NISS

Design Interface: A graphical tool
for analyzing and constructing
spatial designs

Douglas Nychka, Nancy Saltzman,
and Andrew Royle

Technical Report Number 42
April, 1996

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
WWW.Niss.org

Design Interface: A graphical tool for analyzing and

constructing spatial designs

Douglas Nychka Nancy Saltzman
Andrew Royle

National Institute of Statistical Sciences*

April 9, 1996

Abstract

Design Interface (Di) is a graphical, interactive tool for spatial design. Its
purpose is to facilitate construction and comparison of spatial designs by visual-
ization of the designs themselves and statistics that measure their performance.
This package has been implemented as functions within the S programming en-
vironment and leverages the wealth of statistical and graphical tools already
available in Splus. D: also makes use of object-oriented programming ideas
to provide common summary and plot functions for different types of design
data sets. User interaction is simplified by the use of menu boxes and other
graphical inputs and the package is structured so that new features may be
easily incorporated into the program. This manual explains how to use Di |

gives some examples and also explains how to add new features.

*Contact Address: National Institute of Statistical Sciences, P.O. Box 14162, Research Triangle
Park, NC 27709-4162. Funding for this research was provided by the US Environmental Protection
Agency through grant CR#819638, and by the National Science Foundation through grant DMS
9208758, both to the National Institute of Statistical Sciences.

1 Introduction

A basic problem associated with spatial data is to predict the value of a spatial
variable at locations where it is not measured. In environmental applications the
concentration of a pollutant or other physical or chemical variables are often made
at a limited set of instrument locations. These locations that form the monitor-
ing network will be referred to as the design in this manual. Also, we will use
spatial field to refer to the continuous spatial surface that would result from an
extensive sampling of the variable. The goal then is to determine the locations of
measurements to maximize the amount of information about the spatial field.

The motivation for creating this set of programs was a need for a flexible graph-
ical tool to evaluate spatial designs. Although several researchers have created
algorithms to calculate optimal designs under different criteria there is a practical
need to determine a given design’s robustness to other measures of performance
and to understand the effect of adding and deleting points from an “optimal” set
of locations. Also in many applications spatial networks of monitors are already in
place and it is of interest to analyze the effect of thinning such networks or moving

locations.

2 Model for spatial fields

Before discussing the details of Di is useful to define the underlying statistical
model to evaluate different designs. The properties of a design are found under
the assumption that thé spatial field can be modeled as a random surface with an
isotropic covariance function. Let Z(x) denote the value of the field at location
x = (&,,2,). We assume that E(Z(x)) = 0 Also let COV(Z(x),Z(x")) = k(x,x’)
denote the covariance function. The simplest use of D¢ assumes that the covariance

function is isotropic.

k(x,x") = A(llx = x']))

where ||x — x/|| is the Euclidean (or great circle) distance between two points.
The key feature of a network is its ability to predict values of the field at locations
off of the design points. Given N network locations {x;} for 1 < 7 < N, let
z; = Z(x;) and let K be the N x N covariance matrix K;; = COV/(z;,z;). To
estimate the field at a location off of the network it is reasonable to use the best
linear estimate. Let 7; = k(x,%;) and Z(x) = ATz where A = K~1v. Simple linear

statistics can be used to derive the variance of this estimate.
VAR (Z(x) - Z(x)) = k(x,%) - 22Ty + ATE 22

or simplifying
VAR (Z(x) - Z(x)) = k(x,x;) — 7T K™y

This variance formula is the basis for quantifying the performance of designs in

Di .

3 Basic Structure of D:

Our choice was to implement D¢ by adding a small set of extra functions to the Splus
statistical package. This simplified the amount of programming and also makes it
easier to add new features. The basic steps to use Di are to first start Splus, attach
the set of Di functions and then to edit a design. In order to have these new designs
returned they must be saved. After one quits the edit function the saved designs
are returned as an S data set (a network catalog object). This output data set is
set up so that it can be used as the input to the edit function. In this way one can
keep modifying a design and/or build up a sequence of different designs to compare.
During the editing process one is given menu options to summarize or plot designs.
Because these are just S functions applied to the current design they can also be

reproduced outside the editor.

3.1 Sample design analysis

To make this process concrete here is an example. (Comments are after the #
signs) The reader is referred to Section 5 for a script of some possible interactive
steps inside the editor.

% Splus # in UNIX start Splus
following are Splus commands
> attach("/zork/Di/.Data") # In place of /zork/Di give the full UNIX path name
for the DI directory on your system
> square.nw # square.nw is a sample 5X5 grid of points
just typing its name gives a summary of
the design ’
> edit.nw(square.nw) -> ex.out # use the design editor to view and modify design
> edit.nw(ex.out)-> ex.final # edit the output from the previous step
> summary(ex.final) #summarize the final designs

3.2 Editing the design

The design editing function (edit.nw) provides interaction by a menu box that lists
the different types of actions that can be taken. Some of these actions are to modify
the current design while others summarize, plot or save the designs that have been
created. Where appropriate secondary menus are generated to control the options

for the plots and summaries. Some points about using edit.nw.

e Clicking on a button only selects the action you must then click on the OK
button to initiate the action. This logic (?) is the same as for PC menu

windows and is a constraint of the Motif dialog boxes.

e While using the design editor useful instructions and comments will be printed

in the main S plus window.

o In the design editor one must save the design before it will be included in the

design summary.

e Any plot window provided by Di can be resized or moved using the usual

operations for Motif windows and Splus graphics windows. For example you

can print the window by clicking on the print option from the graph menu.

3.3 Design data sets

The input to the edit function is a network object. This is a list that contains the
location of the design points, a covariance function for the random field and several
other pieces of information. At first it may seem overly complicated to use a list to
represent a design. After all it is just a set of points in two dimensions. However,
the list structure is important to keep all the necessary information about the design
together with the coordinates. The names of the example network objects included
in D¢ are chicago.nw, houston.nw, gulfstates.nw, and square.nw.
Furthermore it is easy to create a network object from just the coordinates. This
is done using the as.nw function. Suppose one wanted to look at 3X3 unit grid with

an exponential covariance function

—llx=x'|/2

k(x,x") = 5e

> locs<- cbind(<(1,2,3,1,2,3,1,2,3), <(1,1,1,2,2,2,3,3,3))
> locs.nw<~ as.nw(locs)
> locs.nw$cov<- "5.0xexp(-d/2.0)"

> locs.nw # print out description

The S data set locs.nw is now ready for editing. If you ever need to see all
the components of the object just use print.list(locs.nw) A network catalog
object is a list where each comnpnent is a network object. This structure is a natural
way to accumlate spatial designs as they are created in the design editor. Although
edit.nw always returns a network catalog object it is easy to extract one design
fromteh lilst. For example supppose that after editing a design you have a network

catalog data set , work.nw that has 5 different networks. You would just like the

fourth one as a single network object. Use the subscripts for lists: work.nw[[4]]->

favorite.network .

4 Getting and Installing Di

The file di.tar.Z contains the compressed and tarred programs for the Di package

and can be obtained via “anonymous FTP” from the NISS server
1. In UNIX: f£ftp server.niss.rti.org
2. Log in as anonymous
3. Give your e-mail address as the password

4. Commands within FTP to get the Di tar file:

cd pub
get di.tar.Z

exit
You should now have a file called di.tar.Z on your local directory
Now in Unix do the following:
1. Create a directory Di and move the file di.tar.Z to this direqtory
2. uncompress di.tar.Z
3. Extract the files from the tar file tar -xfv di.tar
4. Setup S functions and help files make all

If you are curious what the program make does to install Di take a look at the file
Makefile in the Di directory.
There will be several files now in the Di directory. Among them are manual.tex

and manual.ps. These are the JATpXand postscript versions of this manual.

5 An example

This section will give an example of using the network editor on an artifical network.
The EXAMPLES section in the help file for the design editor contains this example
and three others. In these examples unless noted “click” refers to pressing the left
mouse button and text in parenthesis refers to a button in a menu. Some of the
graphical results from this example are reproduced in Figures 1 and 2.

> square.catalog <- edit.nw(square.nw)
Perform the following manual actions with the mouse:
Plot current design.
1) click (plot) followed by (ok) to view spatial plot of the PSE.
click (return) on the submenu that pops up.
Modify design by deleting points.
2) click (delete points) followed by (ok)
click left mouse button on points (2,2), (2,4), (4,2) and
(4,4) of the main plot window. click the middle mouse button.
Plot new design.
3) click (plot) followed by (ok)
click (return) on the submenu
Save this modified design.
4) click (save) followed by (ok)
View summary of prediction variance for original and new designs.
5) click (summary) followed by (ok)
Note summary of prediction variance for both designs is print out
in the work window.
Exit edit.nw
6) click on (exit)
Now examine the output, square.catalog
> square.catalog
Note that attributes of the two designs are print to the screen.
Now we wish to start edit.nw up using the modified design from
the previous editing session and save any new designs in
square.catalog.
> square.catalog <- edit.nw(square.catalog,root.id=2)
Further modifications made to this design may be saved in
‘‘square.catalog’’ and the numbering will begin at 3.
Plot prediction variance surface.
7) click (plot) (ok)
8) click (add) (ok)
9) click left button at the points (2,2) and (4,2) click on
middle button when you are done
10) click (plot) (ok)

#

H H H H® *

**

11) click (save) (ok)

summarize the three designs
12) click (summary) (ok)

plot summarry information
13) click (plot summary) (ok)
14) click (return)
15) click (exit)

Within Splus now one can analyze the three designs in square.catalog. For

example summary(square.catalog) gives

size mean PV max PV median PV

[

25 0.4009779 0.5078271 0.4361211
2 21 0.4626009 0.6608440 0.4720894
3 23 0.4317996 0.6607474 0.4514928

6 Details on automatic methods for design construc-

tion and thinning

6.1 Leaps

The initial version of Di has only one automatic proceudre for thinning the number
of points. What is referred to as the leaps algorithm determines the subset of
locations that most closely estimates the average of the full network. For example
the Chicago network has 21 locations. One may be interested in finding a subset
of 5 locations that best estimate the 21 point average. Of course the answer will
" depend on the properties of the spatial field and the leaps procedure must use the

covariance function the as part of the current design.

7 How D: works in S

The key idea in Di is the use of a network object (nw) to bundle together all the

information that is needed to evaluate and visualize a design. Supporting these func-

editor window for Starting design
square.nw example

gridpts[,2]
3

N

1 2 3 4 5 1 2 3 4 5

gridpts(,1]
Deleting four points

n [Te]
< <
(5] (3]
N [aV)

1 2 3 4 5 1 2 3 4 5

Figure 1: Results from applying edit.nw to the square example. Top right plot
is the inital design in the editor window. Remaining three plots are the prediction
variance surface for the full design, omitting four points and then adding back in

two. These plots appear as separate windows within the design editor.

0 3 2

(o]
QJO
Q
[
8
p—
©
>

o
& o
Eo
e}
(0]
p -
Q.
£
= N (0]
E v
£ 2
3]
=

0.40 0.42 0.44 0.46

Average prediction Variance

Figure 2: Plot summary of the three designs from the example (square.nw). This

plot would appear as a separate window within the design editor.

10

tions is the network catalog object (nw.catalog) to keep several network objects
together. With this structure we use the object oriented tools in Splus to simplify
looking at designs. For example the command print(square.nw) is equivalent
to print.nw(square.nw) because square.nw is of class nw and we have written a
special purpose print function for these objects. This is the reason why a network
object is does not print as a list. The functions summary and plot function in a sim-
ilar manner. The functions print and summary also have been extended to network

catalog objects.

7.1 Design editor

The structure of the editor is simple in terms of manipulating objects. One supplies
the editor with a network (or network catalog) object. This is converted to a
network catalog object and one of the network objects is displayed. This design is
the one that can now be edited and the main menu now gives choices for different
actions. Fach action either applies a function to the current design object or modifies
the current design object to produce a new one. When a modified design is saved
it is simply added to the network catalog. Finally when the editor function is quit
it returns a network catalog object.

User interaction with Di occurs through Motif dialog boxes (as implemented
in S) and Motif graphics windows. There is one main dialog box through which all
actions are accessed. Di has been written so that is it simple to add new actions
to this menu. Each button corresponds to a few lines of S code and thus the basic
loop in the editor is to identify the selected button and evaluate the S code that
corresponds to that button. The list linking button names (the items in the main
menu) to S code that performs the right operations is in the data set di.items. A
listing of this data set is in the appendix. Section 7.2 explains how to modify this
data set to change what the the Di editor will do.

11

7.2 Modifying the main menu

The previous section explains how the main menu provides actions that either de-
scribe or change the current network object (design) To add more actions in the
main menu box or to change the current set all that is needed is to change the Di
action data set, di.items. This can be done within S by editing the actions list.

For example to use the textedit editor for the SUN workstations

> di.items-> di.items.old # save the current version

> tx(di.items) -> di.items

When writing the S code for new actions one should keep in mind two working
data sets that are used within the editor. nw is the name of the current network
object being studied. If any changes are made to nw then the component nw$id
should be set to zero. This way the save function will recognize this design as a new
one and save it. The other important object in the editor is design.history. This
is a network catalog object that contains the initial network object and any others
that are saved in the course of using the editor.

Reading through the default version of di.items is a good way to see how net-
work objects are modified and summarized. Note that some of the more complicated
actions are separate S functions that take the nw or design.history as one input
argument. It is good idea to test out new S code outside of the editor rather trying
to develop and debug new code by directly editing di.items. Change the actions

list once you are confident that your new source code works.

12

Appendix 1: Listing of D: functions and data sets

D: functions

RDIST

US

as.nw
as.nw.catalog
as.surface
best.subset.leaps
count

di.add
di.chcov
di.chgrid
di.default.cov
di.del

di.leaps
di.recalc
di.replot
edit.nw

extra
help.to.latex
is.nw
is.nw.catalog
leaps.subset.r2
make.ftp
make.qfiles

make.surface.grid

plot.nw

plot.summary.nw.catalog

pred
print.nw

. print.nw.catalog
rdist.earth
summary.nw

summary.nw.catalog

tx

D: data sets

Computes distance between two vectors

draws US map

converts a matrix to a network object

converts matrix or network object to a network catalog object
reformats vector for surface plotting

Constructs covariance matrix an calls low level leaps function
counts the number of true values in vector of logical values
Di function to add points to design

Di function to change the covariance function

Di function to change range for plotting

Di default covariance (unit exponential)

Di function to delete points form a design

top level Di function to find subset using leaps

Di function to recalculate the prediction variance of design
Di function to replot the editor window

Edit a network object

lists objects that are not part of the DI distribution
converts help file to a form to use in LaTeX

tests for network object

test for network catalog

Basic function for leaps algorithm

creates the UNIX source files for FTP tar files.

copies functions and data sets to source code directory
creates a grid for surface evaluation

plot a network object

plot summaries of a network catalog

calculate prediction variance at set locations

print network object

print network catalog object

great circle distance between two lat/lon locations
summarize network object

summarize a network catalog object

edits an S dataset using the SUN textedit editor

DI.version version number of Di
di.items list matching button values with S code
dump.list list of all Di function and data sets from distribution

13

Di example data sets

chi.loc locations in lat-lon of Chicago area ozone stations

ex example network object for Chicago ozone locations
houston.nw example network for Houston,TX coast ozone stations
chicago.nw example network for Chicago area ozone stations
square.nw example network 5X5 unit grid

gulfstates.nw example network ozone stations for US gulf coast region
square.catalog output from following example 1

Appendix 2: Listing of di.items

"di.items"<-

expression("Add Points" = {

nw <- di.add(nw)

nw$id <- 0

}

, "Delete Points" = {

nw <- di.del(nw)

nw$id <- 0

¥

, "Change Grid" = {

nw <~ di.chgrid(aw)

¥

, "Change Cov" = {

temp <- list(n = nw, history = history.design)
temp <~ di.chcov(temp)

nw <- temp$n

history.design <- temp$history

nw$id <- 0

}

, Leaps = {

nw <- di.leaps(nw)
nw$id <- 0

gridpts <- di.recalc(nw)

di.replot(nw, gridpts)

}

, Plot = {

plot.nw(nw, winsize = "400x400", winloc = "+0-0", ask = ask)
dev.set (mainwin)

}

, "Plot Summary" = {

sunwin <- plot.summary.nw.catalog(summary(history.design), sumwin =
sumwin, ask = ask)

dev.set (mainwin)

}

, Summary = {

print (summary (history.design))

dev.set(mainwin) :

}

, Print = {

print (history.design)

14

}

, Reinitialize = {

nw <- history.design[[root.id]]

gridpts <- di.recalc(nw)

di.replot(nw, gridpts)

}

, Save = {

if (nw$id == 0) {

new.id <- length(history.design) + 1 ##
nw$id <- new.id ##
history.design[[format (new.id)]] <- nw ##
}

}

)

15

Appendix 3: Splus help file for edit.nw and as.nw

To save space the EXAMPLES sections of the help file have been omitted form these
listings. They can be read using the help from within Splus.

edit.nw

Edit NetWork object or catalog

DESCRIPTION:
Allows the interactive design and evaluation of spatial
networks.

USAGE:
nw.ouput<-edit.nw(nw=ex, cov.char, root.id=1,ask=FALSE)

REQUIRED ARGUMENTS:
nw: An object of class "nw" or «class '"nw.catalog". An nw
object contains the following components:

$npts : A list with components $x and $y, the x and y-
coordinates of the data.

$grid : A vector containing
(min(x) ,min(y) ,max(x),max(y) ,ngx,ngy) where ngx and ngy
are the x and y dimensions of the grid on which the
properties of the random field are evaluated.

$cov : A text string evaluated as a function of distance
that describes the covariance between two points. The
default covariance function in the provided nw objects is
the exponential model: c(d) = exp(-d/a), which is supplied
as "exp(-d/a)" for some numerical value of the parameter
a. The function as.nw¥ will use this function as the
default. The covariance function may be modified
interactively once edit.nw has been invoked. (see
DETAILS).

$map : An indicator of the coordinate system of the data.
T indicates longitude/latitude coordinates and F indicates
regular Euclidean coordinates. If T, state and county
lines will be produced on any spatial plot.

$id : Design number. If nw object is a member of an
object of «class nw.catalog, then $id indicates design
number.

16

as.nw will coerce a matrix of coordinates into an nw
object.

OPTIONAL ARGUMENTS:

ask: If FALSE, a new windowis opened for each new plot. If
TRUE, plot requests generate a menu of plot window
choices, which includes all available graphics windows
plus the option to create a new window.

cov.char: An alternative character vector which is an
expression that evaluates to the covariance between two
points. If this is non-missing, it overrides $cov from
the nw object.

root.id: If nw is of class "nw.catalog", then root.id refers
to the design which is to be loaded as the default.

VALUE:
nw.ouput contains a history of all designs manually saved
by clicking on the (save) button of the main menu.
nw.output is of class "nw.catalog".

SIDE EFFECTS:
Most commands of the main menu produce a secondary plot
window and/or a secondary pop-up menu and/or an edit
window and/or produce output to the working window.

DETAILS:
When "edit.nw" is invoked with a particular nw object, the
data locations are plotted in the primary plot window and
the network may be evaluated, manipulated and modified
using the following commands of the main menu:

(add points) : Allows addition of points to network using
the mouse.

(delete points) : Allows deletion of points to network
using the mouse.

(change grid) : Allows the number of points in the grid,
and the corners of the grid to be modified.

(change cov) : Allows modification of the covariance
function either by changing parameter values or changing
the functional form of the covariance. The ’apply

retroactively’ button applies the new covariance function
to all previous designs.

(leaps) : Uses regression subset selection algorithm to
select the best "p" site subset of existing sites.

(plot) : Produces a graphical display of the prediction

17

variance over space for the current design.

(plot summary) : Produces a plot of the maximum prediction
variance vs. the mean prediction variance for all saved
designs.

(summary) : Outputs the mean, maximum, and median
prediction variance to the working window, for all saved
designs.

(print) : Prints attributes of all saved designs to the
work window.

(reinitialize) : Replots design root.id in the main plot
window. '

(save) : Adds the current design to the nw.catalog which
is returned upon clicking (exit).

(ok) : Executes one of the preceeding commands.
(exit) : Exits edit.nw

These commands are invoked by first clicking on the
corresponding command, and then clicking on the (ok)
command.

IMPORTANT: After invoking most commands, instructions
appear in the S+ work window. These are very useful.
If edit.nw appears hung, look for a possible
explanation
here. Additionally, output from many of the actions
appears here.

SECONDARY MENUS: After most commands are invoked, a
secondary menu appears. You must click on (return) of
these menus before returning to the main menu.

SECONDARY PLOT WINDOWS: If the (plot) command is invoked,
a spatial plot of the prediction variance (PV) is made.
There are options associated with these plots. The
graphical ouput from each (plot) call remains in the
workspace unless dismissed, or until the memory of the
workstation is used up, at which point you are thrown out
of DI and lose all work. (plot summary) also produces a
secondary plot window of maximum PV vs. mean PV. If the
argument ’ask’ is TRUE,plot requests generate a menu of
plot window choices which includes all available graphics
windows (the currently active window is listed first and
highlighted) plus the option to create a new window.
Using ask=TRUE is helpful for reducing crashes due to
excessive plotting resource requests during extended

18

editing sessions.

SAVING DESIGNS: If you wish to save a design after any
given manipulation (changing the covariance, adding or
deleting points, changing the grid size, etc..), the
(save) command must be invoked. The first time (save) is
invoked, the default design of the nw object is saved as
design 1, and the current and all subsequent designs are
numbered beginning with 2.

COVARIANCE: The covariance function must be supplied in
the nw object. It may be given as an argument to edit.nw,
in which case $cov from the nw object is overridden. Once
edit.nw is invoked, the covariance function may be edited
by selection (change cov) on the main menu. If this is
done, a pop-up editor is provided with the current
covariance function loaded. The covariance function for a
particular design is saved with the nw object of that
design provided (save) is done. Thus the nw.catalog
produced at the end of an edit.nw session will have the
covariance information for all designs saved.

REFERENCES:

SEE ALSO:
as.nw, is.nw, plot.nw, as.nw.catalog, is.nw.catalog

19

DETAILS:
as.nw takes the coordinate matrix and computes the
relevant components of $grid. A default grid size of
30x30 is used. $cov defaults to the exponential model
with unit parameter "exp(-d/1)". $map defaults to F. $id
defaults to 1.

REFERENCES:

SEE ALSO:
edit.nw, is.nw, plot.nw, is.nw.catalog, as.nw.catalog

EXAMPLES:

Coerce a 3 x 3 grid into an object of class "nw'", check that this is
of the correct class, nw, and examine the object and it’s elements.

> grid <- c¢bind(c(1,1,1,2,2,2,3,3,3),c(1,2,3,1,2,3,1,2,3))
> grid.nw <- as.nw(grid)
>
> is.nw(grid.nw)

(1
>
> grid.nw :

size grid x1 grid x2 grid y1 grid y2

9 1 3 1 3

>

> names (grid.nw)
[1] "npts" "grid" "cov! nmapn nidn

> grid.nw$npts
$x:
[11111222333

$y:
[1]123123123

> grid.nwgrid
[1] 1 1 3 3 3030

> grid.nw$cov
[1] "exp(-d4/1.0)"

> grid.nw$map
(11 F

> grid.nw$id
(111

21

as.nw

As.NetWork

DESCRIPTION:
as.nw will coerce an nx2 coordinate matrix, or a list with
x and y components into an object of class "nw'".

USAGE:
as.nw(o, map=F)

REQUIRED ARGUMENTS:
o: An n x 2 matrix of spatial locationms.

OPTIONAL ARGUMENTS:

map: If T, map indicates that coordinates are in
latitude/longitude. Default is set to F and indicates
non-map coordinates.

VALUE:
Returns an object of class "nw" which is suitable for use
in the function edit.nw. An object of class "nw" is a
list which contains the following attributes:

$npts : A 1list with components $x and $y, the x
(longitude) and y (latitude) coordinates of the data.

$grid : A vector with components
(min(x) ,min(y) ,max(x) ,max(y) ,npx,npx) where npx and npy
are the size of the grid in the x and y directions. npx

and npy default to 40.

$cov : A text string defining the covariance (as a
function of distance) between any two points. The default
covariance is an exponential model with wunit parameter:
"exp(-d)".

$map : T to indicate that coordinates are
latitude/longitude, F otherwise. Default is F.

$id : A pointer to identify the design number in the case
several nw objects are nested within a single object of

class "nw.catalog". For a single nw object, id will have
the value 1.

SIDE EFFECTS:

20

