.846 i 1.000 | 0.092 i 0.908 i 1.000
Total 0.211 i 0.789 i 1.000 | 0.167 i 0.833 i 1.000 | 0.105 i 0.895 :1.000

Before closing this section, it is important to note that the analysis here represents an
initial cursory exploration of the data set regarding the history dependence of activity
engagement. Only the frequency of trips by time of day is considered in the analysis and the
attributes of individuals and other possible contributing factors are not incorporated into the
analysis. In particular, the issue of history dependence versus heterogeneity noted earlier remains
to be explored in the futufe. Furthermore, history dependence is examined only within the same
type of activity while dependencies across different types of activities have not been examined.
Nonetheless, this initial analysis has made evident that the dependence of activity engagement
on the time of day and on its own history must be explicitly incorporated into the generation of

synthetic travel patterns.
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7. CONCLUSION

An analytical framework has been proposed in this report for the development of a procedure for
generation of synthetic activity-travel patterns. Attempts have been made to include a broad
range of analytical issues and to develop a rationale for the proposed approach. It is hoped that
the report aided in paving the way for the development of a synthetic activity-travel pattern

generator.
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APPENDIX
ALTERNATIVE DISTRIBUTION FUNCTIONSFOR ACTIVITY DURATIONS?

With the objective of determining the most suitable distribution function for activity durations,
alternative distribution functions are reviewed in this Appendix. The analysis here assumes that
the expected duration varies from individual to individual depending on their attributes. The
distributions examined here are: negative exponential distribution, Weibull distribution,
log-normal distribution, log-logistic distribution, and generalized gamma distribution.

a. Negative Exponential Distribution
Let the probability density function (pdf) of T be

£(t) = wexp(-at), t>0 (A.1)

where « = e*. This distribution function has a mean of 1/e =e*. Let W = InT. Then the pdf
of Wis

gw(W) = f(e™)|dT/dW| = f(e¥)e® = e -Wexp(-e™-#)). (A.2)

This distribution may be used to estimate the parameters of the distribution function with x =
B'X, where B is the vector of coefficients and X is the vector of explanatory variables.

The negative exponential distribution is associated with the stochastic process of purely
random events, i.e., events that occur with an invariant probability over time and whose
occurrence neither depends on the past event history nor affects the occurrence of future
events. The distribution represents the elapsed time between two successive events that are
purely random, while the frequency of such events counted over intervals of a fixed length
will have a Poisson distribution.

In survival analysis, the negative exponential distribution represents the basic distribution for
which the hazard function, h(t), is constant:

h(t) = (/1 - Fr(0] = e, (A3)

where F(t) is the cumulative distribution function (CDF) of T. When durations have a
negative exponential distribution, therefore a constant hazard function, they are duration
independent, i.e., the fact that the duration in a state has reached a value, t,, does not in any
way influence the probability of staying in that state for another duration of time, say x. In
this sense, these durations are "memoriless.” More formally,

Pr[T < ty + x|T > to] =Prft, <T <ty + x)/Pr[T > t,]

The review of the statistical distributions presented here was originally conducted for Southern California Edison
(SCE) Company and California Energy Commission in a project to develop a model system for electric vehicle
demand forecasting in the SCE service area. See Golob et al. (1995).
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= {Fr(tytx) - Fr(t)}/(1 - F1(ty)) = {-exp(-(tsy+x)) + exp(-ty) }/exp(-t;)
=1-exp(x)=Fx), x>0, t,20 (A4)
which is independent of t,.

b. Weibull Distribution
T has a Weibull distribution if there exist y (> 0), « (> 0) and &, such that Y = [(T - £,)/«]"
has the standard negative exponential distribution, fy(y) =e”, y > 0. The pdf of T is

£r(t) = (v/)[(t - EoY/ ] exp{-[(t - Eo)Va]'}, t> &, (A5)
For duration models we may assume £, = 0. Then
£r(t) = (v/e) (V)" exp[-(Ve)], t>0. (A.3")
W =InT has
gw(w) = (y/a)e™exp[-e™/a’], -=<wW <, (A.6)
Letting ¢ = 1/y and x = In«, therefore o = e*and o' = e", we may rewrite this as
gu(W) = o”lexp[(w - w)/olexp{-exp[(W - w/a]}, ~=<w <, (A.6)
The mean and variance of T are, with £, =0, given as

E[T] = aT(1 + y") = &T(1 + o), and

Var(T) = «*{T(1 +2y") - [T(1 + v’} = e*{I(1 +20) - [[(1 + o)’} (A7)

The distribution was used in 1939 by a Swedish physicist Waloddi Weibull to represent the
distribution of the breaking strength of materials (Johnson & Kotz, 1970a). It can be argued
that a distribution of this form arises when we consider the limiting distribution of the failure
time of a system when it consists of n elements, each of which consists of y redundant
components. Each element fails when all y components fail, while the system fails if at least
one element fails. Because of this linkage to failure times, the Weibull distribution is often
used in survival analysis.

c¢. Log-normal Distribution
If there is a number, &, such that Z = [n(T - &,) has a normal distribution, then T is said to
have a log-normal distribution. Let » and o be the expected value and standard deviation of
Z, respectively. Let ’

U={In(T - &) -u}/o (A8)

have the unit normal distribution. Then the pdf of T is
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f(t) = [(t - E)2n) o] exp{-(In(t - &o) - W)¥0*}, t> &, (A.9)
With &, = 0, therefore T > 0, we have
£r(t) = exp{-(Int - w)*/*}/{(2m)"?at}, t>0 (A.9)
;fhe pdf of W =/nT is
gw(W) = exp[-(w - w207 J/{(2n)"?c}, -=<W<w. (A.10)
And E[W] =y and Var(W) = ¢*
Consider n independent random variables, X, X,, ..., X, (> 0), and let T, be the product of the
X's. Then [nT, tends to be normal as n tends to be infinity. The limiting distribution of T,
would then be log-normal. Thus a log-normal distribution is a theoretical distribution for

durations if they are determined as a product of independent positive random variables.

d. Log-logistic Distribution

Let the CDF of T be
Fr)=1-1/(1+ at) (A.1D)
and its pdf be
£(t) = aytr/(1 + at?)?, t>0. (A.12)
Then the pdf of W = [nT is
gw(W) = aye™/(1 + ae™)?, -»<w<w (A.13)
Letting y = 1/ and o = e*°,
gw(w) = o'exp[(w - w)/al/{1 + exp[(w - w/o]}’, -=<w <=, (A.13)

and E[W] =x and Var(W) = (2%3)0.
The logistic function has often been used as a growth curve based on the differential equation,
dH/dx = c[H(x) - A][B - H(x)] (A.14)

where ¢ (> 0), A and B (> A) are constant parameters. Function H may be viewed to represent
growth from a lower asymptote A to an upper asymptote B, and the rate of growth is proportional
to the product of the distances from the two asymptotes. The above H is a CDF when A =0 and
B = 1. The logistic distribution has been shown to be the limiting distribution (as n - =) of the
standardized mid-range (average of largest and smallest sample values) of random samples of
size n (Johnson and Kotz, 1970b).
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e. Generalized Gamma Distribution
The standardized forms (v = 0, o = 1) of the generalized gamma distributions used in this
analysis can be written as:

£.(6) = 8(t3/%) "exp(-t*)AT(1/x), t>0, (A.15)
and
gw(W) = 8(e¥/x) " exp(-e*™/x)/T(1/x), == <W <e, (A.16)
where x = 3%, The mean and variance of T are:
E[T] = 62°T(1/x + 1/8)/T(1/x), and
Var(T) = 6¥3{T(1/x + 2/8) - [[(1/x + 1/8)JIT(1/x)}/T(1/x). (A.17)

The gamma distribution includes as its special case the chi-square distribution. The latter is
the distribution of the sum of squares of independent unit normal random variables. Namely,
if U,, U, ..., U, are independent unit normal random variables, then X =U 2+ U,> + ... + U,?
has a x? distribution with degrees of freedom v. It also contains as its special case the Erlang
distribution, which is the distribution of the sum of « (= 1, 2, ...) independent negative
exponentially distributed random variables. Gamma distributions have been used as
approximate distributions for chi-square distributions. Johnson and Kotz (19702) note that
"In applied work, gamma distributions give useful representations of many physical
situations. They have been used to make realistic adjustments to exponential distributions in
representing lifetimes in 'life-testing' situations. Of recent years, Weibull distributions have
been more popular for this purpose, but this may not be permanent. The fact that sum of
independent exponentially distributed random variables has a gamma distribution ... leads to
the appearance of gamma distribution in the theory of random counters and other topics
associated with random processes in time ...."
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