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Abstract

In modeling trip-chaining behavior a number of issues arise the most fundamental being the
underlying decision process. This issue is critical because it affects the modeling effort directly.
In this paper we argue that trip-chaining behavior is based neither on a simultaneous nor on a
sequential decision process, but on a rather in-between particular type of sequential decision
making process called a relatively-sequential process. Moreover, single-stop trip chains seen
in the light of relatively-sequential decision processes comprise the building blocks of complex
trip chains. The relatively-sequential process is further formally characterized in the tradition
of the probabilistic threshold theory.

The threshold theory offers an explicit behavioral interpretation of looking at activity
sequencing as an r-sequential spatial interaction process. The modeling effort deals with in-
dividual attitudes toward trip chaining yielding macro frequencies, representable by general
gravity models. These frequencies are shown to be filtered frequencies of more traditional
gravity models for unchained trip flows. A family of threshold gravity models is proposed cor-
responding to individual commuters’ attitudes toward separation. In this manner, this alter-
native modeling framework may serve to bridge the gap between macro and micro approaches
in trip-chain models since it can use data typically gathered in transportation studies.

Maximum likelihood estimation of separation-threshold gravity models based on a home
interview survey show that the proposed theoretical framework has initiated a legitimate and
promising research direction. Indeed, estimated trip-chain frequencies fit very well to data.
Given that estimation results are based on only few observations, the very good fit of the
models is an indication that threshold gravity models may not be “data-hungry”. This, in
turn, give another evidence that threshold gravity models although aggregate in principle
may not need more data than disaggregate models to study the distribution of trip-chain
frequencies. An additional very significant empirical finding is that in the presence of the
data available home-to-work and the reverse single-stop trip chains may be indistinguishable
in the sense that there may be no need for separate parameter estimates. This is a very
pleasant result from the transportation modeler’s perspective. Finally, short-term forecasting
suggestions are made under reasonable assumptions and analytic relationships for forecast

trip-chain frequencies are proposed along with a method to compute them.






1 Introduction

Locational shifts in the past may have reduced the growth of congestion in cities, but
introduced congestion in the suburbs and beyond where most of the new job creation
has been taking place. Congestion which used to be a problem for the urban inbound
(in the morning) and outbound (in the evening) freeways, now has become a problem
on major arterials for suburb to suburb commuting trips. Interestingly, large increases
in travel delays are occurring although commuting trips are not getting longer on
average. This could mean that most of the direct impacts of congestion are falling
on nonwork trips for shopping, social and recreational purposes and other family or
personal business which once avoided congestion simply by avoiding the traditional
rush hour.

While the above are general observations on travel patterns taken from snapshots
of periodic surveys, at the same time empirical evidence suggests that during the last
twenty years, trip chains have become longer and substantially more complex and that
the average number of trips per chain has increased. Consequently, the transportation
modeler is faced not only with the burden to account convincingly for nonwork trips
(traditionally the most difficult set of trip purposes to estimate), but also with the
additional burden to represent work and nonwork trips as combined activities.

Let us offer a definition for trip chains and illustrate different aspects of trip-
chaining behavior. A trip chain may be defined as a sequence of trips that starts
from home and/or ends at home. This general definition is made more explicit via the
illustration in Figure 1 of three different examples of trip chains. The first example
presents a simple trip chain, namely a trip chain with only one stop for a particular
activity, or a combined trip with two legs of the form home-destination-home. This
type of trip chain does not include a nonhome-based trip (a trip either end of which
is the home location) other than the return home trip. The other two examples show
various manifestations of complex or multistop trip chains. The latter type of trip
chains includes more than one stop before returning home. Therefore, in a complex
trip chain, nonhome based trips are also considered.

Different taxonomies of complex trip chains are possible depending on the purpose
or mode of the trip for different classes of travelers. The sequence of trips 1 to 9 in
Figure 1, for example, can be thought to belong to a shopping trip chain, or to a
work trip chain since work and shopping activities are both included. These trips may
involve only the car mode or a series of modes (walk, carpool, transit, etc.); in the latter
case we may also consider mode-chaining along with activity chaining. Moreover, these
trips may be taken by the same person or different persons in the same or different
households.

One implication of trip-chaining behavior is illustrated in Figure 2. The first



Figure 1: Hypothetical trip chair patterns for the same household

household engages in five different activities in the same trip chain taking six trips.
The second household takes six trips for only three activities. When It would appear
that household A behaves more efficiently than household B. This may be true at the
individual household level. Bundling more trips in a single chain, however, lengthens
the duration of travel and, for work trip chains, these trips add to the congestion in
the morning and afternoon peak hour.

Different factors related to changes in the transportation system and the socioeco-
nomic and demographic profiles of urban travelers have been found to induce changes
in trip-chaining behavior. Location within the metropolitan region and the time of
day are additional factors. Residents of areas closer to the central city are less likely
to link work and nonwork activities compared with those living in the outer suburbs.
Furthermore, commuters chain multiple activities more in the afternoon than in the
morning.

These facts have triggered a shift of attention from individual trips to trip chains
(for extensive reviews of the literature see Thill and Thomas, 1987; Kitamura, 1988;
Metaxatos, 1995). It is generally accepted that travel is a derived activity taken to fulfil
different goals. Consequently, activities which may or may not translate into trips (at
least with a motorized mode) should be viewed as chained events. We will see however
later in the discussion that our treatment of trip chains is amenable to such behavioral
requirements. But first we will explain why current travel models cannot represent trip



Figure 2: Hypothetical trip chain patterns for different households

chains.

2 Inability of Current Travel Demand Models to
Address Trip Chaining Behavior

Traditionally, in the four step procedure, travel is estimated separately for several
purposes and the resulting trip groups are combined and assigned to the transportation
system. Trips that begin or end at home (home-based trips) are treated separately from
trips that do not begin or end at home (nonhome-based trips). The reason is that many
of the factors which influence trip-making decisions are related to the characteristics
of the traveler. Therefore, trips are usually estimated by using forecast characteristics
of the traveler and the family or household from data about their place of residence,
which frequently are the only data available.

Let us examine how a traditional gravity model (and for that matter any model
based on the independence of irrelevant alternatives assumption) would treat an inter-
mediate destination in a single-stop trip chain. Let Tj; = A;Bjexp(fc;;) be a gravity
model for the flows between destinations i and j. Assume, for example, that there are
two shops located in zones, j and k, respectively, with identical attributes (B; = By) at
equal distances from the work location w (cy; = Cyk). Assume, further, that the first
shop is located in zone j, between home and work, while the second shop is located
in zone k as shown in Figure 3. For the purpose of illustration, assume that c;, = 10
minutes and cgp, = 20 minutes. The relative odds of visiting destination j as opposed



to destination k would be then

P,; _ AyBjexp(fcy;)/T
Puk  AwBrexp(fcur)/T

= exp|0(cwj — cwk)] = exp(d x 0) = 1.

where, T, the total number of trips. There is a greater likelihood, however, that a
traveler on the way back to home after work will stop at location j than in location
k. Therefore, if the returning home traveler stop to shop and the two trips are treated
as two independent trips, there is nothing in the traditional gravity model that can
prohibit the distribution of trips to location k. As a result, this location will be
overestimated.

Figure 3: Competing intermediate destinations on the way from work to home.

The implications of trip-chaining behavior for transportation planning models are
serious, affecting their formulation, estimation and application. Existing transporta-
tion planning models assume independence among the trips linked in a trip chain. As
a result, home-based and nonhome-based trips can be easily clustered in two groups
and studied separately. An increase, however, of trip-chaining behavior increases, given
a constant total, the number of nonhome-based trips, or, equivalently, decreases the
number of home-based trips. As a result, the former would be overpredicted and the
latter underpredicted.

Home-based and nonhome-based trips are increasingly interdependent with re-
spect to their length, duration and scheduling for a number of reasons, such as an
increase in auto ownership, multiple-worker households, urban sprawl, etc. Different
classifications that consider interdependency among successive trips in a trip chain are
then needed. For example, one may consider work trip chains instead of work trips,
or shopping trip chains instead of shopping trips and new models need to be built to
attest, among others, to the observation that an increased number of trips bundled in
trip chains reduce the number of home-based trips.

In modeling trip-chaining behavior a number of issues arise the most fundamental
being the underlying decision process. This issue is critical because it affects the
modeling effort directly. In this paper we argue that single-stop trip-chaining behavior



is based neither on a simultaneous nor on a sequential (in the traditional sense) decision-
making process , but on a rather in-between particular type of decision-making process
called a relatively-sequential process. Moreover, we reason that single-stop trip chains
seen in the light of relatively-sequential decision processes comprise the building blocks
of complex trip chains.

The rest of the paper is organized as follows: In section 3 a discussion on the
decision making process underlying trip chaining is presented. The relatively-sequential
decision process is formalized in section 4. Empirical results are presented in section
5. Finally, concluding remarks are made in section 6.

3 Trip Chaining as a Decision-Making Process

Much of the discussion concerning the deveiopment of trip chaining models is devoted
to what decision-making process is manifested when trips are bundled into chains. The
issue is of fundamental importance because it determines the model building process.
The complexity of trip chain patterns gives rise to sequential models in which a trip
chain is decomposed into its component trips (Horowitz, 1978; Lerman, 1979; O’Kelly,
1981; Van der Hoorn, 1983; Kitamura, 1984; Kim, 1993). On the other hand, simulta-
neous models treat a trip chain as one multidimensional entity (Adler and Ben-Akiva,
1979; Narula et al, 1983; Bacon, 1984; Ingene, 1984; Borgers and Timmermans, 1986).

In the simultaneous approach the underlying assumption'is that the attributes of
all conceivable destinations, for all intermediate destinations are perceived and evalu-
ated at the same time resulting in a particular activity schedule. In this context, an
individual is assumed to maximize the benefits or minimize the disbenefits of his/her
journey for different activities, given the time and/or money constraints, or even the
activities of other members of the same household and the number of the alternative
choice sets may be quite large. Simultaneous choice of the intermediate destinations
would imply, for example, that work locations and gas stations are chosen at the same
time. This, of course would not be usually true and could ignore the fact that the
choice of a gas station as part of a work trip chain would frequently depend on the
work location.

In the sequential approach the implication is that travelers decide where to travel
next only after they reach the previous destination. Thus, the utilities of arriving
at each destination are maximized sequentially at each stage. If the first destina-
tion is chosen, the next destination is based on an evaluation process in which trip
makers trade off the locational and nonlocational attributes of potential destination
alternatives. The process continues until all activities are exhausted. A computational
advantage of the sequential approach, as compared with the simultaneous approach, is



the reduction of the problem to a manageable size. The sequential approach may be of
some value to modeling nonwork activity chains, although it does not provide further
insights with respect to the activity sequencing. Moreover, to return to the previous
example, sequential decision making would imply that if a person stops to buy gas on
the way to work, the decision on the work location would be reached only after arriving
at the gas station.

Travel decisions may be sequential to a certain extent, but we believe the sequence
of decision making is different from the one that is commonly assumed. Mandatory
trips, for instance, such as work or school trips can be scheduled in advance because
the location of those activities is known. Discretionary trips, on the other hand, such
as shopping trips, recreational trips, or eating-out trips are less planned and they may
be scheduled just before the trip is made. The sequencing of both types of activities,
however, is uncertain because their level of priority at the individual level is unknown
(see also Pas and Subramanian, 1995; Kumar and Levinson, 1995). Thus, it would
be arbitrary to consider mandatory and discretionary trips jointly in a traditional
simultaneous or sequential framework.

If mandatory trips are planned long before they are made, while discretionary
trips just before or shortly before, the questions at issue is how to accommodate both
type of trips in the same decision-making process and what type of process this would
be. For a possible answer we may look into the relative variability of the destinations
visited. Let us consider, for example, the case in which trips for the same activities
are made to the same destinations repeatedly. This behavior may be observed in
situations involving visits to supermarkets conveniently located and having the “right”
price, visits to restaurants with the preferred food and atmosphere, visits to the same
friendly dry cleaner’s, visits to the same friends, etc. In situations like these, the
resulting traffic patterns can be determined with certainty. On the other hand, there
may be situations where a more adventurous behavior is observed for the previous
type of activities. In cases, for example, of young travelers, or newcomers in an area,
or in cases of a more flexible behavior as a result of gender or income variations, or in
cases during which a trip maker is faced with unexpected obstacles, such as inclement
weather or poor road conditions the resulting traffic patterns need not be determined
with the same level of certainty.

Residential and employment locations do not change as frequently as other des-
tinations in the short run. Thus, they may be treated as fixed destinations in one’s
everyday trip schedule since trip makers do not have alternative choices at those desti-
nations. Other choices for discretionary trips then can be based on those fixed choices
and the overall variability may be small enough to support a simultaneous decision
making process for the entire trip chain. There may be reasons to believe that home-



to-work and work-to-home trip chains need a different treatment because these trip
chains are scheduled at different times of day and time constraints allow for different
levels of variation in the choice of intermediate destinations. Time constraints restrict
the number of destination choices in the home-to-work trip chain, but may be relaxed
considerably on the return home trip. In the last case, however, fatigue of the trip
maker may compensate for the looseness of the time constraint. As a result, the vari-
ability of the intermediate destination choices may be lowered at the level of that in
the home to work trip chain.

To provide arguments for a new concept of trip-chaining decision making, it is in-
teresting to observe that both the established simultaneous and sequential approaches
and the corresponding trip-chaining models imply that travelers behave as rational
economic human beings. As such, those models demand more capabilities than trav-
elers can deliver. Conversely, another description of travel behavior based on limited
or bounded rationality could provide an alternative behavioral basis which would lead
to largely unexplored modeling frameworks. An important theoretical support for a
sequential (seen in a different context as explained below) trip-chaining decision mak-
ing could come, for example, from a satisficing (Simon, 1957) rather than optimizing
individual behavior.

Satisficing behavior rejects the idea that there exists a rational economic agent
who is perfectly knowledgeable and perceptive about all the possible alternatives (here,
destinations for each intermediate stop) under consideration. ‘Thus, this agent would
be in great difficulty to compare all possible alternatives with one another to find an
optimal choice manipulating attributes describing the alternatives. Satisficing substi-
tutes for this true or complete rationality a hypothesis of bounded rationality. This
implies sequential search (although not necessarily any specific search process) and
limited sets of criteria used for evaluation. That is, (see also Brand, 1974) instead of
comparing one alternative to another on the basis of a set of operational criteria, the
alternatives are compared to a simpler set of minimal criteria until an alternative is
found that satisfies the decision maker. No attempt is made to exhaust all possible
alternatives. Moreover, search for new alternatives will only occur if the traveler per-
ceives a discrepancy between his/her level of aspiration and his/her level of reward
from the existing behavior.

Interestingly, however, not only do we suggest that a traveler may sequentially
apply a limited set of criteria that are used to reject alternatives that do not meet
threshold levels of those criteria, but also that those evaluations may take place at
different levels. To elaborate on this idea, we propose that what is manifested in the
choice of intermediate destinations is a relatively-sequential (in the absence of a better
terminology) decision making. Under this type of sequential behavior the choice of



successive destinations is made in a certain order over time, but this order need have
little to do with the order of the destinations in the trip chain. Work destinations
would typically be chosen before shopping destinations and the latter would usually
be affected by the former choice. Similarly, the choice of school destinations or a
doctor’s appointment would precede the choice of a gas station. Thus, in this approach,
destinations are prioritized by the order in which the decision was taken or by the
importance of the decision.

The new approach is exemplified in Figure 4 where we start with a high priority
trip from 1 to 2, say the trip to work. On the way, if one needs to stop at the dry
cleaner’s, a suitable destination would be chosen which is convenient for the trip from
1 to 2. The situation would then be as depicted in Figure 4 where the trip from 1
to 2 is now via 3, i.e., we now have two trips, one from 1 to 3 and one from 3 to
2. Similarly, either leg 1 to 3 or 3 te 2 could be interrupted by another intermediate
destination. Thus, modeling can proceed in steps. The choice of the highest priority
destination would be modeled first. At the next step, the choice of an intermediate
destination would be modeled. At the next step an intermediate destination on one
of the previously determined trips would be considered. Therefore, multi-stop, multi-
purpose activity-making may be represented as a process in which sequences of one-stop
trip chains proceed in space. Thus, for modeling purposes it is enough to consider how
a single intermediate destination or stop is chosen.

Figure 4: R-sequential decision making for intermediate trips

The behavioral implication of this new approach is that the terms “mandatory”
and “discretionary” are no longer viewed as permanent (absolute) labels, bur rather
relative attributes describing individual activities, which can be prioritized so that



separate activities can be linked together. A trip made in response to a doctor’s ap-
pointment, for example, is viewed in this sense as a discretionary activity as compared
to the trip related with the activity of going to work, but mandatory (or less dis-
cretionary) with respect to a visit to a fast-food restaurant. This is the reason why
we have called this decision process relatively-sequential or, abbreviating, r-sequential
decision process.

In the next section, we operationalize the r-sequential trip-chaining decision-
making process. Although the theoretical framework considered is not restricted to par-
ticular trip-chaining situations, and hence, shopping and work trip chains are equally
amenable, we have chosen to focus on work trip chains for two reasons: a) modeling
nonhome-based trips is still a challenging task in the current transportation modeling
state-of-the-art; and b) errands for personal business are very often scheduled as part
of work trip chains in the morning or afternoon peak adding to congestion problems.

4 Theoretical Framework

In order to operationalize an r-sequential decision-making process for single-stop work
trip chains, we will develop a theoretical framework which treats these type of processes
as spatial interaction processes. Let us assume that there exist a large population of
commuters o € A, residing in zones i € I, and working in zones j € J. Let W =
{(4, 5) :€ Ix J} be the product set of those origins (home or work) and final destinations
(home or work) involved in a single-stop work trip chain. Similarly, assume a large
population of opportunities for discretionary activity § € B, distributed over a spatial
configuration of intermediate destinations k € K. The set of those work trip chains
then may be described by the spatial interaction pattern s = {(w, k) : w € W,k € K}.

With each pair (w, k) € W x K we associate a vector of relevant separation val-
ues designated as the wk-separation profile c,,x. Any measure of separation between
a commuting trip w and an intermediate stop at k potentially considered by the indi-
vidual commuter during his/her evaluation of the costs involved are elements of this

vector. More precisely, cux = (¢l : ¢ € Q) € R9, where, for example, cf‘},)c = travel

time, cff,l = travel cost, cff,l = car availability and so forth. We consider now all wk-

separation profiles and designate this collection, ¢ =-(cyk : wk € W x K) € RWxKxQ
as the separation configuration between W and K. Finally, C' designates the set of all
separation configurations c. All relevant spatial information is assumed to be specified
by the choice of ¢ € C.

The choice of appropriate partitions of the travelers at the origin or final destina-
tion of the trip and opportunity populations in intermediate destinations with respect

to spatial aggregation involves implicitly some measure of within-group homogeneity.
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The choice, of course, is not unique. In the case of interval/ratio separation measures
a number of aggregation functions exist such as the average value of all possible costs
which may be involved in interactions between w and k. Alternatively, a standard clus-
tering procedure would identify partitions which minimize the total within-group vari-
ance. In the more general case of ordinal separation measures the choice of meaningful
aggregation functions is more limited. A possibility would be to measure homogene-
ity of traveler populations in terms of the rank correlations between their individual
separation profiles with all opportunities in intermediate destinations.

An important question arises now. How different types of spatial separation be-
tween w and k influence the likelihood of trip-chaining behavior? Spatial separation
may be defined in terms of measures which are spatial or aspatial; or in terms of mea-
sures of interval/ratio, ordinal or categorical type. For example, car availability, which
clearly affects the possibility to trip-chain, is a categorical aspatial element of a sep-
aration profile. In addition, travel time, distance and cost are normally identified as
spatial ratio elements. Moreover, preference for a particular service is an aspatial ordi-
nal element. What is important from a modeling perspective is whether the elements
of the vector of separation measures are quantifiable in terms of meaningful units of
measurement.

While it is difficult to study the behavior of individual commuters in detail, we
can still obtain a reasonable overall picture of interaction behavior in terms of appro-
priately stratified spatial aggregations as follows. First, observe that while individual
travelers have different commuting patterns, all commuters with the same home-work
route w are locationally very similar in terms of their accessibility to opportunities in
intermediate destinations. More generally, we assume that there are many partitions
of the commuting population A into finite collections {A,, : w € W} of subgroups of
commuters, in which each subgroup is reasonably homogeneous in terms of accessibility
to intermediate destinations. Similarly, with respect to intermediate destinations, one
may assume that travel times to all opportunities on the same zone are essentially iden-
tical. Hence, we assume that there are also many partitions of the population B into
finite collections {By : k € K} of spatial subpopulations (opportunity zones), in which
each subpopulation is reasonably homogeneous in terms of accessibility to commuters.

Having partitioned the population of commuters and intermediate activities this
way, we only require that those partitions are sufficiently small to ensure spatial ho-
mogeneity. In this manner, the spatial separation between commuters in zonal pair w
and intermediate activities in zone k can be approximated by a single representative
separation profile ¢, an element of which may be, for example, the average travel time
between w and k.

Stopping at k involves a decision by commuter a € A,, to satisfy his/her own need
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or desire to pursue a discretionary activity 8 € Bx. We may assume, further, that a
traveler’s decision on whether or not to stop at k depends on his/her current willingness
to incur all associated costs of deviating at k (extra travel time plus time spent during
the activity, extra costs, extra effort, etc.). Each individual commuter then has a par-
ticular tolerance toward overcoming the spatial separation between his/her mandatory
direct route and the indirect route involving a discretionary activity. This tolerance,
of course, varies with the time of day (different time constraints in the morning than
in the afternoon), individual socioeconomic characteristics (age, gender, marital sta-
tus, car availability, flexible work schedule/full time employment), familiarity with the
area, taste and preferences, weather conditions and so forth. Individual variability
in tolerance levels toward stopping at intermediate destinations, especially on a daily
basis, can be higher than variability across individuals, particularly if those commuters
belong to relatively homogeneous groups.

Since substitution (tradeoff) effects among different separation measures will not
be considered here (at least not directly, although nothing prevents us from using
known linear combinations of separation measures), it is appropriate to suggest a way
of handling individual tolerance variability. The issue will be resolved by grouping
individual travelers in a certain way. Recall how commuters and opportunities in
intermediate destinations have been partitioned. In a manner similar to clustering
origin, intermediate and final destinations, so that a single representative separation
profile c,x can measure the spatial separation between w and k, we may choose to
attribute to each individual commuter a« € A, a w-specific threshold vector t,, =
{(t@ : ¢ € Q) € R?}. We make now the assumption that each component ¢
represents individual a’s current maximum tolerable level for separation attribute q.
For example, tg) is taken to represent the maximum tolerable travel time tg), the
maximum tolerable travel cost, and so forth.

We assume, further, that there exist no structural dependencies between different
measures of separation components. This assumption is critical for separation measures
such as travel time and travel cost, which tend to be highly correlated, and yet which
are behaviorally relevant in their own right. Whenever such dependencies exist, we will
implicitly assume that they have been eliminated by a prior reduction to a smaller set
of measures. This requirement relates to the sufficiency in the theorems which will be
discussed later.

We designate now each situation, in which a traveler a with tolerance levels ¢,
considers a possible stop for an opportunity (, as a potential interaction situation
for single-stop work trip chains represented by the triple (e, 3, t,). Given any such
potential interaction situation (e, f,ty), with « € Ay, [ € Bg and ty, € RQ, if
the prevailing levels of separation between w and k are given by separation profile
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cwk = (¢, : ¢ € Q), then a stop at zone k is realized if and only if the prevailing
separation levels between zones w and k do not exceed a’s current tolerance levels.
In other words, a commuter o stops at an intervening opportunity 8 if and only if
Cwk < tw, or equivalently, if and only if ¢?, < t? for each component g € Q.

It is interesting to note that potential interaction situations lead us to a point of
departure from relevant discussions in the framework of disaggregate models. Recall
that all we have assumed is that we have only partial information about individual be-
havior. If, for example, all a commuter needs on the return trip home is a light meal,
then we will not assume that this particular commuter knows the optimal (nearest or
cheapest) location to buy it. We only assume that the choice will be made for a loca-
tion that meets the commuter’s tolerance criteria as represented by his/her individual
threshold vector of spatial separation. It is worth noting that relevant threshold con-
siderations for other factors characterized by accessibility and emissivity profiles are
given in Metaxatos (1995). Thus, from a behavioral point of view we are pursuing a
satisficing rather than a maximizing theory of individual behavior.

Our objective here is to develop a probabilistic model of potential interaction
situations. Models of potential interaction situations are not new. Tellier and Sankoff
(1975) and Luoma and Palomaki (1983) have studied similar models for single threshold
variables. Smith (1985, 1987a) and Sen and Smith (1995) generalized their approach
by developing a threshold theory of spatial interaction and embedded it into the more
general framework of gravity models of spatial interaction behavior. The basic frame-
work of the threshold theory is extended here to accommodate trip chains occurring
between home and work. In particular, we seek to provide working hypotheses and
suggest a class of models which will yield meaningful estimates of interaction prob-
abilities p.(wk), between zonal pairs w and zones k, under any possible separation
configuration ¢ € C.

In order to develop such a probabilistic model, we need to define first the relevant
outcome (sample) space of possible interaction patterns between mandatory activities
in w € W and discretionary activities in k¥ € K which may occur during some relevant
time period. Recall from the discussion in the previous section how mandatory and
discretionary activities are seen in the context of r-sequential trip-chaining behavior.
Each probability distribution on this outcome space will then constitute a possible
probability model of interaction behavior in the given context. The specific probability
models of interest for our purposes are designated as threshold interaction processes for
single-stop work trip chains.
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4.1 Threshold Interaction Processes for Work Trip Chains

Since each potential interaction situation for a single-stop work trip chain is described
by a triple {(, 8, tw) € A x B x R}, the relevant individual interaction space for this
type of trip chains is given by ; = AX B X RQ9. Hence, Q; denotes the universe of pos-
sible individual potential interaction events for single-stop work trip chains. To model
collections of such events we need to consider the n-fold product set of €2;, denoted as
Qn = ()", where n is the universe of commuters stopping in a single intermediate
destination. Then each possible occurrence of n individual potential interaction events
in ; may be represented by an element, w = (w, : 7 = 1,...,n) € Qp = (4)", and
designated as a potential interaction pattern of size n. If we allow the null potential
interaction event o (representing the possibility of not stopping at an intermediate des-
tination) to be an element of the corresponding outcome (sample) space ) then this
space is given by = Up>0{dp, for all interaction patterns of size n which may occur.

In other words, w represents a list of n individual single-stop trip chains from
which the identity of the individuals involved has been removed, during a given time
period. Each one of these commuters is assumed to search among a set of intermediate
destinations which meet his/her threshold criteria. However, in this case no notion of
a particular type of search process is implied for any commuter because, as we will
see later trip-chain frequencies are still characterized by (threshold) gravity models
whatever search process may be implied. Thus, we assume that commuters do not
exhibit optimizing but rather satisficing behavior, in the absence of relevant information
not captured entirely by attitudinal variables of spatial separation.

Assuming that the appropriate partitions of commuters and intermediate des-
tinations has accomplished a much desired within-group homogeneity, the attributes
of zones w € W (involved in the trip between home and work) and the attributes
of zones k € K (where the intermediate discretionary activities occur) will con-
vey all the locational information typically required for analysis. It is convenient
to designate the joint realization of these attributes as the spatial interaction pat-
tern s = s(w) = {(wy, kr) : 7 = 1,...,n} associated with each interaction pattern,
w=(wr:r=1,...,n). If weallow S, = (W x K)" to denote the set of all spatial
interaction patterns of size n, then the relevant outcome space for possible spatial inter-
action patterns arising from potential interaction patterns in 2 is S = Up>qSn, where
So denotes the null spatial interaction pattern. Therefore, if w is seen to correspond to
a hypothetical trip-diary of n persons, in which each record conveys the information
of the particular intermediate activity for exactly one commuter along with individual
tolerance levels, then the corresponding s(w) records only the location (zonal) infor-
mation for that particular activity as well as the locations for home and work for those
n commuters.
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Given the above interaction framework we can describe probabilistically the
threshold interaction behavior of commuters in terms of a probability measure on
Q. Each such measure P assigns probabilities P(G) to certain subsets G of §2, which
denote the probability that a realized outcome in Q will belong to G. The subsets G
for which P(G) is defined are called measurable events in (). Thus, in our context, we
require that the subset of potential interaction patterns (s) = {w € Q : s(w) = s}
corresponding to each spatial interaction pattern s € S be a measurable event in (2.
Hence, if we now write P(s) = P[Q(s)], Vs € S, then each probability measure P on
S generates a unique probability function on S (i.e. a nonnegative function P on S
satisfying the condition that Y ,cs P(s) = 1).

Since all relevant relations between commuters in W and intermediate activities
in K are represented by a given separation configuration ¢ = (cwk: wk € WX K)eC,
it is appropriate to make any probability measure on S configuration specific, that is,
P.. Then a probability model of spatial interaction behavior consists of a family of
probability functions {P. : ¢ € C} on S which describes interaction behavior between
W and K under each possible separation configuration ¢ € C. We designate then the
collection of all probability measures P= (P,: ¢ € C), on 2 as a threshold interaction
process (TI-process) for single-stop work trip chains, if and only if P satisfies three
regularity conditions of positivity, symmetry and continuity in a similar manner as in

Sen and Smith (1995).

4.1.1 Frequency Positivity Regularity Condition

The outcome space for possible spatial interaction patterns S contains by definition all
finite spatial interaction patterns, and hence includes patterns which are much too large
to be meaningful. In this case of single-stop trip chains, there is some upper bound
on the size of possible interaction patterns beyond which no pattern can have positive
probability. If, for example, each commuter makes a stop between home and work in a
given day, then the trip-chain frequencies in either direction cannot be higher than the
number of commuters. Thus, no more trip chaining can be observed for that particular
period. This, however, is a highly unlikely situation since there may be situations of
direct trips from home to work (or vice versa), or even no trips at all. Therefore, since
spatial patterns approaching these upper bounds are very unlikely to occur, they are
of little relevance here. Hence, we will treat each possible spatial interaction pattern as
having positive probability, and “impossible situations” as “extremely unlikely” events.
Thus the first regularity condition is:

C1. Positivity: For all separation configurations ¢ € C and all spatial interaction
patterns s € S the pattern probability Pc(s) is positive.
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Therefore, even the (null) event of no stops at all at any intermediate destinations for
all commuters, who are not habitually non-stoppers, has a small positive probability.
This regularity condition can be formalized in terms of wk-frequency variates Ny. In
particular, for any ¢ € C, a given zonal wk-pair involved in a single-stop trip chain
can occur if and only if the event {w € Q : Ny # 0} has positive probability under

configuration c.

4.1.2 Symmetry Regularity Condition

To motivate the second condition we consider all single-stop trip chains during a time
period. If we are interested in studying how individual trip chains evolve over time,
or in modeling individual trip chains occurring by means of different modes, then
the ordering of individual interactions (from destination to destination) is of partic-
ular importance. Here, however, we are interested in overall trip-chaining activity
patterns which can be represented by mean interaction frequencies. In addition, we
believe that it is possible to construct proper probability spaces in such a way that
individual interactions are meant to be individual chained interactions. In this man-
ner, “exchangeability” on the n individual interaction events defining any realized n-
interaction pattern (see Kingman, 1978), or “relabeling” of every n-interaction pattern
w = (wy,...,wn) € Oy by means of permutations of the integersr =1,...,n (see Sen
and Smith, 1995) clearly would not affect the probability of occurrence of such chained
events. However, we will not pursue such a technical development here.

In this light, given an interaction pattern s = s(w) = [(wn, k) : 7 = 1,...,n)], the
labels r = 1,...,n serve only as a means of enumerating the list of interactions. Hence
for this type of behavior, the pattern probabilities P.(s) are completely independent
of the order in which the individual interactions in s are labeled. We may impose now
the next symmetry condition on pattern probabilities:

C2. Symmetry: For any given separation configuration ¢ € C and pair of spatial
interaction patterns s = (wyk, 17 =1,...,n) and s', if s and s’ differ only by the
ordering of their individual interactions, then P.(s) = P.(s').

As a result, the only behavioral information relevant for our analysis which is contained
in each realized spatial interaction pattern s consists of the frequencies of individual
interactions wk € W x K.

An important result following from the symmetry condition is that all patterns
with identical interaction frequencies must be equiprobable that is, for all 5,5’ € S,

[Nuk(s) = Nuk(s') : wk € W x K| = Pc(s) = Pe(s') (1)
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Thus the fundamental property of symmetric processes implies that all probabilistic
information about interaction patterns is expressible in terms of their associated (wk)-
interaction frequency probabilities. More generally, each spatial interaction process

P= (P, : c € C) is uniquely expressible in terms of an associated frequency process
N={N¢:ce C} (see Sen and Smith, 1995, Chapter 3).

4.1.3 Continuity Regularity Condition

The final assumption about the pattern probabilities P.(s) is that small changes in
separation values result only in small changes in pattern probabilities. More formally,
we postulate that pattern probabilities satisfy the following continuity condition:

C3. Continuity: For any given interaction pattern s € S separation configuration
c € C and scalar € > 0, there exists a § > 0 with |c — /| < § sufficiently small to
ensure that |P,(s) — Pu(s)| < € holds for all configurations ¢’ € C.

In other words, we require that P.(s) be a continuous function of the parameter vector
c. This assumption may be inappropriate at the level of the individual commuter par-
ticipating in a trip chain. For example, a small rise, in bridge tolls, or the introduction
of congestion tolls (i.e. a small change in the configuration ¢ € C), produces quite
possibly radical changes in individual trip-chaining behavior (for a relevant discussion
see Hirschman et al, 1995; Williams, 1995). At the aggregate level, however, such
individual effects tend to be insignificant. Even when all individuals exhibit threshold
behavior, their threshold levels generally differ, yielding thus a smoother pattern in the
aggregate.

A fourth assumption, that of Threshold Positivity, P*}(T, > t,) > 0, can be
imposed to ensure that realized wk-interactions are always possible. This condition,
" however, is not essential from a behavioral viewpoint, but rather serves to facilitate
formal developments by avoiding the need for special analysis of degenerate cases (see
Sen and Smith, 1995).

4.2 Independent Threshold Interaction Processes for Work
Trip Chains

Having discussed the requirements for general threshold interaction processes we de-
velop in this section, conditions for independent threshold interaction processes for
single-stop work trip chains. In particular, we will give three axioms which serve to
provide a set of null hypotheses for the investigation of trip-chaining behavior. In
cases where these hypotheses cannot be rejected on the basis of subsequent observa-
~ tions, such interaction behavior may be described by the gravity-type family of models.
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In fact, because of the Poisson Characterization Theorem (see Smith, 1987a, 1987b;
Sen and Smith, 1995) this type of behavior is characterized by such type of models.
Moreover, under those hypotheses, the interaction probabilities can be estimated by
standard maximum likelihood techniques.

We will give now statistical independence assumptions about certain relevant
attributes of potential interaction patterns. For each potential interaction pattern w =

[(wr = 0y, Bry twr) : 7 = 1,...,n], these relevant attributes can be represented by three
sets of random variables. The first set (W,, r = 1,...,n) denotes the origin and final
destination of commuter o,. The second set (K,, r = 1,...,n) denotes the location

of the discretionary intermediate activity 8,. Finally, the third set (Ty,, 7 =1,...,n)
denotes the threshold levels for each separation measure ¢, at each level ¢ € Q, of
commuter a, in a realized pattern of size n. Interestingly, by treating threshold levels
as random variables we may observe another point of departure from disaggregate
models. In particular, if threshold levels are seen as negative utility, then not only do
we claim that this utility is not specific to each individual commuter, but also that it
is not, even partially, known. In a typical random-utility environment the information
for the estimation of the systematic part of the individual utility would have to come
from a survey treated as a random sample.

Define now the joint distribution of the random variables T = (Tyr : 7 =
1,...,n) on Qy, for all possible threshold patterns of size n, t% = (tyr: 7 =1,...,n)
by )

PMTp>2th) = PMTwr 2ty r=1,...,n)
= PMw € Qn: Tur(w) > twr(w)], r=1,...,n} (2)

Then for each spatial pattern s € S, and threshold pattern t? = (ty,, 7 = 1,...,n),
the probable occurrence of a threshold pattern at least as large as t™, given that the
spatial pattern s occurs, is

Pols, (T 2 t3)]
P2(s)
PMw € Qp: s(w) = 8, Tur(w) > tyr(w),r=1,...,n}

- PrMw € Qp: s(w) = s} ®)

PHTy 2 tyls) =

w

Finally, if for each potential interaction pattern w € §2 we denote the corresponding
frequency profile of potential interactions by n = n(w) = (nyx : wk € W x K), then
a threshold interaction process P= {P.: ¢ € C} is designated as an independent TI-
process if and only if P satisfies the three axioms of locational, frequency and threshold
independence discussed next.
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4.2.1 A1l. Axiom of Locational Independence

To motivate the first axiom, we observe that it is highly unlikely that intermediate des-
tinations are extremely concentrated in space due to congestion effects. For example,
for any reasonable number of trips it is virtually impossible for all trips to stop at the
same location. On the other hand, assume that there may be a case where commuters
live close to one another, work close to one another, and leave their cars at the same
parking lot to take rapid transit to work; or, consider the case of friends who like to
shop together and happen to live and work close to one another. In both cases the
occurrence of one trip chain, from the residential zone to the intermediate destination
zone to the employment zone, may imply the occurrence of several trips going through
the same zones. More generally, there may exist a variety of contagion effects or band
wagon effects which can lead to identical interaction choices by many individuals.
While individual interdependencies over space are important from a research
point of view, our objective remains to model the overall effect of spatial separation
of the discretionary activities on interaction behavior. Hence, we hypothesize that the
influence of particular types of interdependencies among commuters is minimal, and
thus individual interaction decisions can be ireated as statistically independent events.
More formally, for all non-null spatial potential-interaction patterns s = (wyk, : 7 =

1,...,n) € S and separation configurations c € C,
n .
PXs) = P(wy,...,Wn, k1, ..., kn) = [[ PP(Wy = wr, K; = ky) (4)
r=1
where P™(wy,...,Wn, k1,...,kn) denotes the joint distribution of locational realiza-
tions w, and k., r = 1,...,n. In other words, for any given interaction (w,, k) in

an interaction pattern of size n, we assume that no properties. of the other realized
interactions (wg, ks : 0 # r) influence the likelihood that (wy, k,) will occur. It is
assumed implicitly that populations engaged in a single-stop trip chain between home
and work are sufficiently large to minimize the influence of any individual opportunities
for discretionary activity.

Violation of this assumption can happen, for example, if the total trip frequencies
present so little variation that can be described by a deterministic rather than a Poisson-
based model (even if certain individual intermediate activities remain the same or show
little variation from day to day). This may be more relevant for the home-to-work trip
chain where time constraints, for example, may cause much more regularity in the
observed travel patterns. Conversely, trip chain factors other than time may cause an
eclectic behavior with respect to stopping at particular intermediate destinations. Thus
we may, alternatively, need to consider mixtures of distributions and build, respectively,
models of restricted, in the first place, or ertra variation, in the second case. Although
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that level of detail is not pursued here, we believe that these important issues are better
resolved on a case by case basis. Exploratory data analysis may reveal dominance of
one or the other type of behavior and imply a particular type of modeling needs.

4.2.2 A2. Axiom of Frequency Independence

In addition to the first hypothesis, we may now assume that wk-frequencies are sta-
tistically independent. In other words, if the number of wk-trips are high, this need
not imply that the number of wk’-trips is low. Therefore, it is implicitly assumed that
the population of commuters A,, and opportunities in intermediate destinations By are
sufficiently large to allow the obvious frequency dependencies for any given individual
commuter to be ignored. For example, if an individual o regularly visits the same
supermarket 0 on the way back to home, then it may be inferred that in general, o
does not frequent other supermarkets. However, if shopping trips for commuters living
in zone i and working in zone j to zone k (location of the supermarket) are high, this
need not imply that shopping trips for the same commuters to another supermarket in
a different zone k' are low.

More formally, for all potential-interaction frequency profiles n= {(n : wk €
W x K) e ZXV"K } and separation configurations c € C,

Pe(n) = Pe(Nuk = nuk : wk € W x K) = [[ ] Pe(Nuk = nui) (5)
weW keK
where,
P.(n) - the joint distribution of potential trip frequencies Ny = nyr, wk € W X K.
P.(Nyk = nyk) — the associated marginal distributions.

Violation of this assumption can happen, for example, if there is reason to believe
that each possible factor that can be hypothesized to affect the level of the overall trip-
chaining behavior (such as, travel distance, travel time, flexible work schedule, family
status, full time employment, car availability, carpooling, individual tastes and prefer-
ences, familiarity with the area, stress, overall economic growth, technological change,
etc.), will change from year to year. In other words, if the sizes of the populations of
commuters and opportunities for discretionary activity are influenced by factors which
are not consistent with Poisson randomness, there is need to consider more specific
types of non-Poisson models.

4.2.3 A3. Axiom of Threshold Independence

Finally, it is hypothesized that the attitudes toward trip-chaining spatial interaction
wk are intrinsic to individual travelers and are influenced neither by locational factors
nor by the presence or absence of other individuals. This axiom asserts that threshold
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values of commuters are independent of the number of other commuters living and
working at the same zones.

Again, it is easy to imagine a number of situations (e.g. among family members)
where this type of independence would be questionable. It is assumed, however, that
the number of commuters participating in trip chains is large enough so that individual
interdependencies can be ignored. Hence, within any given separation configuration
¢ € C, all effects of space on trip-chaining interaction behavior are assumed to be
captured by attitudinal threshold variables alone. More formally, for all threshold
patterns t", spatial interaction patterns s € S, and separation configurations c € C,

PHTy 2 tyls) =
Pcn(Twthwl,---»TwnZtuml
Wi =wy,..., Wo=wn, Ki=ki,...,Kn=kn)=
n
HPcl(Twl > twr) (6)
r=1

where,
Towr — the threshold levels for the r-th commuter in a realized pattern of size n.

PMTuwi > twl, s Tun = twn|wi,...,wn, ki,...,kn) — the conditional distribution
of threshold realizations Ty > twr, ¥ = 1,...,n, given the locational realizations
Wr=wy, Kr=ky r=1,...,n. _

PY(Ty1 > twr), 7 =1,...,n - the associated marginal distributions.

4.3 Realized Threshold Frequencies for Work Trip Chains

The main purpose of axioms A1, A2, and A3 of locational, frequency and threshold in-
dependence, respectively, is to provide a set of working null hypotheses. These hypothe-
ses are not directly testable since a potential interaction situation («, 8, t,) is not in
general observable. A potential interaction situation may result, however, in a realized
interaction, namely an interaction in which the separation profile cyx = {2, :q€Q}
between commuter o € A, and opportunity 8 € Bj does not exceed o’s threshold
profile t,, in any component. Realized interactions may then provide indirect tests for
these hypotheses.

This realized-interaction property for each pair (w, k) € W x K separation con-
figuration ¢ € C, and each r-th component w, = (ctry Br, twr) of potential interaction
patterns w € Q can be represented by a zero-one variable, §5;(w), of the form:

1, if o € Ay, Br € By, and Ty > Cyk

Bige(w) = { 0, otherwise (7)
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Then, for each pair (w, k) € W x K, the number N, (w) of realized interactions between
w and k in pattern w under configuration c is given by:

c _ 0) w € QO
Now(w) = { Y60 (w), w€Qpn>0 (8)

The random variables N¢, (w) are designated as the threshold frequencies of realized
spatial interactions between commuters in origin-final destination zonal pairs w and
opportunities for discretionary activity at locations k£ under configuration c¢. The proba-
bility distribution of these integer-valued random variables N,[s(w)] under each prob-
ability measure P, in an independent TI-process P is then defined by,

Pc(ka = nwk) = Z Pc(s) (9)
s€S(Nywk)

The associated mean realized-interaction frequency is given for all wk € W x K and
c € C by,
E(NZ) =Y NukPe(s) = D NukPe(nuwk) (10)

SES Nywk
Moreover, from the Threshold-Frequency Theorem (Smith, 1987a, Section 2.2; Sen and
Smith, 1995, Theorem 3.4, Section 3.7.3), we obtain that the observable interaction
frequencies (N¢, : wk € W x K) are Poisson distributed; that is,

PulNk = nue - wk € W x K) = TT TT Z00)™ opiomvs) (1)

weW kek Tk
with mean realized-interaction frequencies E(N¢,) in P, given for all wk € W x K
“and ¢ € C by,

E(NSy) = E«(N)PF (W1 = w, K1 = k)P{(Tw1 2 cuk) (12)

where,
Pf(W;, = w, K1 = k) — the marginal probability of a single potential-interaction situ-
ation for a traveler commuting between the home-work zonal pair w and stopping at
zone k;
P{(Ty1 > cuwk) — the marginal probability of a single potential-interaction situation for
a commuter having threshold levels at least as large as cyu;
E.(N) - the expectation of the random variable N = Y . NS, denoting the total
frequency of potential interactions.

It can be proved (Sen and Smith, 1995, Theorem 3.3, Section 3.7.2) that for any
independent TI-process P= {P,: ¢ € C'} and separation configuration ¢ € C,

Eo(Nuk) = Ec(N)PE(Wy = w, K; = k) (13)
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Hence, (12) gives,
Ec(Ngk) = Ec(Nuwk) P{(Tut 2 cuk) (14)

Therefore, for any potential stops at intermediate destinations, larger component val-
ues of the separation profile ¢, will reduce the probability that travelers’ threshold
levels will exceed these values, and hence reduce the probability of a realized stop.
In other words, threshold behavior is seen to reduce the mean frequency of potential
intermediate stops to a smaller mean frequency of realized stops at intermediate des-
tinations. Thus, the threshold trip-chaining behavior as presented above may be seen
to act as a filter (“thinning”) operator on the Poisson process (Nuk : wk € W x K).

In this context, the formal role of the threshold independence axiom, together
with the symmetry regularity condition, is to ensure that the filter operator is spatially
homogeneous over the W x K space. In this light, the Threshold-Frequency Theorem
can be viewed as a special instance of the more general result that every homogeneous
filtering of a Poisson process yields a new Poisson process with reduced mean intensity
measure (see Matthes et al, 1978, Proposition 1.13.7).

From (12) we obtain for all wk € W x K and c € C,

E(Ngk) = Eo(N)P{(W1 = w)P{(Ky = k|W1 = w) Py(Tuw1 2 cuk) (15)

We now let the functions A, : W — R, (an origin-final destination weight function
under configuration c), B. : K — R, (an intermediate destination weight function
under ¢), and F,: R — R, (a separation-friction function between w and k under
¢) be defined, respectively, by,

A(w) = E(N)Pi(W=w)
Bc(k) = Plc(Kl = le] = ’UJ)
Fc(cwk) = Plc(Twl 2 ka) (16)

Thus, the origin-final destination weight function A.(w) is precisely the expected
number of potential-interaction situations involving individual commuters between an
origin-final destination zonal pair w. The intermediate destination weight function
B.(k) is precisely the conditional probability that any given potential interaction sit-
uation will involve an opportunity for an (intermediate) discretionary activity at zone
k, given a commuting trip in w. Finally, the separation-friction function Fe(cuwk) is
the threshold distribution summarizing the behavioral attitudes of the population to-
ward various types of spatial separation costs and other measures of spatial separation
between w and k.

The threshold theory discussed above does not specify those functions exactly.
It suggests, however, both the types of variables and functional relationships which
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should play an important role in such specifications. For example, the above interpre-
tations serve to support common specifications of the origin and destination functions
as increasing functions of the sizes of populations A, and By, respectively, and the
specification of the separation function as a decreasing function of all its arguments.
For the separation function, in particular, it can be proved (Sen and Smith, 1995,
Chapter 2) that the multivariate exponential deterrence function, as defined first by
Sen and S66t (1981), is general enough for most applications of interest. Thus, given
the definitions in (16), we obtain from expression (15),

E(NG) = Ac(w)Belk)Felear) = Acw)BelB)exp(= X 00cla) (17
q€Q
where 0= {(6,: ¢ € Q) € R9} is a cost sensitivity vector of dimensional parameters.
Therefore, the mean realized-interaction frequencies E (N{,) are representable by
a gravity model, which is a monotone gravity model if we require that F is nonincreas-
ing. Obviously, the exponential function in (17) satisfies this requirement. In fact, it is
proved (Proposition 4.2 of Section 4.3.2, Sen and Smith, 1995) that each independent
TI-process P is mean-representable by a monotone gravity model if and only if these
mean realized-interaction frequencies E (N(,) are representable by that gravity model.
An additional formal consequence of the Threshold-Frequency Theorem is that
the threshold frequencies Ny : wk € W x K are conditionally multinomially dis-
tributed for each given level of the total frequency of realized interactions N = 3°,x Nuk
under configuration ¢ (Smith, 1986, Corollary 3.1). In particular, if for each configura-
tion ¢, we now employ (17) to define the associated interaction probability distribution
p. over wk-pairs by,

A(w)B(k)F(cuwk)

wk) = Ywk € W x K 18

Pelk) = 5 A()BOF (e 1)

then as a direct consequence of the Threshold-Frequency Theorem it follows that
pc(wk)nwk

P(NS =nuw:wk e W x K|N°=n) =n! [] [] ' (19)

weW kek  Twk
Hence, for any given level of observed interaction frequencies n the realized frequencies
can be treated as n independent random samples from the interaction probability
distribution p.. Moreover, the relative realized frequencies (Nwk/n, wk € W x K) are
the maximum likelihood estimators of p.(wk), and thus constitute sufficient statistics
for estimation and testing.

4.4 Extending the Theoretical Framework

The threshold theory as described above views the trip-chain flows and the corre-
sponding flow-frequencies as an independent Poisson process with mean intensity mea-
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sure representable by an exponential (separable) gravity model. In this model the
separation-friction function F¢(cyk) is the threshold distribution summarizing the be-
havioral attitudes of the population toward various types of spatial separation costs
and other measures of spatial separation between w and k. Although the multivari-
ate exponential deterrence function is a general enough specification for F,, no other
specifications for the origin- and the destination-weight functions have been offered
explicitly.

Spatial separation is arguably a very important factor toward spatial interaction.
There are cases, however, in which neighboring intermediate destinations attract dif-
ferent number of commuting trips. It may be hypothesized, therefore, that in those
cases a host of factors related to each intermediate destination affects the attitudes of
the population toward trip chaining. Certain intermediate destinations, for example,
may be viewed by the prospective commuter as more “accessible”, or more “attractive’
than other ones. Familiarity with the area, store size and closing time, product variety,
price levels, agglomerations of opportunities, etc. are some of the factors that may
affect this perception. It is thus desirable to extend the threshold theory so that these
attitudes are also considered. In addition, we may further extend the discussion so
that factors relevant to the origin location affecting individual attitudes toward trip
chaining (such as car availability, family size and income, gender and family status,
and age and physical capacity of the commuter) are also considered.

Theoretical developments to accommodate these additional considerations are
pursued in Metaxatos (1995). Metaxatos shows that if the intermediate-destination
weight function, in a context similar to (16), is defined precisely as the joint probability
of the event that any given potential interaction situation will involve an opportunity
for an (intermediate) discretionary activity at zone k, given a commuting trip in w,
and the event that threshold levels (behavioral attitudes) of the population toward
various types of accessibility considerations with respect to stopping at an intermediate
destination k have not been exceeded, then the mean realized-interaction frequencies
are still representable by a gravity model in which measures of accessibility costs to
intermediate destinations k, and separation costs between w and k are explicitly taken
into account. Moreover, separation-accessibility threshold behavior is seen to reduce
the mean frequency of potential intermediate stops to an even smaller mean frequency
of realized stops at intermediate destinations than the one realized under separation-
threshold behavior only.

If, further, the origin-final destination weight function is defined as the expected
number of potential-interaction situations involving individual commuters between an
origin-final destination zonal pair w, who do not exceed their emissivity thresholds, then
the mean realized-interaction frequencies are still representable by a gravity model, in
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which measures of emissivity of origins i, accessibility costs to intermediate destina-
tions k, and separation costs between w and k are explicitly taken into account (see
Metaxatos, 1995). In addition, separation-emissivity-accessibility threshold behavior
is seen to reduce the mean frequency of potential intermediate stops to an even smaller
mean frequency of realized stops at intermediate destinations than the one realized
under separation-accessibility threshold behavior only.

4.5 Behavioral Implications for the Theoretical Framework

The behavioral implications of the threshold theory for single-stop trip chains, as pre-
sented above, are best understood by focusing on the linkages between the theory
and other aggregate and disaggregate approaches. We discuss, first, the distributional
assumptions embedded in macro and micro models and compare them with the assump-
tions postulated by the threshold theory. Then we compare the total and conditional
frequencies obtained by entropy-maximizing and disaggregate random-utility models
against frequencies from the threshold theory, and discuss the relevant implications.

4.5.1 Distributional Assumptions

Current aggregate models involving the mazimum-entropy principle (Wilson, 1967,
1970) offer no discernible notion of individual choice behavior. Even the more behav-
jorally oriented cost-efficiency principle (Smith, 1978) is formulated solely in terms of
macro behavioral axioms. On the other hand, current disaggregate models establish
only a weak link to observable macro behavior. In particular, random-utility models
postulate an explicit utility-maximizing model of individual choice behavior, but offer
no clear principles of aggregation. Thus all observable macro behavior is represented
by a population distribution of unobserved utility components, which is predetermined.
Different choices for this distribution, such as the extreme-value distributions in multi-
nomial logit models (McFadden, 1974), or the normal distributions in multinomial
probit models (Hausman and Wise, 1978; Daganzo, 1979) can lead to different results
(Horowitz, 1981).

Smith (1987a) points to research suggesting the specific types of behavioral con-
texts for which these distributional assumptions might be most appropriate (see, for
example, Kagan et al, 1973, for normal distributions; McFadden, 1974, pp. 105-142, for
extreme-value distributions; Strauss, 1979, and Smith, 1984, for generalized extreme-
value distributions). More general findings, according to Smith (1987a), attempt to
justify certain distributional types as limiting forms for large families of distributions
(see, the Lindeberg-Feller Theorem, Theorem 7.2.1, in Chung, 1968; and the Fisher-
Tippett-Gnedenko Theorem, Theorem 1.6.2, in Leadbetter et al, 1983). Of course, all
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the above results are asymptotic and tell us little about small samples.

The threshold theory, however, yields exact distributions on the basis of certain
independent assumptions, and thus may offer a link between macro and micro ap-
proaches. This is because the theory postulates at the micro level, as first envisioned
by Smith (1987a), a simple satisficing individual choice model which focuses on the in-
dividual’s decision on whether or not to pursue an intermediate activity under consid-
eration, by stopping at an intermediate destination between home and work. Moreover,
at the macro level, the theory postulates a simple population model in which potential
trip-chaining situations are assumed to exhibit certain independence assumptions over
space. In addition, given the particular specification of the separation-friction function
Fe(cwr) = exp(— Ygeq 04¢ty) Which is general enough for most applications of interest,
that of the origin-weight function A.(w), which may be seen to summarize measures of
emissivity of origin zones (Metaxatos, 1995), and the intermediate-destination weight
function B.(k), which may be seen to account for measurable attributes of intermediate
destinations (Metaxatos, 1995), the threshold theory yields an explicit model of mean
trip-chain frequencies, which is similar to the exponential models derived from entropy
maximization, and much more explicit than disaggregate random-utility models. Thus,
the threshold theory may be viewed as suggesting the possibility of developing a spec-
trum of aggregate-disaggregate models for different types of trip-chaining behavior.

4.5.2 Analysis of Conditional and Total Interaction Frequencies

We have seen that the threshold frequencies NS, : wk € W x K, for each configura-
tion c, represent total numbers of individual trip-chain frequencies occurring during
some relevant period. In the entropy-maximizing approach these frequencies are pre-
specified by constraints of the form 3 ; Ny = N; (origin constraints), 3; Nij = N;
(final destination constraints), >;; Nijx = N (intermediate destination constraints),
and Y, Nk = Ny; (origin-final destination constraints).

Similarly, in disaggregate random-utility approaches the focus is on the choice
behavior of a randomly sampled individual, rather than on how many choices are
made. Hence, all information about total frequencies of choices must again be spec-
ified exogenously. In particular, one could possibly estimate the expected number of
trips N, by prespecifying the exact number of potential trips n and computing the
conditional expectation E(NN = n); or, alternatively, by exogenously specifying an
exact distribution for the number of potential trips N and computing the unconditional
expectation E(N.) = EN[E(N|N)].

In contrast to these approaches, the threshold theory yields exact Poisson dis-
tributions for frequency totals N, which are entirely determined by their associated
mean values E(NS,). Moreover, if the separation-friction function F(.), the origin-
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weight function A(.), and the intermediate-destination weight function B(.) can be
specified up to some small unknown number of parameters, then by treating the ori-
gin and destination functions as finite parameter vectors, one can carry out standard
maximum-likelihood estimation and testing. In particular, if functions F(.), A(.) and
B(.) have (or can be approximated by) the exponential form, then the resulting estima-
tion procedure would yield exponential (generalized) gravity models which are similar
to those derived by the entropy-maximizing framework. Thus, entropy-based gravity
models (derived from Wilson’s probabilistic framework under Stirling’s approximation)
can be seen as an approrimation to the gravity models derived by the threshold theory.

Finally, if we are interested in the relative frequency distribution of intermedi-
ate destinations k given commuting trips between zonal pairs w, then the resulting
conditional probabilities

=pc(wk)= A(w)B(k)F (cuwk) =  B(k)F (cuwk)
pe(w) T A(w)B(k)F(cwr) Xk B(k)F(cuk)

are formally equivalent to a disaggregate multinomial logit model with deterministic

pc(k|w) Vwke W x K (20)

utility component given by Vi, = In[B (k)] + In[F (cwk)], for each specification of F(.).
Therefore, given the above definitions of functions B(.) and F'(.), this class of disag-
gregate models obtain a new behavioral interpretation under the threshold theory.

4.6 Limitations of the Theoretical Framework

A number of issues which limit the range of application of the threshold theory are now
presented. These issues relate to the assumptions made during the development of the
theory and range from variations in the individual threshold levels to the measurement
of spatial separation between commuters and intermediate opportunities to the effects
of the independence hypotheses.

4.6.1 Tradeoffs Among Separation Measures

The threshold theory postulates a separation-threshold vector (t.,...,t%) of maximum
tolerable levels for the corresponding separation measures (cly, . .., cL.), and implicitly
assumes that there are no substitution effects among those measures for each individ-
ual traveler. Moreover, the theory assumes that no substitution between separation
measures takes place. Of course, nothing prevents us from using known functional rela-
tionships among different measures. If, however, individual threshold levels are subject
to stochastic variations, these variations are indistinguishable from tradeoff effects in
the models developed in (17).
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4.6.2 Measurement of Spatial Separation

Another issue relates to the measurement of spatial separation between commuters and
opportunities in intermediate destinations. It is assumed that all commuters living
and working in the same origin-destination zonal pair w perceive the same separations
(ctp,...,cl,), between their commuting and a deviation for an intermediate stop at
zone k. This requires that the zones be sufficiently small to preclude within-zone vari-
ation of these measures and that values of these measures be sufficiently prominent
to preclude significant perceptual variations among individuals. Again, the theory as-
sumes that origins zones are homogeneous and intermediate destinations are prominent
enough so that their attributes can be perceived in a similar manner by commuters in
w.

These assumptions are particularly strong, especially with subjective measures
of separation, such as information uncertainty about distant opportunities. The same
problem, of course, is seen in the disaggregate random-utility models where separation
measures appear as part of the deterministic component in individual utility functions;
it also appears in the aggregate entropy-maximizing models where such measures ap-
pear as part of the constraints or the objective function.

4.6.3 The Effects of the Independence Hypotheses

During the discussion of the independence assumptions, a number of cases were pre-
sented where these assumptions could not hold. It would not be difficult to construct
additional examples, and indeed, each one would require a special treatment. Thus the
independence axioms may be viewed as a set of null hypotheses to employ in testing
for the presence of spatial dependencies. The fact that these axioms imply an exact
distribution theory renders them capable of being rejected on statistical grounds alone.
It would be prudent to attempt to reject these hypotheses before attempting to de-
velop more elaborate models. Indeed, Smith (1987a) envisioned a role for the threshold
theory as a benchmark model against which more complex types of spatial interaction
behavior can be compared.

5 Empirical Analysis

The gravity model derived in (17) was estimated using data from a home interview
survey. Since we are considering only one separation configuration, the results reported
in this chapter remain relevant for that particular configuration. The results from the
calibration of the model are very promising toward the development of trip-chaining
models which can either stand alone or be incorporated into the more general urban



29

travel demand forecasting models.

The threshold gravity model in (17) has been estimated by an adaptation of the
modified scoring procedure (Yun and Sen, 1994), a maximum likelihood procedure.
The modified scoring procedure has demonstrated superior performance against other
maximum likelihood estimation procedures for much larger problems (see Yun, 1992;
Yun and Sen, 1994; Sen and Smith, 1995, Chapter 5). In this particular application
the origin-final destination weight function A.(w) , and the intermediate destination
weight function B.(k) are treated as parameters. The modified scoring procedure starts
with the DSF procedure (see Sen and Smith, 1995, Chapter 5). The DSF procedure
balances a two-dimensional matrix with rows the origin-final destination zonal pairs,
and columns the intermediate zones by computing the balancing coefficients A,’s and
Bi's. As a result, Tyi’s become a function of the vector 8. The modifying scoring
procedure then expresses small changes of Ty's as a function of small changes in 0
and uses the normal equations in the maximum likelihood estimation to introduce
iteratively a correction in the current value of . Details of the particular adaptation
are presented in Metaxatos (1995).

Maximum likelihood estimates of 8’s possess very desirable asymptotic proper-
ties. In particular such estimates are proved (Sen and Smith, 1995, Chapter 5) to be
efficient, strongly consistent, asymptotically normal and robust for realistic departures
from the Poisson assumption. Even for small sample sizes (case of interest here), the
same authors report that the parameters estimates may not present noticeable bias or
deviation from normality. This guarantees that tests and procedures, such as those for
determining sample sizes, based on the normal distribution can be safely carried out.

5.1 Data Preparation and Related Issues

The model derived in (17) was estimated based on data from a home interview survey.
In particular, the 1990 Chicago Area Transportation Study (CATS) Household Travel
Survey (Ghislandi et al, 1994) was used. The survey was a self-administered mail-
out mail-back survey which targeted individuals at their homes sampled from electric
meter addresses. It collected travel and demographic data for individuals of age 14 and
older. The data base includes 19,314 households (24% average response rate) from the
six-county region of Northeastern Illinois, or 40,568 persons who made 162,755 trips
on a particular day (Thursday).

The survey data were geocoded by CATS staff using the quarter-section coding
method. Over 15,000 quarter-sections comprise the entire Chicago metropolitan area.
A quarter-section is a zone of approximately 0.25 square miles (almost 0.65 square
kilometers) or 160 acres. Trips participating in single-stop work trip chains were next
identified. 1,454 commuters from home to work, and 2072 travelers in the reverse
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commute were found stop once for an intermediate activity.

The quarter section geography proved to be a very detailed system for the data
available. We sought thus a more aggregate zone system and adopted the 1992 CATS
regional 1640-zone system. This zone system retains the finer grid of the quarter-section
system in the more urbanized areas (for example, in the Chicago Central Business
District area the two systems coincide) while aggregating the quarter-sections to 9 or
36 square mile-zones in the sparsely-populated areas.

Let us examine the effect of such an aggregation. Assume that a number of zones
has been aggregated from i; to i and from j; to jo. Then,

iy J2 iy J2

Ty = AiBjFi; = Y. Tij = > Y AiBjF; (21)

i1 J1 i1 5

We may write now,

iy J2 Z y iy J2
Ty = ZZT,.,- ”AB ZEAB.
1 Jl i@ 5
Bj = ArBF, 22
”AB,; E kBiFki (22)
where,
iz
A = Y A
i1
J2
B, = Y Bj
J
232 g DR,
F]d Z‘l]' ]1j27‘ J+ ] (23)
71 AiB;

Therefore, if we aggregate our zonal system from a set of ij-zones to a set of kl-zones
we obtain a new gravity model Ty. The new model has separation-friction function
F(cw), a weighted average of the initial separation-friction function F(c), as in (23).
Most importantly, the new model predicts the same total number of trips between
aggregated zones as the former model for the more detailed zone system. This result
is known as the compressibility property of the gravity model, as was indicated first
by Bearwood and Kirby (1975). In this application we choose to ignore the possibility
that when the aggregated zones are large, the functional form of F may not be the
same.

In this application separate trip tables were built in order to investigate the
attitude of commuters during the home-to-work (basically in the morning) and work-
to-home (basically in the afternoon) commute. In those tables one dimension is always
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reserved for the home-work zonal pairs and the other dimension for the intermediate
destinations. The home-to-work one-stop trip chain is represented by a 51x5 trip table
(in Table XI), while the reverse trip chain by a 80x7 trip table (in Table XIII).

In the work-to-home table, two individual characteristic cases were isolated. The
first relates to a commuter, who on the way back from work deviated over 40 miles
for an intermediate stop. The second case relates to another commuter, who on the
way back from work continued past the home location for almost 20 more miles for
an intermediate stop. These two cases can hardly be considered typical trip-chaining
behavior. Therefore, the results reported for the work-to-home trip chains do not take
into account those two cases. As a result, we ended up with 63 observations for the
home-to-work single-stop trip chain and 87 observations for the reverse trip chain.

Zone-to-zone airline distances (in miles) were used initially as separation measures
because they ac= easy to compute. A disadvantage of using distance as a separation
measure is that it is implicitly assumed that each commuter perceives each mile the
same way as every other mile. Thus, we obtained also data for travel times (in minutes)
from CATS. Travel times in this case are automobile shortest routes (automobile skims)
between zones. They were computed for the 1640-zone system using a user-equilibrium
traffic assignment algorithm (see Patriksson, 1994).

5.2 Covariance of @’s

Once the parameters § have been estimated from the modified scoring procedure, we
may compute their covariance matrix and carry out hypotheses testing. The computa-
tion of the covariance matrix of Poisson gravity models parameters is given by Sen and
Smith (1995). The diagonal elements of the covariance matrix of 8’s are the variances.
Obviously, in the case of a single 6, the covariance matrix is a scalar. The standard
errors of the means of @’s are, simply, the square roots of variances divided by the
square root of the number of observations.

Parameter estimates and standard errors are reported in the tables of the results
in section 5 and used in t-tests to test the hypothesis that the models for the home-to-
work and the reverse trip chains are different. An additional hypothesis would be to
test whether we need a different model in each stage of the trip chain. If the values of
6’s are substantially different and the standard errors relatively small, we may be able
to distinguish between the two models under consideration.
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5.3 Goodness of Fit

Assuming that observations Ny are independently Poisson distributed, the (Pearson)
x? statistic,

Z (ka - wk) (24)

Twlc

where ka is an estimate of Ty, is an appropriate measure of the overall fit of a model.
For large Ty's the x? statistic has the x? distribution. This will not be true in our
case where T,'s are very small. We choose, however, to adopt the particular notation
for the x? statistic for its elegance.

In the case of Poisson gravity models, Took = Tk This is because of the existence
of large enough (even though individual N,i's may be small, or even zero) sufficient
statistics Yk Nuwk, Yow Nuwk, and Yy NuwkCwr Which enter into the computation of the
normal equations. If Tk = Tok, then x2 = Z2, where

Z (ka ) (25)

wk

Since E(Nyk) = Tk and because N, have the Poisson distribution,
var(Nyk) = E(Nuk — Tuk)? = Tuk (26)

Therefore, E(Z?) = W K, where W the number of origin-final destination zonal pairs w
and K the number of intermediate destinations k. Equivalently, E(Z?/WK) = 1. Thus
the so-called “x2-ratio” (appearing also in the tables of section 5) has an expectation
which is a.symptotica.lly 1. It can be shown (Kim, 1993; Sen and Smith, 1995, Chapter
5) that the variance of the x2-ratio is,

var[Z2/(WK)] = Y |(Tuk WK™ + 2(WK) 7 (27)
wk
If T\x's are bounded away from zero (which is the case in exponential gravity models
with finite parameters 6), the variance of Z2/W K — 0, as WK — oo. This result can
be seen in the tables of section 5, although neither W nor K are very large.

5.4 Empirical Results

A variety of functional specifications for separation profiles were tested, based on airline
distance or travel time as separation measures, and a number of different gravity models
were estimated. The results are shown in Tables I-X for two gravity models at a time.
Tables I to V are pertinent to the home-to-work single-stop work trip chains, while
Tables VI to X to the work to home single-stop work trip chains.
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In particular, Table I (and VI) presents two specifications with one separation
measure (distance or travel time). The first model considers the sum of separation
measures at each stage of the trip chain. In the second model the direct home to work
distance (travel time) is subtracted from the previous sum. In Table II (and VII) we
continue to consider only one separation measure. This time, however, the square roots
of the respective separation measures in Table I are considered.

In Table III (and VIII) two models are specified using two separation measures.
The first model considers distances (or travel time) of each leg of the trip. In the second
model the square roots of the separation measures of each leg are used. Table IV (and
IX) the two models consider combinations of linear and the square-root transformation
of distances and travel times at each stage of the trip. Finally, in Table V (and X) the
two gravity models consider combinations of linear and the logarithmic transformation
of distances and travel times at each stage of the trip.

The overall fit of each of the twenty models considered in Tables I to X is very
good. Typical examples of estimated frequencies are given in Table XII (for the home-
to-work trip chain) and Table XIV (for the reverse trip chain). Comparisons between
the cell-to-cell frequencies of the corresponding estimated and observed trip tables
leave little doubt that the models presented in Tables I-X are good starting points for
modeling single-stop work trip chains.

In most of the cases the y2-ratio remains lower than 1 with variance equal to
zero. This may be due to the fact that the small number of w’s and k’s does not
compensate for the large number of zero-valued Nyi's. This phenomenon for Ny
matrices containing mainly zeros has also been noticed by Boyle and Flowerdew (1993),
who suggest to not spare the effort of searching for other relevant variables to make
the model fit better, despite an early success of a very good fit.

Under the Poisson assumption and with N.'s sufficiently large, the x2-ratio
would be approximately 1. Thus, if the model in (17) fits perfectly and each of the
separation measures, be it distance or travel time, was chosen perfectly, then the x2-
ratio would be close to 1. However, since the data are actual observations we had
expected that the x2-ratio would be larger than 1. This is because not only the se-
quencing of activities in a trip chain is interdependent, but also trips at each stage of
a trip chain are interdependent. For example, at the time the 1990 CATS Household
Travel Survey was conducted, a nationwide average of 1.51 person-trips for each pri-
vately owned vehicle was observed (Vincent et al, 1994). This alone would raise the
expectation of the x2-ratio to 1.51. Therefore, even those few models with a x2-ratio
overall measure of fit larger than 1 are not too bad. Note also, that travel time alone
gives almost uniformly higher x2-ratios than distances used in the same functional
specification.
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Another issue which needs further investigation is whether commuters perceive
separation measures such as travel time linearly or non-linearly. It is not conclusive
from this study whether square roots of travel time lead to better model fits than travel
time alone. In addition, with such large standard errors for parameters estimates (larger
in the case of home-to-work trip chains due to an even smaller sample size) the usual
t-test cannot distinguish at any reasonable significance level between models using
distance or travel time only. This apparent weakness can be turned into an advantage
if we think of the models developed in this study as stand-alone models which can be
applied successfully in situations where more detailed data is difficult to obtain.

More importantly, given that travelers trade off different separation measures
such as travel time and travel cost, it would be interesting to test whether these trade-
offs are perceived in a linear or nonlinear fashion. We think, however, that these issues
can be better addressed in a more general framework where the trip-chain models
developed in this study are an integral component.

An interesting point related also to the large standard errors is that it may not
be necessary to estimate different parameters at each stage of the trip chain given
the same separation functional specification at each stage. This result can be seen in
Tables III and VIII where travel costs are assumed to be perceived either linearly in
both stages or non-linearly in both stages. This is a pleasant result from a modeling
perspective because models with fewer parameters are easier to built, maintain and
transfer. We will stop short, however, from making any strong recommendation.

Another issue may be seen to arise from Tables IV, V, IX and X. The models
reported in those tables have a different functional specification for travel costs at
each stage of the trip chain. Sen and Smith (1995, Chapter 5) report that the power-
ezponential specifications in Tables V and X in particular, are advantageous from a
statistical viewpoint when comparing the relative benefits of power specifications and
exponential specifications (in our case the travel costs are stage-specific). In addition,
the power-exponential specification may have behavioral meaning in certain cases (e.g.
“marginal perceived cost” as in Zaryouni and Liebman, 1976).

A note on the sensitivity of the parameters at each stage of the trip chain will now
be made. In the models built with the same functional specification for travel costs,
the parameter estimates for the first stage of the trip, seem to have a higher (absolute)
value. This is more obvious for the home-to-work than the reverse trip chain and means
that the home location “pulls” stronger than the work location when deciding to make
a stop. This is in agreement with the findings in Kim (1993) for shopping trip chains.

Finally and most importantly, in comparing the same models for the home-to-
work and the reverse trip chains a critical result appears to emerge. Parameter esti-
mates for the same stage of the trip for those two types of trip chains do not seem to
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be distinguishable. At this point we prefer to remain cautious not to generalize, not
only because of sample sizes, but also because further investigation is needed for trip
chains with more than two stages. However, we feel that if this result holds, it can be
a very fortunate coincidence for the transportation modeler.



TABLE 1

HOME TO WORK
ONE LINEAR SEPARATION MEASURE

Cik + Ckj Cik + Ckj — Cij
Parameters || Distance | Travel Time || Distance | Travel Time

9 -0.1625 -0.0920 -0.1615 -0.0918
s.e.(6) 0.0335 0.0285 0.0332 0.0284
x%-ratio 0.42 0.57 0.41 0.57
var(x?) 0.00 0.00 0.00 0.00

[ Tuc= [ AuwBiexplf(cik+ ckj)] || Awexp(=bcij)Bxexpl6(cix + ckj)] |
TABLE II

HOME TO WORK
SQUARE ROOT OF ONE SEPARATION MEASURE

Parameters || Distance | Travel Time || Distance | Travel Time
0 -1.5502 -1.1807 -1.0995 -0.8535
s.e.(0) 0.3297 0.2328 0.2266 0.1582
x*-ratio 1.19 1.26 1.16 1.26
var(x?) 0.00 0.00 0.00 0.00

[ Tuk= [ AuBrexp(8v/cx T ckj) || AwBrexp(0y/Cix + cj — Cij) i




TABLE III

HOME TO WORK: TWO LINEAR OR
SQUARE ROOTS OF TWO SEPARATION MEASURES

(cik, ckj)’ (V/Cik, v/Ck5)’
Parameters || Distance | Travel Time || Distance | Travel Time

0, -0.2053 -0.1186 -1.1648 -0.9337
s.e.(6,) 0.0421 0.0383 0.2032 0.1735

0, -0.1036 -0.0615 -0.7726 -0.5884
s.e.(05) 0.0215 0.0178 0.1276 0.1017
x*-ratio 0.38 0.59 0.42 1.31
var(x?) 0.00 0.00 0.00 0.00

[ Tuc= [ AuwBrexp(Bici + 02ces) | AwBiexp(61y/Cik + 02¢/Cj) |

TABLE IV

HOME TO WORK: LINEAR-SQUARE ROOT

COMBINATION OF TWO SEPARATION MEASURES

Ca o) o)
Parameters || Distance | Travel Time || Distance | Travel Time
0, -0.1973 -0.1144 -1.2085 -0.9625
s.e.(01) 0.0411 0.0278 0.2158 0.1823
02 -0.7738 -0.6157 -0.1002 -0.0576
se.(9) | 0.1281 0.1152 0.0208 0.0117
x*-ratio 0.36 0.85 0.38 0.83
var(x?) 0.00 0.00 0.00 0.00

[ AwBr exp(Bicik + 02,/Ck7) || AwBi exp(81y/Cix + 62¢k;) |
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TABLE V

HOME TO WORK: LINEAR-LOGARITHMIC
COMBINATION OF TWO SEPARATION MEASURES

38

(cik, log cx;)’ (log cik, ckj)’
Parameters || Distance | Travel Time | Distance | Travel Time
0, -0.1951 -0.1146 -1.5396 -1.6912
s.e.(91) 0.0397 0.0325 0.2528 0.2727
04 -1.0999 -1.1486 -0.1110 -0.0597
s.e.(62) 0.1425 0.1518 0.0308 0.0153
x*-ratio 0.42 1.51 0.45 1.62
var(x?) 0.00 0.00 0.00 0.00
[ Twe= [ AuwBilck)™expl0icik) | AwBilca)” exp(facks) |
TABLE VI
WORK TO HOME
ONE LINEAR SEPARATION MEASURE
Cik + Cij Cik + Ckj — Cij
Parameters || Distance | Travel Time || Distance | Travel Time
) -0.2247 -0.1158 -0.2257 -0.1167
s.e.(8) 0.0312 0.221 0.0314 0.225
x2-ra.ti0 0.46 0.77 0.47 0.78
var(x2) 0.00 0.00 0.00 0.00
[ AwBrexp[8(cik + ckj)] | Awexp(—0ci;)By explf(cik + ckj)] ||

L Tur=




TABLE VII

WORK TO HOME
SQUARE ROOT OF ONE SEPARATION MEASURE
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Parameters || Distance | Travel Time || Distance | Travel Time
0 -1.5917 -1.1827 -1.1152 -0.8825
s.e.(9) 0.2989 0.2485 0.2323 0.1132
x*-ratio 1.10 1.10 1.10 1.10
var(x?) 0.00 0.00 0.00 0.00
“ Twr = " AywByexp(0+/cik + ckj) ” AwBrexp(8+/cik + ckj — cij) ”

TABLE VIII

WORK TO HOME: TWO LINEAR OR
SQUARE ROOTS OF TWO SEPARATION MEASURES

(cit: ckj)’ (Vi /)’
Parameters || Distance | Travel Time || Distance | Travel Time

5, 02275 | -0.1130 | -1.2664 20.8607
s.e.(67) 0.0412 0.0228 0.2335 0.1107

2 -0.2224 -0.1184 -1.3445 -0.9639
s.e.(62) 0.0398 0.0230 0.2447 0.1225
x*-ratio 0.46 0.79 0.29 0.44
var(x?) 0.00 0.00 0.00 0.00

[ AwBx exp(8:cik + 0ack;) || AwBrexp(81+/Cikx + 82/Cx5) ||




TABLE IX

WORK TO HOME: LINEAR-SQUARE ROOT
COMBINATION OF TWO SEPARATION MEASURES

(cik, /)’ (Veik, ckj)’
Parameters || Distance | Travel Time | Distance | Travel Time

01 -0.2035 -0.1011 -1.3265 -0.9069
s.e.(61) 0.0393 0.0215 0.2518 0.1232

02 -1.4376 -0.9967 -0.1934 -0.1087
se(6y) | 0.2858 0.1328 0.0335 0.0229
x%-ratio 0.30 0.48 0.43 0.61
var(x2) 0.00 0.00 0.00 0.00

[ AwBxexp(81cik + 02y/Ckj) || AwBr exp(81v/Cik + fack;) ||

TABLE X

WORK TO HOME: LINEAR-LOGARITHMIC
COMBINATION OF TWO SEPARATION MEASURES

(log cik, ckj)’

(cik, log ckj)’
Parameters || Distance | Travel Time || Distance | Travel Time
0, -0.1880 -0.0934 -1.4417 -1.4043
s.e.(61) 0.0383 0.0195 0.2767 0.2629
0, -1.7038 -1.6009 -0.1760 -0.1024
s.e.(f2) 0.3207 0.3017 0.0364 0.0205
x*-ratio 0.28 0.39 0.62 0.63
var(x2) 0.00 0.00 0.00 0.00

[ AwBi(ck;)” exp(Bicik) [ AwBi(cix)” exp(facks) ||
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5.5 Short-Term Forecasting

Let the random variable N,S,Q be a future observation of the flow from w to k. In the

short run, N,E,fk) and N will be highly (serially) correlated. In the case of commuter
trips, for example, both N ,S,fk) and N will be counts of mostly the same people stopping
at the same intermediate destinations. This assumption appears to be very strong from
a first point of view. We will argue immediately, however, that this is not the case
assuming implicitly that the separation configuration will not change in a manner that
will have a drastic impact on activity patterns during the forecast period.

Home and work locations do not change often and may be assumed to remain the
same in the short run (e.g. a five-year period). We will make now an assumption which
is consistent with those made in the presentation of the threshold theory. In partic-
ular, we will assume that individual threshold considerations remain relatively stable
over that short period of time, so that the sizes of the populations of commuters and
opportunities in intermediate destinations are not influenced by factors which are not
consistent with Poisson randomness. Then for activities in intermediate destinations
three cases may be considered.

1. The first case can be made for discretionary activities for services which, by
nature, stay at the same location for longer periods of time, such as shopping
malls, banks, theaters etc. In those cases there is no reason to believe (at least
not without additional information) that commuters will change attitudes toward
patronizing the same facilities in the near future. Hence commuting patterns will

remain the same.

2. The second case relates to discretionary activities for services which are more
“foot-loose”, such as visits to dry-cleaner’s, fast-food restaurants, super markets,
etc. If these services move to other locations during the forecast period, then
we will assume that individual threshold considerations toward separation and
accessibility (see Metaxatos, 1995 for precise definitions) may prevent the real-
ization of a radically changed behavior. Hence we assume that individuals will
choose to pursue the same activities in nearby locations. Therefore, if the spatial
configurations of activities in intermediate destinations have been designed to be
sufficiently homogeneous, commuting patterns to those destinations will remain
relatively the same.

3. Finally, the third case relates to mandatory (in the relative sense adopted in
previous chapters) intermediate activities, such as visits to a doctor, a friend,
etc. Of course, one may argue that trips for this type of activities are more
likely to be made directly to the relevant destinations and not as part of trip
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chains. If there is enough evidence to support this claim, then there would be no
difficulty in forecasting those trips using more traditional methods. If, however,
we think of these activities as part of future trip chains, then we argue that the
more behavioral threshold theory framework may accommodate even this type
of behavior.

A future move of the family doctor, or a personal friend will almost certainly
imply a change in individual trip-chaining patterns, because individual attitudes
toward emissivity threshold considerations (see Metaxatos, 1995) will come into
the picture in a more dramatic fashion than separation or accessibility threshold
considerations. We choose to believe, however, that those cases can be treated as
individual uncommon cases which will not affect overall patterns of intermediate
stops.

Given the discussion above we may then argue that the variance of the difference of
future and present observations will be smaller than the variance of future observations

alone. Hence,
va.r(N,(u’;) — Nuk) = var(N,E,Q) 4~ var(Nyk) — QCov(Ni,fk)ka) (28)

where, var(.) stands for the “variance of” and Cov(.) for the “covariance of”, will be
small. In such cases, especially if Ny's are known, Sen and Smith (1995, Chapter 5)
suggest that it would be preferable to predict (N ,E,fk’ — Nyi)’s and add the predictions
to the Nyi’s. A possible set of predictions for (N,E,’;) — Nyk)’s are (ff‘,ff;) — Twk)’s. Thus,
if the future is not too far off,

Nut + (T = Tur) (29)
may yield a better prediction than ka. The computation of Afwk = Tlf,’,? - hwk can

be made easily using the LDSF procedure (see Sen and Smith, 1995, Chapter 5).

6 Conclusion

We have argued that the assumption on the decision process underlying trip-chaining
behavior is instrumental in the development of trip-chain models. In particular, the
assumption of an r-sequential decision making process legitimizes the study of single-
stop trip chains. The threshold theory for single-stop trip chains operationalizes an
alternative framework for r-sequential trip-chaining processes focusing on the individual
traveler in an aggregate way. As such, the theory may be seen to operate in the range
between aggregate and disaggregate models of travel behavior. The basic implication
of the theory is the Poisson nature of the resulting trip-chain frequencies. Trip chains
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and, in particular work trip chains, may be seen as commuting trip patterns disrupted
for single discretionary activities. If individual commuters choose their intermediate
activities so that mean frequencies are comparable to their variance, then the threshold
theory provides an appealing alternative to modeling r-sequential trip-chaining behav-
10T

The empirical analysis has corroborated the belief that the theoretical framework
proposed for modeling trip chains has initiated a legitimate and promising research di-
rection. However, the empirical work done in this thesis is by no means exhaustive.
Hence, additional separation measures and combinations of separation measures need
to be tested. Moreover, in cases where emissivity and accessibility threshold con-
siderations are too obvious to ignore, then we need to explore additional functional
specifications for models proposed in Metaxatos (1995). We anticipate that on-going
research will focus on the following issues: 1) What additional specifications for thresh-
old variables is needed for a better model fit and lower standard errors? 2) How do
commuters perceive these threshold variables? 3) How can the theoretical framework
be extended to consider multi-stop and mode chaining and time? 4) What interaction
effects between trip-chaining behavior and land use patterns are implied? 5) In which
cases contagion effects or band-wagon effects which lead individual commuters to iden-
tical interaction choices, require the consideration of additional trip-chaining models
of restricted or extra variation? 6) Do individual threshold considerations remain rela-
tively stable over short periods of time? 7) How can congestion effects on trip-chaining
patterns (and the other way round) be studied in the light of these new developments?
We would like, therefore, to invite those who have become interested from the initial
success of the new development to offer additional insights.
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TABLE XII

HOME-TO-WORK ESTIMATED TRIPS

k-destinations

ij-pairs 1 2 | 3 | 4 | 5

1 1.0056573 | 0.0000619 | 0.0000128 | 0.0000001 | 0.0000005
2 1.0048568 | 0.0004972 | 0.0003209 | 0.0000023 | 0.0000155
3 1.0043260 | 0.0007564 | 0.0005607 | 0.0000033 | 0.0000214
4 1.0057078 | 0.0000227 | 0.0000050 | 0.0000000 | 0.0000002
5 2.0109157 | 0.0003638 | 0.0001572 | 0.0000010 | 0.0000061
6 1.0040187 | 0.0010976 | 0.0005042 | 0.0000032 | 0.0000182
7 0.9999905 | 0.0037785 | 0.0015226 | 0.0000170 | 0.0001049
8 1.0003323 | 0.0045063 | 0.0005167 | 0.0000034 | 0.0000149
9 0.7522021 | 0.0513065 | 0.1818613 | 0.0018202 | 0.0112587
10 0.3109930 | 0.6383741 | 0.0058771 | 0.0000517 | 0.0001200
11 0.8801282 | 0.1121150 | 0.0044331 | 0.0000403 | 0.0001199
12 0.8669945 | 0.1217534 | 0.0070103 | 0.0000716 | 0.0002009
13 0.0464601 | 0.4575182 | (.4493346 | 0.0023233 | 0.0055271
14 0.0534868 | 0.2886405 | 0.6054151 | 0.0049199 | 0.0193068
15 0.0018905 | 0.9303545 | 0.0002980 | 0.0000054 | 0.0000075
16 0.0151135 | 0.9154366 | 0.0030174 | 0.0000420 | 0.0000688
17 0.0057256 | 0.9237019 | 0.0034654 | 0.0000500 | 0.0000770
18 0.0012558 | 0.9306926 | 0.0005509 | 0.0000108 | 0.0000146
19 0.0010902 | 1.8631817 | 0.0006172 | 0.0000118 | 0.0000159
20 0.0182573 | 0.8909463 | 0.0251896 | 0.0002645 | 0.0005296
21 0.0021468 | 0.9296291 | 0.0007957 | 0.0000127 | 0.0000194
22 0.0011846 | 0.9305332 | 0.0007823 { 0.0000131 | 0.0000195
23 0.0000521 | 0.0001655 | 0.8075664 | 0.0300821 | 0.1562838
24 0.0000506 | 0.0001158 | 0.8809947 | 0.0146210 | 0.0952300
25 0.0000487 | 0.0000910 | 1.9574423 | 0.0026137 | 0.0134576
26 0.0000214 | 0.0000505 | 0.9611635 | 0.0045106 | 0.0218325
27 0.0008732 | 0.0033072 | 0.9478232 | 0.0086061 | 0.0271808
28 0.0000645 | 0.0003483 | 0.9681649 | 0.0051044 | 0.0135620
29 0.0000283 | 0.0002941 | 0.9539542 | 0.0146521 | 0.0189208
30 0.0000014 | 0.0000014 | 0.0094480 | 0.0304903 | 0.9886245
31 0.0000025 | 0.0000135 | 0.0915191 | 0.7358050 | 0.1966988
32 0.0000003 | 0.0000024 | 0.0041955 | 6.0358870 | 0.1253714
33 0.0000002 | 0.0000014 | 0.0030592 | 0.8795831 | 0.1450075
34 0.0000002 | 0.0000011 | 0.0017269 | 0.9588229 | 0.0670468
35 0.0000005 | 0.0000028 | 0.0053105 | 1.7396576 | 0.3103936

50



TABLE XII

HOME-TO-WORK ESTIMATED TRIPS (CONTINUED)

k-destinations

ij-pairs 1 2 | 3 I 4 | 5
36 0.0000003 | 0.0000009 | 0.0035894 | 0.0845477 | 0.9406042
37 0.0000007 | 0.0000022 | 0.0067464 | 0.4018611 | 0.6195513
38 [ 0.0000014 | 0.0000027 | 0.0229983 | 0.0467052 | 0.9582512
39 0.0000009 | 0.0000015 | 0.0110777 | 0.0316801 | 0.9857335
40 0.0000016 | 0.0000024 | 0.0190133 | 0.0323118 | 0.9768215
41 0.0000010 | 0.0000020 | 0.0099648 | 0.1566692 | 1.8907451
42 0.0000002 | 0.0000003 | 0.0015227 | 0.0107863 | 1.0166255
43 0.0000055 | 0.0000050 | 0.0217190 | 0.0350940 | 0.9712062
44 0.0000071 | 0.0000091 | 0.0639721 | 0.0719008 | 1.9192832
45 0.0000026 | 0.0000038 | 0.0261304 | 0.0567087 | 1.9739798
46 0.0000010 | 0.0000015 | 0.0100226 | 0.0261719 | 0.9923500
47 0.0000003 | 0.0000010 | 0.0038832 | 0.3939483 | 0.6304635
48 0.0000011 | 0.0000022 | 0.0114150 | 0.1742442 | 0.8426169
49 0.0003306 | 0.0002258 | 0.9359758 | 0.0050408 | 0.0470649
50 0.0000577 | 0.0000555 | 0.9673480 | 0.0022266 | 0.0176258
51 1.0057097 | 0.0000212 | 0.0000048 | 0.0000000 | 0.0000002

51
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TABLE XIII
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TABLE XIII

OBSERVED WORK-TO-HOME
TRIPS (CONTINUED)
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TABLE XIII

OBSERVED WORK-TO-HOME
TRIPS (CONTINUED)
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ESTIMATED WORK-TO-HOME TRIPS

TABLE XIV

95

k-destinations

ij-pairs 1 2 3 4 5 6 7

1 0.367955 | 0.609277 | 0.003409 | 0.000143 | 0.000076 | 0.000102 | 0.000806

2 0.815217 | 0.160213 | 0.003072 | 0.000224 | 0.000198 | 0.000177 | 0.000709
3 0.913542 | 0.064628 | 0.000867 | 0.000055 | 0.000047 | 0.000040 | 0.000169
4 0.954564 | 0.024334 | 0.000203 | 0.000010 | 0.000008 | 0.000007 | 0.000035
5 0.279236 | 0.165643 | 0.060234 | 0.058712 | 0.222670 | 0.190036 | 0.024317
6 0.905074 | 0.073661 | 0.000494 | 0.000023 | 0.000015 | 0.000016 | 0.000098

7 0.943488 | 0.035266 | 0.000345 | 0.000019 | 0.000015 | 0.000013 | 0.000065
8 0.923116 | 0.055234 | 0.030720 | 0.000044 | 0.000040 | 0.000031 | 0.000119
9 0.817818 | 0.157087 | 0.003622 | 0.000268 | 0.000303 | 0.000181 | 0.000527
10 0.934318 | 0.044425 | 0.000390 | 0.000020 | 0.000016 | 0.000014 | 0.000068
11 0.218725 | 0.184851 | 0.115686 | 0.202259 | 0.158348 | 0.091947 | 0.026616
12 0.082307 | 0.898692 | 0.001614 | 0.000054 | 0.000028 | 0.000034 | 0.000275
13 0.012783 | 0.958936 | 0.009853 | 0.000411 | 0.000291 | 0.000213 | 0.000894
14 0.009168 | 0.964219 | 0.007028 | 0.000261 | 0.000100 | 0.000193 | 0.002405
15 0.009178 | 0.914931 | 0.053381 | 0.000892 | 0.000351 | 0.000449 | 0.004469
16 0.001011 | 0.035827 | 0.822063 | 0.007222 | 0.001396 | 0.003739 | 0.117023
17 0.000225 | 0.007836 | 0.967574 | 0.002475 | 0.000548 | 0.000873 | 0.008845
18 0.000132 | 0.004590 | 1.955012 | 0.002675 | 0.000483 | 0.000936 | 0.012903
19 0.000234 | 0.007324 | 0.865457 | 0.005278 | 0.000827 | 0.002640 | 0.106596
20 0.001055 | 0.026930 | 0.902344 | 0.012264 | 0.003656 | 0.004571 | 0.037827
21 0.000214 | 0.005580 | 0.583611 | 0.100956 | 0.008132 | 0.059390 | 0.233922
22 0.000196 | 0.006202 | 0.553214 | 0.007893 | 0.001035 | 0.003961 | 0.415529
23 0.000035 | 0.001065 | 0.973265 | 0.002698 | 0.000362 | 0.000834 | 0.010147
24 0.000061 | 0.001117 | 0.066451 | 0.037778 | 0.869373 | 0.035480 | 0.017833
25 0.000151 | 0.003696 | 0.529845 | 0.135795 | 0.008753 | 0.039379 | 0.274255
26 0.000036 | 0.000677 | 0.042358 | 0.856061 | 0.028613 | 0.066253 | 0.012971
27 0.000030 | 0.000581 | 0.035550 | 0.851838 | 0.022859 | 0.080251 | 0.015907
28 0.000015 | 0.000285 | 0.015987 | 0.910598 | 0.016627 | 0.056968 | 0.006711
29 0.000030 | 0.000566 | 0.032035 | 0.824502 | 0.023700 | 0.108532 | 0.017963
30 0.000027 | 0.000526 | 0.030389 | 0.816750 | 0.017072 | 0.118056 | 0.024329
31 0.000008 | 0.000135 | 0.005062 | 0.875394 | 0.050094 | 0.075658 | 0.002186
32 0.000003 | 0.000061 | 0.003018 | 0.947441 | 0.005511 | 0.048949 | 0.002180
33 0.000201 | 0.004734 | 0.586434 | 0.249604 | 0.016213 | 0.078483 | 0.059961
34 0.000008 | 0.000148 | 0.007320 | 0.871115 | 0.009402 | 0.112844 | 0.006848
35 0.000003 | 0.000052 | 0.001893 | 0.085641 | 0.008096 | 0.917363 | 0.002294




TABLE XIV

ESTIMATED WORK-TO-HOME TRIPS (CONTINUED)

56

k-destinations

ij-pairs 1 2 | 3 4 | 5 6 7
36 0.000153 | 0.003649 | 0.150227 | 0.198547 | 0.010218 | 0.092939 | 0.538448
37 0.000002 | 0.000036 | 0.001237 | 0.064026 | 0.006843 | 0.941885 | 0.001537
38 0.000007 | 0.000129 | 0.005693 | 0.755290 | 0.014333 | 0.228350 | 0.005153
39 0.000003 | 0.000054 | 0.001302 | 0.071050 | 0.873249 | 0.083829 | 0.000733
40 0.000007 | 0.000120 | 0.003610 | 0.343209 | 0.147625 | 0.518154 | 0.002504
41 0.000004 | 0.000069 | 0.002207 | 0.201726 | 0.022583 | 2.817906 | 0.002265
42 0.000040 | 0.000462 | 0.004237 | 0.010860 | 1.006133 | 0.010513 | 0.000699
43 0.018754 | 0.305801 | 1.221458 | 0.169976 | 0.141974 | 0.059332 | 0.068505
44 0.002637 | 0.052438 | 0.148855 | 0.021079 | 0.003399 | 0.018086 | 0.741560
45 0.000000 | 0.000000 | 0.060000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
46 0.000004 | 0.000074 | 0.002377 | 0.043089 | 0.006982 | 0.958290 | 0.004818
47 0.000000 | 0.000003 | 0.000048 | 0.000858 | 3.098101 | 0.001932 | 0.000018
48 0.000002 | 0.000028 | 0.000573 | 0.016926 | 0.556362 | 0.451106 | 0.000388
49 0.000001 | 0.000012 | 0.000206 | 0.004332 | 1.002201 | 0.026223 | 0.000112
50 0.008174 | 0.356213 | 0.127422 | 0.123623 | 0.191650 | 0.166161 | 0.028373
51 0.000007 | 0.000104 | 0.002521 | 0.071780 | 0.133317 | 0.808500 | 0.001375
52 0.000001 | 0.000025 | 0.000635 | 0.031680 | 0.047884 | 0.935877 | 0.000512
53 0.000000 | 0.000008 | 0.000231 | 0.011094 | 0.004364 | 3.032387 | 0.000276
54 0.000005 | 0.000093 | 0.002570 | 0.036884 | 0.007212 | 0.962630 | 0.006255
55 0.000000 | 0.000005 | 0.000076 | 0.001308 | 1.027455 | 0.004671 | 0.000033
56 0.538668 | 0.401582 | 0.024297 | 0.002105 | 0.001172 | 0.002074 | 0.011425
57 0.000256 | 0.003109 | 0.013054 | 0.040239 | 0.015135 | 0.923600 | 0.019561
58 0.000132 | 0.001595 | 0.008708 | 0.035354 | 0.014185 | 0.940925 | 0.014413
59 0.432540 | 0.445396 | 0.050267 | 0.006980 | 0.004237 | 0.009113 | 0.033960
60 0.709933 | 0.256053 | 0.009554 | 0.000486 | 0.000227 | 0.000383 | 0.003694
61 0.001969 | 0.036052 | 0.131487 | 0.021565 | 0.003453 | 0.019793 | 0.773837
62 0.239737 | 0.562376 | 0.100619 | 0.011167 | 0.008424 | 0.010783 | 0.050904
63 0.774128 | 0.202261 | 0.002625 | 0.000121 | 0.000065 | 0.000089 | 0.000687
64 0.064092 | 0.745972 | 0.090052 | 0.005293 | 0.001814 | 0.005179 | 0.071765
65 0.009216 | 0.939889 | 0.029630 | 0.000569 | 0.000217 | 0.000311 | 0.003678
66 0.007366 | 0.220121 | 0.525294 | 0.017926 | 0.005142 | 0.010568 | 0.201298
67 0.000279 | 0.005927 | 0.078374 | 0.036801 | 0.005380 | 0.061394 | 0.801633
68 0.000171 | 0.004493 | 0.083776 | 0.007761 | 0.001050 | 0.006620 | 0.883595
69 0.000169 | 0.004232 | 0.082983 | 0.010566 | 0.001443 | 0.010249 | 0.878000
70 0.000313 | 0.005624 | 0.072078 | 0.089962 | 0.018003 | 0.286228 | 0.525631




TABLE XIV

ESTIMATED WORK-TO-HOME TRIPS (CONTINUED)

57

k-destinations

ij-pairs 1 2 | 3 4 5 6 7
71 0.000008 | 0.000138 | 0.002973 | 0.030008 | 0.007703 | 0.966540 | 0.008279
72 0.000152 | 0.003638 | 0.056403 | 0.058886 | 0.015669 | 0.825815 | 0.052031
73 0.000115 | 0.003438 | 0.185056 | 0.007139 | 0.000826 | 0.003937 | 0.786999
74 0.000092 | 0.002529 | 0.108301 | 0.007483 | 0.000858 | 0.004952 | 0.863231
75 0.000264 | 0.005486 | 0.177689 | 0.295180 | 0.090257 | 0.129943 | 0.301960
76 0.000300 | 0.009101 | 0.171540 | 0.007387 | 0.001039 | 0.005087 | 0.793065
77 0.000030 | 0.000850 | 0.032058 | 0.002548 | 0.000281 | 0.001657 | 0.949706
78 0.000009 | 0.000245 | 0.010167 | 0.001314 | 0.000132 | 0.000890 | 0.974293
79 0.000059 | 0.001128 | 0.035592 | 0.226003 | 0.019509 | 0.586832 | 0.140039
80 0.000004 | 0.000076 | 0.002105 | 0.032412 | 0.006600 | 0.969619 | 0.004917
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