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1 INTRODUCTION

One of the major functions of an Advanced Traveler Information System (ATIS) is route guidance.
A key sub-problem of route guidance is the estimation of travel times on links in a network. The
link travel time estimation problem is to estimate the travel time that would be incurred by a
vehicle entering the link at some time ¢. Thus far, there have been two approaches to the link
travel time estimation problem: (i) dynamic traffic assignment and (ii) statistical approaches
based on real or simulated travel time data. In this paper, we present some investigations of the
link travel time estimation probe via the second approach. Direct measurements of travel times
has recently become possible with the advent of network surveillance technologies such as probe
vehicles and video cameras that are capable of matching a vehicle at two different locations.

Link travel times have been estimated as a univariate time series (Liu and Sen, 1996) or by
regression relationships from travel time and other related data (Rouphail and Dutt, 1995). In
this paper, we take the view that link travel times have a number of important covariates and
that it is important to include information on these covariates directly in the estimation process.
Under recurrent congestion on signalized arterials, two fundamental covariates of link travel times
are the interactive effects of signalization (vehicle arrivals in relation to signal control phases) and
volume levels. With this approach, we now devote our attention to the effects of these covariates
on link travel time estimates and ways in which one can include them in travel time estimation
process.

However, for an ATIS or an Advanced Traffic Management System (ATMS) to make direct
observations on all important covariates on an area-wide basis would imply prohibitive costs on
system design, hardware and software. Area-wide data on volumes and the signal phases on a
continuous clock are not likely to be readily available, at least in the near future.

Therefore, the purpose of this paper is to examine if we can infer information on important
covariates on which we do not have measurements, from travel time data on which we do have
measurements. We consider the case of inferring from travel time data, the status of signal
control alone, leaving the problem of inferring volume levels from travel times as a subject for
future research. We.then use the estimated sequence of signal cycles for the purpose of link travel
time estimation and also for the dynamic ‘real-time’ prediction of future link travel times.

There are three major effects on the estimates of travel time if the effects of signalization is ignored
(Thakuriah, et al., 1996) in the estimation of expected link travel time. First, the estimate would
be of high variance and second, the resultant estimate may be biased. The third, and perhaps
the main reason is to be considered in the context of travel time estimation on routes r that
include link ¢ which is a requirement in the route guidance function of an ATIS. Under recurrent
congestion, one may conjecture that errors in estimating expected link travel times would cancel
out over a route. In fact, if travel times on links over a route were independent, one would expect
this to occur by the Law of Large Numbers. However, volume and progression effects cause
travel time estimates on links along a route to be dependent, implying that errors in estimating
link travel times may persist over a route. The lack of independence requires us to ‘correct’ the
estimate of the expected link travel time for factors that causes this dependence. The inclusion
of the effect of signalization in a model of link travel time estimation would serve this corrective
purpose.
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Therefore, in this paper, we make imputations about the cyclical sequence of signal control in
terms of clock time, directly from observations of link travel times, tt, and clock time, ¢, of vehicle
exit from a link. We do so, we first estimate average cycle lengths and then use these estimates
along with link travel time and vehicle exit time data to estimate the sequence of signal cycles on
a continuous clock. Then given these imputed values of signal control, we estimate the expected
travel time at time ¢ and also predict the travel time for a vehicle entering a link at a future time
t+6. '

While the signal cycle imputation algorithm has been presented in the context of off-line and
dynamic link travel time prediction, it could be used for other purposes. For example, the method
could be used by an ATMS to monitor signal malfunction in real-time. It could also be used for the
purpose of long-term signal control parameter resetting in order to optimize traffic flow. Finally,
it could be used to generate ‘data’ to input into various dynamic traffic simulations that model
the effects of ATIS and ATMS.

The paper is organized as follows: in Section 2, we present some relevant background information
and define the problem of estimating signal control attributes from realizations of travel time. We
also describe the data used for the empirical investigations. In Section 3, we define our approach
to estimating average cycle lengths and the algorithm for estimating the sequence of signal cycle
lengths on a continuous clock. We present the applications and related discussion in Section 4.
We then make some concluding remarks.

2 LINK TRAVEL TIME ESTIMATION

In this section, we explore the relationships between travel time and the two fundamental co-
variates of volume and signalization. There are three time trends in travel time observations on
signalized arterials: a day-of-week, time-of-day and a periodic pattern imposed by signalization
(Sen and Thakuriah, 1995). Under recurrent congestion, we could think about these three trends
as a hierarchy of conditioning information for travel time estimation. In this section, we present
an empirical example of travel time estimation when we condition on knowledge of day-type,
time-of-day and signalization. Let t¢; be the travel time of the ¢th vehicle that exited link ¢ at
time ¢ (measured on a continuous clock). We are interested in the relationship between ¢¢; and p;
(pi = tymodulo(r;) is termed as relativized exit time where r; is the start of the cycle (as well as
of the red phase) in which the ith vehicle exited). The purpose of the example is to empirically
illustrate the nature of the relationship between ¢t and p and to examine the effect of including
signal information on variability in travel time estimates. In Section 2.1, we discuss the way in
which knowledge of the relationship between ¢t and p allows imputation of the sequence of signal
cycles.

The data used for all empirical investigations presented in this paper were collected by field tests
as part of the evaluation of ADVANCE, an ATIS demonstration project (Boyce et al, 1994),
during the summier of 1995 in the northwest suburbs of Chicago. The link travel time data were
transmitted in real-time from specially-equipped probe vehicles that were driven by paid drivers.
Data were collected on links along several routes. While the probe vehicles collected data on
several variables, we have used only link travel times and link exit times in this study. The entry
and exit points of the three study links were also monitored by video surveillance cameras for 10
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Figure 1: Piece-wise linear fit of tt and p on a link conditioned on day-type and time-of-day.

days, that filmed the signal control at the both downstream and upstream intersections of the
three study links (data on the sequence of signal cycles and phases were not available from any
other source). Almost all links in the routes covered by probes, including the three study links,
are part of a Closed Loop Signal Control system.

For the empirical analysis presented in this section, we have used actual data on signals to com-
pute p. However, the signal data will be used in other empirical analysis in this paper only for
comparative purposes and not as input into any actual computations.

Figure 1 shows a fit and Table 1 gives the estimates from the model
tti = a + f1pi + Ba[max(p; — p1), 0] + B3[max(p; — pa),0] + ¢ 1)

S.t.
Br+ B2+ B3 =0.

Estimates: | &=123.7T1 . B, = -0.60 By = —047 (3 =1.08
Break Pts. | 4; = 85 secs. fi3 = 120 secs.

Slopes: Part 1: -0.60 Part 2: -1.08  Part 3: 0
tt(g) 87.71 secs.
Fit: §=16.23 R*=.T74

Table 1: Estimates from model of travel time as a function of relativized time. #t(7) is the
predicted travel time at the average start time of the green phase, 3.
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The model was estimated by nonlinear least squares and the two break points, u; and po, that
gives the transition from one regime to the next were parameters in the model. The break points
are estimated to be i; = 85 seconds (after the start of the cycle) and us = 120 seconds. The
estimated travel time, at p = 60 seconds (or the average length of the red phase) is about 88
seconds. The estimated free-flow travel time obtained by dividing link length by the speed limit
is of the order of 28 seconds. Hence, the estimated travel time at p = 60 is (free flow time) + R,
where R is the average length of the red phase.

The pattern of points in Figure 1 is messy. However, the points at the lower left corner and the
upper right corner are not outliers for the following reasons:

1. If there is no queue at the start of the green phase and vehicles arrive at the time the phase
changes from red to green, then one can expect vehicles -departing shortly after the end of
the red phase to incur travel times that are about the same as free-flow travel times.

2. Although the observations in the upper right corner occur late in the cycle, they are still
relatively high because of oversaturation conditions.

3. The Closed Loop Signal System (CLSS) adds to the noisiness in the ‘unusual observations’
when we group data over all cycles as in Figure 1 in the following ways: (i) the lower left-
hand points may actually be toward the end of a short cycle; in that case, the low travel
time values are quite reasonable (ii) the upper right-hand points may be exit times during
the middle or even the start of some long cycle, although these points are toward the end
of the ‘average’ cycle.

Therefore, the interactive effects of signalization and volumes lead vehicles that depart right after
the onset of the green phase to encounter higher travel times than those exiting at other periods
of time.This analysis leads us to believe that travel time is a non-increasing function, f(p), of p,
with a flat tail because there is clearly a lower bound to this function, imposed by the minimu
realistic time at which the distance can be traversed. We discuss the nature of this function and
its importance in the signal imputation problem in Section 2.1.

2.1 FUNCTION f(p)

In this section, we introduce the signal cycle imputation problem in detail. Let {¢tt1,tts,...,ttn}
be a vector of travel times on link £ generated on day d, and {¢1,t2,...,t,} be the corresponding
vector of link exit times. Also let {v1,vs,...,v,} be the vector of vehicle velocity at the time of
link exit.

We state two conditions:

Condition 1: All vehicles travel at constant speed except when they are part of a queue.

Condition 2: The time headway between two vehicles is a decreasing function of the velocity of
the second vehicle.
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Revised Condition 2: Assume two groups of vehicles, a and b, with two vehicles (1 and 2) in
each group. Then
v > o = ¢ 1 > P 4P

(2)

Lemma. Under Conditions 1 and 2, ¢t is a non-increasing function of p.

Considering tt as a function of relativized exit time p allows us to get a handle on the signal cycle
imputation problem. This is because of the following: if we can realistically estimate the p that
tt(t) corresponds to, then we can map the exit time t of the vehicle recorded on a continuous clock
to the time elapsed after the start of the cycle in which the vehicle exited. That cycle start time
18 then assigned the continuous clock time t — p.

However, this mapping process is affected by the second fundamental covariate of link travel
time, volume. The function that relates t¢ to p is dependent on volume. Volume acts on the
relationship by scaling the function by a scale factor, A. This scaling leads to a family of functions
f. Knowledge of volume at time ¢ allows us to determine which of this family of functions is
pertinent for the mapping of a particular ¢t to p.

We illustrate the nature of the scale function A, by considering a deterministic model of vehicular
link travel time. The measure of volume considered here is O, = A, — D,,, where A, is cumulative
arrivals upto the arrival time of vehicle v and D, denotes cumulative departures. As in Section 2,
we decompose tt, into

tty = cry + dy (3)

where cr, is the cruise time of vehicle v and d, is intersection delay. Following are the assumptions
of the deterministic model:
1. the signalized approach is a queuing system

2. the queuing system can discharge a fixed number of vehicles in one cycle; cycle capacity is
fixed and signal cycle length and green splits are fixed from cycle to cycle

3. service time per vehicle is constant
4. FIFO queuing discipline

5. downstream links have infinite storage.

The delay term, d,, can be decomposed as

dy = 6([gy — tu] +a) + (Oy x s) +

im(gaip) « R} (4)

where O, is the queue in front of v, s is the service time per vehicle (in seconds), cap is cycle
capacity (vehicles/cycle), R is the length of red phase (seconds), a is a constant of acceleration
(feet/second), g, is start of green phase of cycle in which v arrived, t, is the arrival time of v (in
continuous clock) and
5 1 if r, <ty <go,

_{ 0 if g, <t,<cy
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where 7, is the start of the red phase (also the cycle) in which the vehicle arrived and ¢, marks
the end of the cycle. Therefore, d, has two components:

1. N red times of length R, during which no vehicle in the queue is serviced and where N is
the number of full green times G needed to service O, vehicles from the intersection;

2. since service time (s) for each vehicle is constant, the vehicle has to wait (O, x s) of green
times to clear O, vehicles through the available green times.

Also, assuming constant free flow speed and vehicle lengths, cr, decreases linearly with O,.

Let f.(p) be the function that relates ¢t to p in undersaturated cycles (when the arrival volumes
are less than cycle discharge capacity) and when the arrivals are uniformly distributed in the red
and green phases. The delay incurred under these conditions are uniform or red phase delay. If
tt, and O, are known and O, is positive, then we can find out the appropriate scale factors. In the
deterministic model given in expressions (3), p, corresponding to tt, is completely determined
if tt, and O, are known and if O, > 0. In that case, the second term in (4) gives p, =
(Oy x s)modulo(G). This is irrespective of multiple cycle failures that may be incurred by v (that
is, when O, is much larger than capacity). Therefore, the quantity (O, X s)modulo(G) gives the
horizontal scale A®. On the other hand, if O, =0, then knowledge of tt, and O, is completely
uninformative about p,. We suggest a way to obviate the difficulty posed by O, = 0 in Section 3.2.
The entire expression (3) gives the vertical shift, A from f.(p) to f'(p), the function pertinent
for O,.

Once the relevant function f(p) pertaining to the set of observations ¢t and t are known, we
can assign a p value to ¢t by straightforward inverse transformation or some other method. We
describe the method used for this purpose in Section 3.2. Then once we know p; for tt; and t;, we
know r; or the clock time of the start of the cycle when the ith vehicle exited the link.

However, in an application of this approach to our data, we have two problems. First, we have no
volume information at time ¢ and second, the link travel time data that we have used for empirical
analysis were collected in an area with a Closed Loop Signal Control System, as noted already
in Section 2. In a demand-actuated signal control system, the problem of imputing signal cycles
become more difficult because all three attributes — signalization, volume and travel times —
affect each other. The cycle start times on the study link are aperiodic. By controlling the cycle
capacity of upstream links, the signal control system affects volume on a link. Volume on a link,
in turn, affects available discharge capacity by extending green phases and cycle lengths, both of
which affects travel times. If delay times are high and cycle failure occurs, the volume on a link
in future cycles are affected. Travel times are also affected by signal progression. Therefore, if
only travel times are known, then there are two unknowns — volume and the status of the signal
control system on a continuous clock operational during the clock time ¢ at which the travel time
measurement was made. But because all three attributes are related to one another, knowledge
of two should allow inference of the third.

Since we do not have information on volume, in this paper, we take a ‘minimalist’ approach and
attempt to find out if the sequence of signal control events (start times of cycles and phases) can
be inferred from travel time data alone, by controlling for the second fundamental covariate of
travel time, that is, volume. That is, we try to approximate all volume situations with the same
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simulated function f,(p) that is relevant functions for uniform or red phase delay. The simulated
function is discussed in Section 3.2 and is an attempt to replicate the function presented in
Figure 1, where we used the actual signal data. Volume is ‘controlled’ on the link on which
we apply the methods considered in this paper in two ways: (i) the upstream links ‘holds back’
traffic so that traffic arriving on the study link from upstream links is almost always cleared by
the available discharge capacity of the study link (ii) the cross-street at the downstream end of
the study link is not highly congested so that green phases and cycle lengths on the study link
can be extended, thus avoiding cycle failure on the study link (iii) the average signal cycle length
changes at 4 p.m. to accommodate arriving demand in the direction of heavy traffic; therefore,
in the signal cycle imputation applications and resultant travel time estimation and predictions,
we have considered data reported by probe vehicles after 4 p.m. and (iv) our applications are for
the peak period only.

3 ESTIMATION OF SIGNAL CONTROL ATTRIBUTES

In this section, we discuss the estimation of travel time and prediction of travel times at some
future time by imputing information on the time-varying sequence of signal cycles. One of the
inputs into the algorithm for signal cycle sequence tracking is the average cycle length. We obtain
the average cycle length from t¢ alone in Section 3.1. We then present the details of the cycle
imputation algorithm based on ¢t in Section 3.2.

3.1 INFERRING CYCLE LENGTH FROM TRAVEL TIME DATA

Because the probe-generated travel times data are unequally spaced and extremely sparse, most
well-established spectral methods are not useful in inferring the periodicity due to signal control
from probe travel time data alone. In this section, we present a way of inferring the average signal
cycle length on a signalized arterial based on probe data alone.

As indicated earlier, under recurrent congestion, there are three major time patterns in link
travel times. There are the day-of-week, time-of-day and the short-lived periodicity induced by
signalization. If we could subtract out the day and time of day effects from a model of travel times,
then the residual error structure should then allow us to investigate the effects of signalization on
travel times.

Let tt4:4; be the travel time experienced by the ith probe vehicle during day d, that exited a link
during time-period td. A pertinent model [the ‘step-function’ model] for this case is

ttatd: =7+ Z aglg; + Z Btalta; + €
d td

s.t. Z ag =0 (5)
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Figure 2: Estimated Covariances and Signal Cycle Periodicity Apparent in Error Structure

where
Ij; =

y

1 if ¢t was incurred on day d
0 otherwise

and
{ 1 if ¢t occurred during time interval td
td,:

0 otherwise
and td is 5 minutes. The parameters ay and S;4 are respectively day effects and time-of-day (used

as a surrogate for link volume diurnal pattern) effects experienced by the ith probe. We estimated
this model by least squares [s = 26, R? = .28]. Assuming the time-of-day effect lets us subtract
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Figure 3: Basic principle of the Signal Cycle Sequence Imputation Algorithm.

out one of the major contributors to variability in travel times, that is volume, the error structure
of (5) should reflect the contribution of the periodic structure imposed on estimated link travel
times by signalization.

Figure 2(A) shows a plot of the time headway or the difference in exit times (on the same day d)
between two probe vehicles 7 and j on the horizontal axis. The vertical axis gives an empirical
covariance, Cov (tt,, tt;), (that is, it is the product of the residuals, e; x e;, ¢ # j, obtained from
estimating the model given in (5)). The pattern shows that two pairs of vehicles that exit at
certain headways are more likely to have the same estimated covariance, than those pairs that
exit at other headways. Clearly, there is a cyclical pattern left in the estimated covariance, that
cannot be accounted for by subtracting out the day and time-of-day effect only from the travel
time observations. This cyclical pattern is imposed by signalization.

One of the purposes of using the estimated covariance was to transform the original unequally-
spaced probe data into an equally-spaced design. A periodogram of the estimated covariance
(presented in Figure 2(B)) lets us see that the largest periodogram ordinate is estimated at 135
seconds. This is, in fact, very close to the actual average signal cycle length (C = 134.78), which
we were able to corroborate with the information on signals obtained from the video data. We
have used this estimate to obtain the simulated function f.(p) in Section 3.2 and also as one of
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the inputs in the signal cycle imputation algorithm.

3.2 IMPUTING SEQUENCE OF SIGNAL CYCLES

In this section, we describe the algorithm that is used to impute the sequence of signals (the clock
times of the onset of signal cycles, which starts with the red phase, 7, and the onset of green
phase, g). The algorithm yields an aperiodic sequence of cycle start times (that is, cycle lengths
deviate from C, thus simulating the aperiodicity imposed by the demand-actuated nature of the
Closed Loop Signal Control system). However, the green split is always a constant fraction of the
imputed cycle length.

Figure 3 presents the underlying idea of the signal cycle sequence imputation algorithm. We use
probe vehicle exit times on a continuous clock time scale and a sliding window scale, the width
of which is C = R+ G, or the average signal cycle length and the height of which is f,(p). The
sliding window scale is moved along the clock time scale to candidate clusters of consecutive probe
exit times. Probe exit times form a candidate cluster if it is feasible for all points within the
cluster to exit within the length G. Thus, the largest distance between the outermost points in a
candidate cluster cannot be greater than the available green time, in this case, G.

We then analyze the ¢t value of the first (in time) probe report within each cluster in terms of
fr(p). Based on some rules, we assign this ¢t value into one of three bins. Bins are defined by
the estimated knot points (fi; and fi2) in f-(p) and they identify feasible values of ¢¢. If ¢t falls
into one of the three bins defined by f.(p), then a value, p, within the bin is selected for that
travel time observation and the clock time at which the cycle starts then is simply the difference
between the exit time of that probe report and p. This value of p is called hook. Once we know
the start of the signal cycle for that candidate cluster, we start building the sequence of signal
cycles backward and forward in time, with exactly periodic cycle lengths. Simultaneously, we
keep track of the p values corresponding to each and every probe report. If 5 < R or the average
length of the red phase for any probe observation, then we reset the sequence of cycles, such that
p lies between the start of the green phase and the end of the cyle. Hence, the method yields a
sequence of signal cycles that is aperiodic, the aperiodicity being introduced by the feasibility of
p values.

There are 3 feasibility conditions for this problem:
(1) >R

(2) p<C

() tt;<tte V45> pi, 4] € gl

Constraints (1) and (2) ensure that within each cycle, exits can occur in the green phase only.
Constraint (3) ensures that exits that occur earlier in the cycle have travel time values that are
greater than or equal to travel times that occur later in the cycle. Constraint (3) implies that ¢t
is a decreasing function of p within each green phase, with a lower bound imposed by the free
flow link travel time.

We now define the algorithm in detail.

As before, let {tt; 4,tt24...,ttN 4} be a vector of probe travel times on day d and let {¢1 4,t24...,tNn4}
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be the vector corresponding probe exit times indexed on a continuous clock.

The steps in signal imputation algorithm are as follows:

1. Preliminaries:

(a)
(b)

Estimate C or the average signal cycle length via the procedure outlined on Section 3.1.

Obtain knot points 47 and gy that give the estimated relativized exit time at which
a transition from stopped delay to queueing delay and then to free flow conditions.
Identify bins {b1, by, b3} given by by = {R, si1 — 1}, by = {01, ti2 — 1} and b3 = {4in, C}.

In Section 2, we estimated these knot points based on real signal data. Presumably
for most applications, actual signal data will not be available. Therefore, for the
purposes of the application of this algorithm, we have estimated the knots based on
data obtained by simulation of link travel times. The details of the simulation program
is desribed in Thakuriah and Sen (1996). For this particular application, the inputs
to the simulation are average cycle length, green splits, arrivals per cycle and service
time per cycle. The average arrival volume to cycle capacity (v/c) ratio simulated (for
10 simulated ‘days’) was 0.58. The outputs are travel times of individual vehicles and
p values. We estimated f.(p) using the simulated data by the functional form as in
equation (1), by nonlinear least squares, that yielded ji; = 81 seconds and iy = 108
seconds. Note that these values are lower than those estimated using the actual probe
travel time and signal data (given in Table 1), but that is to be expected because in
the simulation, we only considered cases of undersaturated cycles with uniform or red
phase vehicular delay.

2. The Algorithm (we drop d from the subscript with the understanding that the procedure
uses data for one day at a time):

(a)
(b)

Calculate the time difference among each two probe reports, that is between {t,,tn—1},
{tnitn—2} ... {tn,tn—i}, 1 =1,...,n. Call these values (nn-1, Cnn-2, - - -» Cnn—i-

If 0 < ¢pn—1 < ... Cun—i < G, then the vector of travel time reports {ttn—i,...,tt,},
is a candidate cluster, w,—; € Q. A candidate cluster, as defined earlier, is a set of
probe reports (that are consecutive in time) that lie within a time interval which is
less than or equal to the average length of the green phase and is indexed by the first
observation (in time) in the cluster. A candidate cluster must consist of at least two
consecutive probe reports. Naturally, there may be several candidate clusters in one
day. Also, the same probe report may be in several different candidate clusters.

For each candidate cluster, w,_; € , do the following

I. Fit hook for ¢,_; or the exit time of first observation (in time) in a cluster. Fitting a
hook refers to assigning a p value to the observation. The hook is fitted based on tt,_;,
the estimated function f,(p), and the bin into which ¢t,,_; value as explained below.

The estimated function f,.(p) allows the assignment of a bin value corresponding to
ttn—;. We choose the placement of the hook in the selected bin via Monte Carlo. We
assume that p,_; is uniformly distributed in the selected bin and sample p,_; from
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this distribution. The reason for using Monte Carlo as opposed to a straightforward
inverse transformation of tt,—; — fr(p) — pn—; is that the flat part of the estimated
fr(p) is totally uninformative about p in the bin {uq,C}.

Once p,_; is selected, the start time of the cycle is simply rn—; = th_; — pp_;.
II. Build cycles with exact periodicity, C, backward and forward in time from ¢,_;.

III. Calculate p,r =t — 71 ¥V n' #n — i, where r, is the start of the imputed cycle
to which n’ belongs. If p, < R for any t,/, the cycle, 7/, to which the observation
belongs is offset such that p,; > R. The offsetting introduced depends on whether
ty > th—i, the point at which we start building the cycles, or ¢,/ < t,_;.

If ¢, is earlier in time than ¢,_; then the offset is obtained by examining tt, and
pushing the start of the cycle, r,/, backward in time such that the criteria p, > R is
satisfied. If ¢,/ is later in time than t,_;, then tt,s indicates by how much the length
of the last cycle should be extended in order to include ¢, in that cycle.

(d) Continue building the ladder till all observations on day d are inside imputed cycles.

(e) After the sequence of cycles, {C(wn—;)}, is built for candidate cluster w,_;, we have a

vector of imputed values {41,...,pn}, corresponding to w,_;. We then estimate the
relationship tt; = f(4;) + € and computed the Mean Square Error, s> = SN (tt; —
tt;) /(N — 2).

3. Build cycle sequences for all identified candidate clusters in the same way on day d and
compute s2 for all clusters. ’

4. The selected cycle sequence is the one generated by cluster w for which s? is the minimum
over all w € Q.

4 APPLICATIONS

We now present some applications of the signal cycle impution algorithm for the purpose cycle
sequence tracking (in Section 4.1), for travel time estimation (in Section 4.2) and ‘real-time’
prediction (Section 4.3) of travel time. In each case, the real data are presented along with the
estimated for comparative purposes.

4.1 TRACKING THE CYCLE SEQUENCE

Figure 4 shows the imputed sequence of signal cycles based on the method in Section 3.2 for five
days for which we have actual signal data. Each plot is for one day, labeled 724 for July 24 and
so on. The figure shows the actual and imputed start times of red phases on a continuous clock
on the horizontal axis and the cycle length of the actual and imputed cycles on the vertical axis.
The imputed cycles are from the best fit cycle sequence according to the criteria developed in



Vonu Thakuriah

TT

140 -
130 ‘j
120 .
s *
100 _30 - e * . ) .- . .
90 Ze ¢ * . ; i .: . ‘e o ‘ ¢
80 e } . ' .'{ - e, .
70 'i . o. . ; . :
60 ']‘o e o . . .
50 - ® e v e Ve
40 - (] o : . .o 3.:. * .‘. . ¢
30 _3 . - o3 . . . 0 ..
20 -: T L2 S S S S
60 80 100 120 140
(A)  Imputed p
Imputed p
140
120 -
100 -
80 -
60 - |
60 80 100 120 140
(B) Actual p

(A). Travel Time and Imputed p.

(B). Actual p and Imputed p.

Figure 5: Estimation of Relativized Exit Time p.



Vonu Thakuriah 16

Estimates: | =77.81 B1=-0.69 (y=0.69
Knot: I' = 62 secs.

Slopes: Part 1: -0.69 Part 2: 0

Fit: $=9.90 R*=.84

Table 2: Estimates from model of travel time as a function of imputed relativized entry time 7.

Section 3.2, Item 4. Note that the scale of the two axis are very different. The important fact to
note is that the cycle start times should lie along a vertical line drawn from the horizontal axis.

The fit is clearly better on some days than on others. On July 24, the imputed cycle sequence
follows the actual almost exactly. On July 25, the imputed signal cycle sequence is always ahead
of the actual sequence by one or two seconds. This was also the day on which the minimum
number of resets were done. If no resets are done, then the actual and the imputed cycles will
always be off by a constant amount, if the actual cycles are exactly periodic (the imputed cycles
are always exactly periodic if no resetting is done). But for most days, the actual and the imputed
cycle start times lie fairly close to vertical lines drawn from the horizontal axis.

4.2 TRAVEL TIME ESTIMATION

Figure 5(A) shows travel times plotted against the estimated p;, based on the signal cycle sequence
reconstruction (the results of which are presented in Section 4.1). Figure 5(B) shows a comparison
of the imputed p;’s against the actual p;’s.

The pattern presented in Figure 5(A) is very similar to that obtained on the basis of real signal
data, shown in Figure 1. However, the entire imputed pattern in Figure 5(A) is shifted a little
more to the left (toward the start of the green phase) than the actual pattern. Also we see from
Figure 5(A), that the imputed p;’s underestimates the actual p;’s slightly. This deviation of the
imputed p;’s from the actual indicates that the estimated function f.(p) that we used for allocating
the tt;’s to pi’s, underestimates the function that would have been pertinent for the level of volume
in some cycles. As we had discussed in Section 3.2, the estimated function f.(p) is relevant for
the undersaturated cases with uniform (red phase) delay only, under the condition that vehicles
arrive uniformly within the red and green phases. This result points to the importance of the
knowledge of volume levels in the signal imputation problam.

Once we have the imputed signal data, we are in a position to estimate travel times on the effects
of signalization, without having direct measurements on signal control events. We do so by means
of the following model:

Let tt; be the travel time of vehicle i entering the link at time ent; = t; — tt; on day d, time-
of-day td and average signal cycle period C. Our purpose is to estimate tt; = g(v;) + ¢; where
v = ent;modulo(r{) where r{ is the estimated start of the cycle (obtained by applying the signal
cycle imputation problem) in which the ithe probe exited. The exact model (the imputed signal
cycle model) estimated (by non-linear least squares) is:

tti =a+ Bivi+ Ba(vi — )0 + ¢ (6)
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link length
st. b1+ 0= ——g
speed limit

where
5= 1 if y4>T
- 0 otherwise

and where the knot point I' was a parameter in the model. Table 2 presents the estimates of the
model and Figure 6(A) presents the fit. For comparative purposes, tt as a function of the actual
vi’s is shown in Figure 6(B).

We see that using the imputed signal information to estimate travel times offers a marked improve-
ment (in terms of the Root Mean Square Error) over the ‘step-function’ travel time estimation
model given in equation (5) (s = 9.90 for the imputed cycle travel time model and s = 26 for the
step function model).

Signal cycle imputation can further help to improve the estimates from the step-function model.
As mentioned in the introduction, if a term reflecting the effect of signalization is left out from a
model of travel time, the estimates of travel time may be biased. Because the step-function model
averages over travel times in fixed time intervals (in the case of the model in equation (5, td = 5
minutes) one interval may contain a longer part of green phases than the next 5-minutes. The
result of this aggregation may be that one interval has a lower estimate of expected travel time
simply because of arbitrary temporal aggregation and not because of true covariate effects. This
implies that the estimates of that model may be biased (Sen et al. 1996). If we wanted estimates
of expected link travel times as step-functions of clock time, then the interval should be over an
integer multiple of the cycle length, thereby avoiding bias in the estimates of travel time.

4.3 TRAVEL TIME PREDICTION

The dynamic link travel time prediction problem is: given a vector of travel time data, {tt1,tt2,. .., tt,},

upto time ¢, predict travel time tt(t/-i\- 6) at a future time ¢ + 6. The time ¢ + 6 is the estimated
entry time of a vehicle into the link.

In this section, we present the results from the real-time forecasting of travel time. Our predictions
are conditional on day-type, time-of-day, average cycle periodicity and imputed sequence of signal
cycle. The predicted travel times were obtained as follows:

1. Use data for 3 days to impute signal cycle sequence.

2. Use travel time and imputed data for the same three days to estimate the model in equa-
tion (6).

3. Obtain dynamic forecasts for data from five other days. The results are shown in Figure 7.
The steps are:

(a) build signal cycle sequence on day d based on data upto time ¢; for each day, these
were based on four or five points that are shown in black diamonds in Figure 7

(b) extend signal cycle with exact periodicity upto the entry time (¢ +6) of the next probe,
J
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e; = tt; — tt (seconds) | Frequency
-20 to -11 18
-10 to -1 50
0 11
1 to 10 50
11 to 20 10
21 to 30 3
31 to 40 4

Table 3: Distribution of errors from dynamic link travel time predictions.

c) obtain v; = (¢ + §)modulo(r§)

(
(d) once «; is known, the prediction tAtj is then obtained from the previously estimated
relationship at Step 2 by inverse transformation.

4. Once probe j exits the link, its actual ¢¢ and exit time ¢ is used to reset the signal cycle
sequence as necessary as discussed earlier.

The first few travel time observations on each day (shown in black diamonds) are used to build
the signal cycle sequence each day backward in time (as discussed in Section 3.2, Item 2 II).
Once the hook is fitted based on one of these observations, we start to build the cycle sequence
forward in time. From that point onwards, we use only the entry times of probe vehicles as data
input in the prediction procedure. For each probe entry time (in terms of clock time), we make
a prediction. The output of the prediction procedure, for each probe observation considered, is a
predicted value and a reset of the signal cycle sequence when necessary. The figures show that the
number of observations on each day is very small. The procedure, therefore, is capable of making
predictions based on extremely sparse data, for intermittent time horizons into the future and
is not constrained into making predictions in fixed time-steps. It requires a number of covariate
information, but it also demonstrates that on signalized arterials, perhaps the major covariate for
predictive purposes is signal information.

Figure 7 shows that the procedure does well in predicting the travel times of probe vehicles on a
link, given its entry time into the link. Table 3 gives the distribution of e; = tt; — tt;. There are
18 observations for which e; = 0. About 76% of the travel time observations were predicted to
within £10 seconds and about 95% were predicted to within £20 seconds The points with the
largest errors were from cycles with average v/c > 0.85.

5 CONCLUSIONS

The effect of signals and volumes are fundamental covariates of link travel time. However, data
on the periodic sequence of signal cycles are not likely to be available in most ATIS and ATMS. In
this paper, we used measurements of link travel time and link exit times to impute the aperiodic
sequence of signal cycles. We then used this imputed sequence as input into the estimation of
travel time and for the dynamic prediction of link travel times. We did so by assuming that
the relationship between travel time and exit time relativized to within the signal cycle (p) that
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holds for undersaturated cycles with uniform (within-phase) arrivals holds for all cycle saturation
conditions considered. The results indicate that this approximation is quite reasonable. In terms
of the Root Mean Square Error, imputing signal cycles and using this information as a conditioning
variable in estimating travel times is a marked improvement over a step-function type estimation
of travel time, where travel time is considered to be a function of volume (in terms of a time-of-
day diurnal pattern) alone. Moreover, the imputed sequence of signal control allows extremely
reasonable ‘real-time’ predictions of link travel times.
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