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Summary

This research presents a dynamic user-optimal (DUO) route choice model for predicting dy-
namic traffic conditions, intended for off-line Advanced Traffic Management Systems (ATMS)
and Advanced Traveler Information Systems (ATIS) evaluation and implementation. This
DUO route choice model is formulated as a variational inequality (VI) and can be solved
efficiently to convergence by the proposed diagonalization algorithm with discrete time in-
tervals.

The test network selected for testing the proposed dynamic user-optimal (DUO) route
choice model is the ADVANCE Network. The ADVANCE Network is located in the north-
western suburbs of Chicago and covers about 300 square miles (800 square kilometers). To
generate specific link travel times for the investigated network, the expanded intersection
representation is employed. Using this network representation, each turning movement is
coded as an individual intersection link, increasing the network scale to approximately three
times larger than the conventional network representation. Nearly 10,000 nodes and 23,000
links are defined for the solution procedure. For most links a realistic traffic engineering-
based link travel time function, the Akcelik function, is adopted in this research, in place of
the simplistic but widely used BPR (Bureau of Public Roads) function, to estimate delays
and travel times for various types of links and intersections. Unexpected capacity reducing
events causing nonrecurrent traffic congestion are analyzed with the model. Route choice
behavior based on anticipatory and non-anticipatory network conditions are considered in
performing the incident analysis, extending the capability of this model to contribute to the
evaluation of ATMS and ATIS.

Four global network performance measures and a convergence index are defined to mon-
itor the solution process of the model and assess the dynamic traffic condition over the
ADVANCE Network. Results from different locations within the ADVANCE Network un-
der different incident scenarios are analyzed in detail. Although not yet fully validated,
this model is able to predict time-dependent traffic characteristics for a large-scale traffic
network which are reasonable and internally consistent. This is the largest dynamic route
choice solution which has been obtained thus far. Conclusions and recommendations for
future research are presented as well.



Contents

Summary i
Preface vi
1 INTRODUCTION 1
1.1 Research Background and Problem Statement . .. ... .. ......... 1
1.2 Research Objectives. . . . . .. .. ... . ... ... ... ... ... .. .. 3
1.3 Organization of the Report . . . . . .. .. ... .. ... ... .. ... .. 3
2 Literature Review 6
2.1 Desired Properties of Dynamic Route Choice Models . . . .. ........ 6
2.1.1 Representation of Network Traffic Flow . . . .. . ........... 7
2.1.2  Delineation of Travelers’ Behavior and Characteristics . .. ... . . 7
2.1.3 Existence and Uniqueness of the Solution . . . . . ... ... ..... 8
2.1.4  Computational Feasibility of the Model for Realistic Applications 9
2.1.5  Capabilities for ATMS/ATIS Applications . . . ............ 9
2.2 Approaches to Dynamic Route Choice Modeling . . . . . ... .... A ]
2.2.1 Optimization-Based Approach . . . . ... ... ... ........ . 10
2.2.2  Optimal Control Theory-Based Approach . . . . . .. .. ....... 13
2.2.3  Variational Inequality-Based Approach . . . .. .. .......... 14
2.2.4 Simulation-Assignment-Based Approach . . ... ........... 15
225 NOtes . . . oo v it 15
2.3 Review of Variational Inequality Theory . . .. ... ... ... ... .... 16
2.3.1 Definitions for Variational Inequality Problems . . . .. ... ... .. 16
2.3.2  Conditions for Existence and Uniqueness . . . . . ... ........ 17

3 A Variational Inequality Model of the Dynamic User-Optimal Route Choice
Problem 20
3.1 Instantaneous vs. Ideal DUO State . ... ... ................ 20
3.1.1 Instantaneous DUO State . . ... ................... 20
3.1.2 Ideal DUO State . ... ......... .. ... .. .. ... ... . 21
3.2 Dynamic Network Constraints . . .. .. ... ... ............ . 21
3.2.1 Definitional Constraints . . . ... ... ... .. ... .. ... ... 22
3.2.2  Flow Conservation Constraints . . ... ................ 22
3.2.3 Flow Propagation Constraints . . . . .. ................ 23

3.2.4 First-In-First-Out Constraints . . . . ... ... .. .. ... ... . . 26

~

i



3.2.5 Nonnegativity Constraints . . . . . ... .. ... ... ........

3.3 Link-Time-Based Conditions . . ... ... .. .. ... ... ... .....
3.4 The Link-Time-Based VIModel . . . . ... ... ... ............
3.4.1 Proofof Necessity . . . . .. ... ... .. .. ...,
3.4.2 Proof of Sufficiency . . . ... ... ... . ...,
3.5 A Combination of the Instantaneous and Ideal DUO States . . . . .. .. ..
4 Solution Algorithm
4.1 Inmitialization . . . . . . ... ...
4.2 Solving the Route Choice Problem '. . . . ... ... .............
4.3 Updating the Node Time Intervals . ... ... ................
4.4 Adjustment of Link Capacities . . . . . ... ... ... .. .. ........
4.5 Convergence Test of the Outer Iteration . .. ... ..............
4.6 Summary of the Solution Algorithm . . . . ... ... ... .. ........
5 Model Implementation
5.1 Test Network . .. .. ... ... ... ... ... .. . ..
5.2 Expanded Intersection Representation . . ... ... .............
5.3 Link Travel Time Functions . . . ... ... ... ... ... .........
5.3.1 Signalized Intersections . ... .....................
5.3.2 Unsignalized Intersections . . ... ... ................
5.3.3 Freeway-Related Facilities . . . . . ... ... ... ..........
5.4 Travel Demand and Time-Dependent Departure Rates . . .. ... ... ..
5.5 TrafficInput Data . . ... .. .. ... ... ... .. ... ... ......
5.6 Alternative Route Choice Strategies . .. ... ................
5.6.1 Modeling Issues . . . .. ... ... ... ... ... ... ... ...
5.6.2 Modeling Approach . . ... ... .. ... ...
6 Computational Solution and Analysis of Results
6.1 Computing Platforms and Performance . . . . . .. .. ... .........
6.2 Dynamic Network Performance and Convergence Measures . . . . . .. .. .
6.3 Analysis of Network Performance Measures . . . . . .. ... .........
6.4 Enroute Diversions Resulting from Incidents . . . . ... ... ........
641 Casel ... ................... e e e e e e
6.4.2 Case 2 . ... i i
7 Conclusions and Future Research
7.1 Conclusions . . . ... ... ... ...
7.2 Future Research . .. ... ... ... .. ... . ... .. . . ... ...
References

iii



List of Tables

5.1
5.2
3.3
5.4

6.1
6.2

Network Characteristics . . . . . . . . . . . . o v v v i 42

Intersection Frequency by Number of Legs and Control Type . . . . . . . .. 42
Total Vehicle Flow per Hour . . . . . ... ... ... ... .. ........ 48
Intersection Approaches Classified by Category in the ADVANCE Network . 52
Solution Characteristics for Morning Peak Period by Road Class . . . . . . . 59
Solution Characteristics for' Afternoon Peak Period by Road Class . . . ... 59

iv



List of Figures

3.1
4.1

5.1
5.2
5.3
5.4
3.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

Effect of Flow Propagation Constraiﬁts ....................
Flowchart of the Solution Algorithm . . ... ... ... .. .........

The ADVANCE Test Area in the Northwestern Suburbs of Chicago . . . . .
Expanded Intersection Representation . ... .. ... ............
Steady-State Delay Model vs. Time Dependent Formulae . . . . ... ... .
Ten-minute Flow Departure Rates for the Morning Peak Period . . . . . . .
Ten-minute Flow Departure Rates for the Afternoon Peak Period . . . . . .
Classification of Street Approaches to an Intersection . . ... ... ... ..

Average Travel Time of the Morning Peak Period . ... ... ... .. ...
Average Travel Time of the Afternoon Peak Period .. .. .. ... ... ..
Average Travel Distance of the Morning Peak Period . ... .........
Average Travel Distance of the Afternoon Peak Period . ... ... ... ..
Network Space Mean Speed of the Morning Peak Period . .. ... ... ..
Network Space Mean Speed of the Afternoon Peak Period . . ... ... ..
Flow-to-Capacity Ratio of the Morning Peak Period . .. ... ... . ...
Flow-to-Capacity Ratio of the Afternoon Peak Period . . ... ... . ...
Rate of Change of Node Time Intervals of the Morning Peak Period .
Rate of Change of Node Time Intervals of the Afternoon Peak Period . . . .
Layout of the Incident Analysis Area-Case 1 . . . .. .. ..........
Predicted Flows of the Incident Link-Case 1 . . .. .. ............
Link Travel Times of the Incident Link-Case 1 . . .. .. .. ... .....
Predicted Flows of the Upstream Link-Case 1 . ... ... ..........
Link Travel Times of the Upstream Link-Case 1 . . . . ... ... .....
Predicted Flows of the Right-Turn Movement-Case 1 . . . .. ... ... ..
Predicted Flows of the Left-Turn Movement-Case 1 . . . ... ... ....
Link Travel Times of the Right-Turn Movement-Case 1 . . . ... .. ...
Link Travel Times of the Left-Turn Movement-Case 1 . ... ... ... ..
Layout of the Incident Analysis Area-Case 2 . . . .. .. ..........
Link Travel Times for Incident and Non-Incident Conditions-Case 2 . . . .
Link Flows for Incident and Non-Incident Conditions—Case 2 . . ... ...
Link Travel Speed for Incident and Non-Incident Conditions—Case 2



Preface

The solution of dynamic route choice models for large networks has become an urgent
research priority in the context of Intelligent Transportation Systems. This report seeks to
contribute to the need for operational models in this field.

The solution algorithm builds on and extends the work of Professor Bruce Janson, Uni-
versity of Colorado at Denver. We are grateful for his enthusiastic collaboration and his
detailed comments.

The accident analysis responds to a request from the Illinois Department of Transporta-
tion for assistance in modeling the effect of accidents on traffic congestion. This aspect of
the research was supported by the ADVANCE Project, a field test conducted by the Illinois
DOT and the Federal Highway Administration during 1991-1996. The network data used in
the research is from that project.

This report was originally presented by Der-Horng Lee as his Ph.D. thesis in civil en-
gineering. This report is issued in the hopes of stimulating additional comments on the
findings.

The research was also supported by grant DMS9313013 from the National Science Foun-
dation to the National Institute of Statistical Sciences. The computational studies were
performed at the National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign. We are pleased to acknowledge the support of all three organizations.

David E. Boyce

Vi






SYMBOLS:

N N e

z,[t]

z;’(d]

Ta(a[t])
Talt]

d
Tri

—d
T

Are,

Tt

f’rs [d]
erst]
A(j)
B(j)
g-;1d]

altl

Tt

Qd

rTa

ot

T4

a time interval
a departure time interval

duration of each time interval
set of all nodes
set of all zones (i.e., trip end nodes)

set of all links (i.e., directed arcs)

set of all time intervals in the full analysis period (e.g., 18 ten-minute time
intervals for a three-hour analysis period)

total flow of vehicles on link a in time interval ¢

flow of vehicles from zone r to zone s on link a that departed in time interval

d
actual travel time on link a with flow z, in time interval ¢

actual travel time on link a in time interval ¢

minimal actual travel time from zone r to node i for flow departing in

interval d
d

number of time intervals traversed in 7%

difference of minimal travel times from origin r to node : for flow departing
in successive time intervals
departure flow rate at origin r to destination s in departure time interval d

exit flow rate at destination s from origin r in time interval ¢

set of links whose tail node is j

set of links whose head node is j

flow of vehicles from zone r to node j departing in time interval d via any
route

fraction of the flow departing zone r in time interval d that crosses node ¢
in time interval ¢

difference between the minimal travel time from zone r to node 7 (%) plus
the travel time on link a (7,[d + 7#%]; @ = (4,7)); and the minimal travel
time from zone r to node j (ﬂ'fj), for vehicles departing from zone r in time
interval d

node time interval, a [0, 1] indicator of whether the flow departing zone r
in time interval d has crossed node 7 in time interval ¢

time at which the last flow departing zone r in time interval d crosses node
¢ via its shortest route, less FIFO delay time at node ¢

fraction of a time interval ¢ that the last flow departing zone r in time
interval d crosses node i

average travel time on link @ of the last flow departing zone r in time interval

d

vil



h minimum fraction of time interval separating flows departing in successive
time intervals

Pl fraction of link a occupied by queue during time interval ¢
ABBREVIATIONS:

ADVANCE  Advanced Driver and Vehicle Advisory Navigation Concept
ATIS Advanced Traveler Information Systems

ATMS Advanced Traffic Management Systems

BLPP Bi-Level Programming Problem

BPR Bureau of Public Roads

CATS Chicago Area Transportation Study

CBD Central Business District

CCTV Closed-Circuit Television

DUO Dynamic User-Optimal

FHWA Federal Highway Administration

FIFO First-In-First-Out

F-W Frank-Wolfe

IDOT [linois Department of Transportation

ITS Intelligent Transportation Systems

IVHS Intelligent Vehicle Highway Systems

K-K-T Karush-Kuhn-Tucker

NCSA National Center for Supercomputing Applications
O-D Origin-Destination

SO System-Optimal

SUO Static User-Optimal

T™C Traffic Management Center

Uo User-Optimal

VI Variational Inequality

viii



Chapter 1
INTRODUCTION

1.1 Research Background and Problem Statement

Intelligent Transportation Systems (ITS), also known as Intelligent Vehicle Highway Sys-
tems (IVHS), make use of advanced technologies (such as navigation, automobile, computer
science, telecommunication, electronic engineering, automatic information collection and pro-
cessing) in an effort to improve the movement of people and goods. ITS technologies have
the potential to provide better travel information, easier and safer travel, improved net-
work capacity utilization, less traffic congestion, improved traffic flow, energy consumption
savings, quicker roadway emergency response, faster freight deliveries and improved fleet
management.

Within the framework of ITS, Advanced Traveler Information Systems (ATIS) can pro-
vide historical, real-time and predictive information to support travel decisions, which in turn
can influence the travel choices of individuals and consequently improve the time and quality
of travel (Ran and Boyce, 1994). Moreover, Advanced Traffic Management Systems (ATMS)
can integrate the management of various roadway control functions including ramp meter-
ing, signal timing, and variable speed advisories to predict traffic congestion and provide
alternative routing instructions to drivers. General roadway information can be broadcast
to drivers through AM/FM radio. Conversely, detailed information generated by ATMS can
be transmitted to specific groups of drivers via in-vehicle route guidance systems. In consid-
eration of the goals of ATMS and ATIS, dynamic route choice models, based on behavioral
assumptions regarding route choice, are needed to perform traffic condition assessment and
prediction for generating route guidance. Therefore, dynamic route choice models are an
essential element for ATMS and ATIS evaluation and implementation.

The problem analyzed in this research is stated as follows: given time-dependent travel
demand (in the form of origin-destination (O-D) matrices for short time intervals), distribute

this demand onto routes through the network based on (1) specified route choice behavior
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(e.g., user-optimal (UO) or system-optimal (SO)), and (2) time-dependent transportation
supply variations. For a specific solution procedure, the interaction between transportation
supply and travel demand is determined and represented by the flow pattern of the network.

To date, very few traffic models are adequate for ATMS and ATIS applications. This

research seeks to contribute to this need from the following aspects.

1. solve a dynamic route choice model on a realistic, large-scale traffic network;

2. represent the network in detail, including use of realistic traffic engineering-based travel

time functions;
3. provide a platform to describe and analyze traffic dynamics in the real world;

4. support and evaluate network-wide traffic signal settings, network-wide traffic control
strategies and route guidance.

Route choice models are usually associated with network equilibrium concepts. Static
models are generally used for long-term planning purpose. In static models, there are no time-
dependent variables within the period of analysis, generally the peak travel period. Most
static user-optimal (SUO) models are formulated to yield route choices that are consistent
with Wardrop’s first principle (Wardrop, 1952). This principle requires route travel costs to
be equal for used routes between a given origin-destination pair, with no unused route having
a lower cost. This user-optimal has been employed as the key behavioral assumption in most
route choice models.

Conceptually, the model studied in this research seeks to achieve a dynamic generalization
of Wardrop’s first i)rinciple. Therefore, the dynamic user-optimal (DUO) problem is defined
as determining the route flows at each instant of time that result in drivers using minimal-
time routes, and finding the associated link flow pattern.

The problematic assumption that complicates the modeling of dynamic route choices
is that route choices must be based on travel times which are temporally-consistent with
future link flows. This assumption is appropriate for recurrent trips and traffic conditions,
and is also acceptable for scheduled events (e.g., ballgames, concerts, parades, detours and
road constructions) and even for predicted weather conditions. However, this behavioral
assumption is inconsistent with unexzpected events (e.g., stalled vehicles, dropped objects,
dangerous chemical spills and accidents) at future times because drivers have very limited
capability to be informed about the times and locations of such events before they encounter
unusual queuing delays caused by those incidents. Enroute diversions are thus expected to
occur only when incidents are encountered by drivers. To this end, alternative route choice

strategies based on anticipatory and non-anticipatory traffic conditions are considered in
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this research to determine the range of possible incident impacts from the least severe to the

most severe cases.

1.2 Research Objectives

This research aims to present a DUO route choice model for predicting dynamic traffic condi-
tions intended for off-line ATMS and ATIS evaluation and implementation. This DUO route
choice model is formulated as a variational inequality (VI) and can be solved efficiently to
convergence by the proposed diagonalization algorithm with discrete time intervals. For most
links a realistic traffic engineering-based link travel time function, the Akcelik function (Akce-
lik, 1988), is adopted in this research in place of the simplistic but widely used BPR function
(Bureau of Public Roads, 1964) to estimate delays and travel times for various types of links
and intersections. Unexpected events, such as stalled vehicles, traffic accidents, dropped ob-
jects, and dangerous chemical spills that cause nonrecurrent traffic congestion, are analyzed
with the model. Route choice behavior based on anticipatory and non-anticipatory network
conditions are considered in performing the incident analysis, extending the capability of
this model to contribute to ATMS and ATIS.

The specific objectives of this research can be itemized as follows:

1. formulate a DUO route choice model based on the variational inequality problem;
2. solve the proposed DUO route choice model using a diagonalization algorithm;

3. utilize traffic engineering-based link travel time functions in the solution algorithm;
4. implement the formulated model on a realistic, large-scale traffic network;

5. generate time-dependent traffic information (such as flows, speeds, travel times) clas-
sified according to turning movements, highway facilities and traffic control at inter-

sections;

6. understand the solution properties of a DUO route choice model on a realistic traffic

network;

7. analyze traffic flow patterns under incident conditions with different route choice as-

sumptions.

1.3 Organization of the Report

This research consists of seven chapters, including this introductory chapter. In Chapter 2,

an extensive review of the literature on dynamic route choice modeling is presented. Desired

, -
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properties of the dynamic route choice model are introduced, and the desired capabilities
of the model to represent traffic dynamics and traveler behavior are discussed. Require-
ments for theoretical properties and computational issues are identified. A wide spectrum
of approaches to dynamic route choice modeling is presented including: optimization-based
approach; optimal control theory-based approach; variational inequality-based approach;
and simulation-assignment-based approach. The review also includes a general review of
variational inequality theory.

Chapter 3 introduces the formulation of 'the proposed DUO route choice model. The
link-time-based conditions are defined. Although the route-time-based VI model has the
most straightforward interpretation of DUO route choice (Ran and Boyce, 1994), it requires
the enumeration of all routes between each O-D pair. For a continuous time formulation and
a network of reasonable scale, route enumeration is intractable (Patriksson, 1994). To apply
the model to a large-scale network, therefore, the alternative link-time-based VI model is
considered. The dynamic network constraints, such as flow conservation constraints, flow
propagation constraints and first-in-first-out (FIFO) constraints, are derived according to
the link-time-based conditions. The proposed model aims to find the flow pattern satisfying
the defined DUO state. To this end, the travel times experienced by flows for each O-D pair
departing at the same instant of time are equal and minimal at the DUO state.

In Chapter 4, the solution algorithm of the proposed VI model is considered. The steps
of the algorithm are described in detail. Using the diagonalization method, the proposed VI
model can be solved efficiently and smoothly to convergence. Adjustments of link capacities
are incorporated into the algorithm to account for capacity changes caused by spillback
queuing effects, signal timing changes (if any), incidents and other interruptive events. This
function greatly enhances the ability of this model to model dynamic traffic in the real world.

Chapter 5 examines issues of implementing this model on the ADVANCE Network. The
ADVANCE Network is located in the northwestern suburbs of Chicago and covers about
300 square miles (770 square kilometers), and has 447 O-D zones, nearly 8,000 links and
more than 2,500 nodes. Diversified land use patterns and highway facilities characterize the
ADVANCE Test Area. To generate specific link travel times for the investigated network,
the expanded intersection representation is employed. Using this network representation,
each turning movement is coded as an individual intersection link, increasing the network
scale to approximately three times larger than the conventional network representation.
Nearly 10,000 nodes and 23,000 links are defined for the solution procedure. Realistic traffic
engineering-based link travel time functions, based on the Akcelik function (Akcelik, 1988),
are adopted. Each of the links is identified according to type of intersection control, highway
facility type, geometric layout and lane designation at intersections to determine the appro-

priate link travel time function. Daily trip tables from CATS (Chicago Area Transportation



Study) factored to represent travel demand for five time-of-day periods (night, morning peak,
mid-day, afternoon peak and evening) are utilized. Each time-of-day period is further di-
vided into ten-minute intervals for use in the solution procedure. Ten-minute trip departure
rates for each O-D zone are derived from half-hour departure rates obtained from CATS.
Other traffic input data required by the solution procedure are described. Alternative route
choice strategies employed by the proposed model to estimate the impacts of unexpected
capacity reducing events are presented in detail.

Computational solutions and-analyses of results are presented in Chapter 6. First, the
computing platform used for solving the proposed model and its performance are described.
Then, dynamic network performance measures (average travel time, average travel distance,
network space mean speed, average flow-to-capacity ratio and a convergence index) are de-
fined and presented. These network performance measures are analyzed to interpret the
overall performance of the proposed model on the ADVANCE Network. Finally, computa-
tional results for different locations within the ADVANCE Network under different incident
scenarios are analyzed in detail.

In Chapter 7, an account of the major contributions and conclusions of this research are

presented. Recommendations for future research are provided as well.



Chapter 2

Literature Review

Recognition of the importance of dynamic network modeling has increased in recent years.
Various types of modeling approaches, solution methods and test results have been reported,
focusing on dynamic network equilibrium analysis. In general, approaches to the investiga-
tion of dynamic network equilibria can be classified into four major categories according to
the nature of their methodology: optimization-based approach; optimal control theory-based
approach; variational inequality-based approach; and simulation-assignment-based approach.

The principal research contributions in those four methodological categories are reviewed
in this chapter. Since the defined dynamic user-optimal (DUOQ) route choice model is for-
mulated as a variational inequality (VI) problem, this chapter also includes a review of vari-
ational ineduality theory. Before examining previous works on dynamic network modeling,

we first consider the desired properties of dynamic route choice models.

2.1 Desired Properties of Dynamic Route Choice Mod-
els

Properties of dynamic route choice models can be addressed from the following viewpoints:

1. the representation of network traffic flow;

2. the delineation of travelers’ behavior and characteristics;

3. the existence and uniqueness of the solution;

4. the computational feasibility of the model for real applications;

5. the ability of the model to be integrated into ATMS/ATIS applications.



2.1.1 Representation of Network Traffic Flow

For the representation of dynamic network traffic flow, several basic and critical requirements
need to be established. These requirements include representation of flow conservation, FIFO
conditions, flow propagation and queue spillbacks over the network. In the static case, these
required properties are straightforward or even trivial. They complicate greatly, however,
the modeling tasks in the dynamic case.

Conservation of flow on a multiple O-D network needs to be considered both at the
level of nodes and links. In addition, flow conservation at origins and destinations must be
considered. In a continuous time formulation of the dynamic route choice problem, first-in-
first-out (FIFO) conditions are implicitly defined by the flow propagation constraints, if an
appropriate link travel time function is applied. In contrast, additional attention needs to be
paid to maintain FIFO conditions when a discrete time formulation (or solving a continuous
time formulation in a discrete manner) is adopted. For a discrete time formulation, FIFO
conditions have to be expressed explicitly to maintain effective trip ordering in successive
time intervals. That is, vehicles are assumed to make one-for-one (or zero-sum) exchanges
of traffic movements as traversing on any link, which is acceptable and expected in most
aggregate traffic models (Janson and Robles, 1995).

Flow propagation is not necessary for static route choice models because each O-D flow
propagates instantly over the entire route from origin to destination in the static model. For
dynamic route choice models, flows remain on a link only for some duration of time and
the movements over time need to be represented. A dynamic route choice model needs to
include the capability of capturing this phenomenon.

Representation of queue spillback is another issue closely related to flow propagation.
Queue spillbacks are often caused by unexpected capacity reducing events such as acci-
dents, stalled vehicles and dropped objects, so that the traffic demand exceeds the available
capacity. Continuing excess traffic demand turns the local oversaturation into areawide over-
saturation. Within the context of representing the network traffic, inclusion of the effects
of traffic control facilities and strategies, such as traffic signal and ramp metering, are also

essential.

2.1.2 Delineation of Travelers’ Behavior and Characteristics

Dynamic route choice models must address travelers’ route choice behavior and characteris-
tics. One basic hypothesis used in this research is the DUO concept. DUO behavior implies
that travelers choose the best routes based on either instantaneous or actual travel times.
Instantaneous travel time is defined as the travel time based on currently prevailing traffic

conditions. Actual travel time is defined as the travel time actually experienced during the
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trip. Consequently, the instantaneous DUO state and the ideal DUO state are defined.

The instantaneous DUO route choice problem is to determine flows at each instant of
time on each link resulting from travelers using minimal-time routes under currently prevail-
ing travel times. The corresponding model provides currently prevailing traffic information
to travelers. However, instantaneous route flows with the same departure time and the same
O-D may actually experience different route travel times, because the route time may sub-
sequently change due to rapidly changing traffic conditions, even though at each decision
node the flows select the route that is currently best. A decision node for each route of each
O-D pair is defined as any node on the route including the origin where an O-D flow can
switch to an alternative route toward its destination. This instantaneous DUO definition is
also referred as the reactive DUO state (Jayakrishnan et al., 1995), since travelers seek to
minimize their own travel times by continuously updating their route choices according to
currently prevailing traffic conditions. Using the instantaneous DUO route choice model can
lead to inferior solutions and/or unrealistic predictions of traffic patterns because travelers
choose routes without anticipating future traffic conditions.

For the ideal DUO route choice problem, for each O-D pair at each instant of time,
the actual travel times experienced by travelers departing at the same time are equal and
minimal. The determined traffic flow pattern over the network is called a travel-time-based
ideal DUO state. This ideal DUO definition is also referred as the predictive DUO state (Ran
and Boyce, 1994) since the actual route travel time is predicted using the corresponding route
choice model. Under the ideal DUO state, travelers have no reason to change their routes.

In addition, deployable dynamic route choice models should use generalized cost functions
by weighting travel times, operating costs and other associated variables instead of travel
times only. To represent fully travelers’ route choice behavior and characteristics, multiple
classes of travelers (e.g., ATIS equipped, degree of ATIS compliance, knowledge of network),
multiple classes of "drivers (e.g., aggressive, conservative) and multiple classes of vehicles

(e.g., car, bus, truck) need to be introduced in future models.

2.1.3 Existence and Uniqueness of the Solution

Dynamic route choice models should have a solid theoretical foundation to ensure the exis-
tence and uniqueness of the DUOQ solution. These properties pertain to both simulation and
analytical approaches. In principle, simulation-assignment-based approach lacks proofs of
existence and uniqueness of the equilibrium solution, as well as convergence of the algorithm
to that solution. Therefore, flow patterns generated by simulation-assignment-based models
are difficult to compare for alternative scenarios.

Analytical-based models, such as optimization and variational inequality models, have



advantages in this regard. Moreover, for a dynamic route choice model, any claim for DUO
routes must be proven because the time-dependent shortest route approach does not neces-

sarily lead to DUO routes under congestion.

2.1.4 Computational Feasibility of the Model for Realistic Ap-
plications

Computational feasibility is one of the most challenging issues of dynamic route choice
modeling. Since the first large-scale solution of an analytical-based dynamic route choice
model has obtained (Boyce et al., 1995a), however, solution of dynamic route choice models
to large networks can no longer be regarded as an infeasible task. Supercomputers are not the
only possible platform for dynamic route choice models. Workstations can be an appropriate
platform in considering the design of a Traffic Management Center (TMC). High performance
computing techniques, such as distributed and parallel computation, are worth attempting
in pursuing savings in computational times. In addition, a balance between computational

speed and accuracy of solution should be maintained.

2.1.5 Capabilities for ATMS/ATIS Applications

The capabilities of a dynamic route choice model for ATMS/ATIS appli;a,tions can be an-
alyzed from two viewpoints: real-time application and off-line evaluation. In principle,
dynamic route choice models are designed for real-time application; therefore, acquisition
and assimilation of real-time traffic information become essential. The fusion of results from
dynamic route choice models with other relevant simulation and statistical models is criti-
cal for providing dynamic information of flows, queues and travel times. A well-organized
system architecture/interface between a dynamic route choice model and various traffic infor-
mation sources (e.gi, probes and surveillance syste{ms) and compatibility with various TMC
architectures (e.g., centralized, decentralized, distributed) are required for deployment.
Dynamic route choice models can be used for off-line evaluations of ATMS/ATIS and
common traffic control strategies such as signal control, ramp metering and reversible lane
allocation. Based on dynamic route choice models, off-line generated routes can be used for
establishing the route data base for a route guidance system. Likewise, off-line generated
link information can be used in the data fusion process to provide further estimates of
traffic characteristics. Off-line applications of dynamic route choice models also extend to

environmental impact analysis and forecasting for urban transportation planning.



2.2 Approaches to Dynamic Route Choice Modeling

According to the methodology adopted, approaches used to investigate the dynamic route
choice problem can be generally classified into four major categories: optimization; optimal
control theory; variational inequality; and computer simulation. Representative literature

from these four approaches is reviewed in the following subsections.

2.2.1 Optimization-Based Approach

The pioneering effort in this field was by Merchant and Nemhauser (1978a, 1978b). Their
model (M-N) is formulated as a discrete time, nonconvex and nonlinear programming prob-
lem of system-optimal (SO) route choice to a single destination. A toy network with multiple
origins and a single destination was used for generating numerical results. Using the one-pass
simplex method, the M-N model was solved to a global optimum with a piecewise lineariza-
tion of the objective function of the model (Merchant and Nemhauser, 1978a). After the
linearization of objective function, the M-N model exhibits a perfect mathematical staircase
structure so that the linear decomposition technique for sparse matrices can be applied to
solve the transformed linear program.

The K-K-T (Karush-Kuhn-Tucker) optimality conditions show that a dynamic general-
ization of Wardrop’s second principle (SO; Wardrop, 1952), requiring equal marginal travel
costs for used routes, is obtained (Merchant and Nemhauser, 1978b). The M-N model was
also examined under steady-state assumptions; and the model was proven to be a proper
generalization of the conventional static system-optimal route choice model. From today’s
viewpoint, the greatest contribution of the M-N model is that traffic congestion was treated
explicitly in the flow constraints. :

Several numerical efforts and extensions have been made based on the M-N model. Ho
(1980) showed that the global optimum of the M-N model could be obtained by solving
a sequence of at most N + 1 linear programs, where N is the number of time periods.
Carey (1986) re-solved the M-N model and showed that it satisfies a linear independence
constraint qualification which establishes the validity of the optimality analysis presented
by Merchant and Nemhauser (1978b). Later, Carey (1987) reformulated the M-N model
for multiple destinations as a convex, nonlinear program with nonlinear constraints for each
link. This new formulation of the model has analytical, computational and interpretation
advantages over the original formulation (1978a). In particular, the K-K-T conditions are
both necessary and sufficient to characterize an optimal solution of Carey’s'reformulation,
whereas in the original model the K-K-T conditions are not sufficient because the constraint
set is nonconvex.

Building on the M-N model, Ho (1990) proposed an extended stochastic formulation of

-
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the dynamic network with congestion by relaxing the assumption that exogenous flows into
nodes are known for all time periods; thus, there are uncertain input flows to each link in
this model. A successive optimization procedure, called the nested decomposition algorithm
similar to the algorithm used by Ho (1980), was adopted to obtain a globally optimal solution
and convergence. Some computational results are generated by using Ho’s algorithm. These
models and numerical examples, however, were tested only on small, hypothetical networks.

Janson (1991a) presented the first attempt of solving a mathematical programming for-
mulation of a DUO route choice model on a real network. This DUO model was formulated
as a nonlinear, mixed-integer program in terms of route-flow variables with scheduled depar-
ture times and variable arrival times. His paper described a dynamic route choice heuristic
that generates approximate solutions to the DUO state for large networks. Janson (1991b)
proposed a link-flow formulation of the DUO route choice problem and a convergent solution
algorithm. Both of the route-flow and link-flow formulations presented by Janson (1991a,
1991b) are indeed a temporal generalization of static user-optimal (SUO) route choice prob-
lem for a multiple O-D network with additional constraints to ensure temporal continuous

flow propagation and route flows. In Janson’s model, the DUO state is defined as (Janson,

1991b):

1. All routes between a given pair of zones used by trips departing in a given time interval

must have equal travel costs.

2. No route between a given pair of zones not used by trips departing in a given time

interval cannot have a lower travel cost.

Hence, his model is an example of an ideal DUQO. Janson and Robles (1993) presented a DUO
formulation with arrival time costs. That model was formulated as a bi-level programming
problem (BLPP) consisting of an upper and lower problem and solved successively by an
iterative algorithm claimed to converge to satisfy the necessary optimality conditions of the
problem. The above models of Janson are all formulated in discrete time.

Most recently, Janson and Robles (1995) converted the discrete time modeling approach
into a quasi-continuous time formulation for their previous models. Three key model im-

provements are obtained using the new approach.

1. Traffic flows are spread over time intervals in continuous time which allow trips to be

split among successive time intervals.
2. FIFO trip ordering between all O-D zones is more precisely maintained.

3. The performance of flow propagation and queue spillback estimation is improved.

11



The new formulation maintains the BLPP framework. The upper-level problem solves a
multi-interval, time-varying-demand route choice problem. The lower-level problem main-
tains temporally-correct, time-continuous traffic flow propagations. Their algorithm (Janson,
1991b; Janson and Robles, 1995) is applied to solve these two subprol:;lems to convergence.
Besides the modeling refinements, computational results are presented for the I-25/HOV
corridor (110 zones, 1,714 nodes, 3,417 links and 222,218 O-D trips) located in southeast
Denver (Robles and Janson, 1995). The BPR function is used in this model. The solution is
validated with data obtained from in-pavement detectors. The entire dynamic route choice
framework of Janson is called DYMOD for easy reference.

De Romph (1994) modified an early version of DYMOD called 3-DAS (3-Dimensional
Assignment) to the Washington, D.C. network (180 zones, 857 nodes and 2,086 links) and
the Amsterdam network (21 zones, 286 nodes and 430 links) for ATMS applications. A
speed-density function proposed by Smulders (1‘988) was used for calculating travel times.
A graphical user interface of 3-DAS was also established to demonstrate results.

Jayakrishnan et al. (1995) applied a modification of DYMOD to a hypothetical 5 x 5
network and a small-scale network (38 zones, 416 nodes, 914 links and 1,406 O-D trips)
located in Anaheim, California. Modified Greenshields speed-density relationships were used
to derive a link-cost function that is monotonically nondecreasing and convex with respect to
density. The order of the upper-level and lower-level problems of DYMOD was reversed by
Jayakrishnan et al. (1995), which led to a discussion of the appropriateness of interpreting
DYMOD as a bi-level programming problem and a Stackelberg leader-follower game (von
Stackelberg, 1952).

Boyce, Lee, Janson and Berka (1995a, 1995b, 1996) incorporated realistic traffic engineering-
based link travel time functions into the solution algorithm of DYMOD to estimate better
the link travel times and intersection delays. The modification was implemented for the AD-
VANCE Network (Boyce et al., 1994) (447 zones, 9,700 nodes, 23,000 links) located in the
northwest Chicago area. A link-time-based variational inequality formulation of DYMOD
was proposed by Boyce, Lee, Janson and Berka (1995b) to provide an improved theoretical
basis for the solution algorithm. Dynamic network constraints such as flow conservation
constraints, flow propagation constraints and FIFO constraints were developed. Using alter-
native route choice strategies, unexpected capacity reducing events that caused nonrecurrent
traffic congestion were also analyzed by the model. Network performance measures were de-
fined and computational results were obtained and compared with a large-scale asymmetric
static route choice model (Berka et al., 1994). The results of Boyce, Lee, Janson and Berka
(1995a, 1995b, 1996) established a new benchmark for solving a dynamic route choice model
for a large-scale network.

12



2.2.2 Opfimal Control Theory-Based Approach

Optimal control theory is suitable for describing and optimizing time-dependent dynamic
processes. Luque and Freisz (1980) proposed the first dynamic route choice model that ap-
plied optimal control theory. They reformulated the M-N model (Merchant and Nemhauser,
1978a) as a continuous-time optimal control problem. The optimality conditions were derived
from Pontryagin’s minimum principle (Pontryagin et al., 1962) and can be interpreted as the
dynamic generalization of Wardrop’s second (SO) principle for the static case. Friesz et al.
(1989) offered a DUO route choice model byr considering the equilibration of instantaneous
route costs.

Subsequently, a generalized DUO route choice model of a multiple O-D network was
presented by Wie et al. (1990). Wie (1991) analyzed a simple dynamic extension of the
static route choice problem with elastic demand. The problem of DUO route choice with
elastic demand is not only to predict the dynamic traffic pattern but also to determine
the temporal distribution of traffic from each origin in response to time-dependent traffic
conditions. Using the augmented Lagrangian method, Wie et al. (1994) solved dynamic route
choice models in discrete time. In the proposed algorithm, the need for route enumeration
was obviated. The algorithm also exploited the natural decomposition of the route choice
problem by time period which is possible when an optimal control formulation is employed.

In the formulation of some optimal control-based dynamic route choice models (Friesz et
| al., 1989; Wie 1989; Ran and Shimazaki, 1989a), only the inflow into each link at a given
instant of time is defined as a control variable; the exit flow from each link is considered
to be a function of the number of vehicles on that link. Although this mechanism provides
an explicit relationship between exit flow and number of vehicles, it has several critical

drawbacks, as follows.

1. If the exit flow function is concave, it is impossible to establish an optimal control

model of the DUO route choice problem for a multiple O-D network.

2. If the initial link inflow is zero, flow propagation tends to be unrealistic when the inflow
comes positive, since the exit flow rate must be positive immediately to satisfy the exit

flow function.

By defining exit flow as a control variable, Ran and Shimazaki (1989b) proposed a DUO
route choice model which considers the equilibration of instantaneous travel times. Its com-
putational complexity is significantly reduced compared with only defining the inflow as a
control variable. Moreover, the resulting model can be applied to a multiple O-D network.
Further, Ran, Boyce and LeBlanc (1993) formulated a new class of instantaneous DUO

route choice models with flow propagation constraints which generalized the SUO route

;-
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choice model. Since these formulated optimal control problems are convex programs with
 linear constraints, unique solutions are obtained. Boyce, Ran and LeBlanc (1995) presented
an algorithm for solving their instantaneous DUO route choice model. By using an expanded
time-space network, the Frank-Wolfe linear programming subproblem only requires the so-
lution of minimal-cost route problems for each O-D pair. Thus, this expansion technique
allows standard static route choice algorithms to solve dynamic route choice problems. Ran
and Boyce (1994) collected their findings into a book on dynamic transportation network
modeling. Complete and rich sets of dynamic route choice models, constraints, optimality

conditions, solution algorithms and computational examples are presented.

2.2.3 Variational Inequality-Based Approach

Compared to optimization and optimal control approaches, the variational inequality (VI)
approach provides more general formulations of dynamic route choice problems (Ran and
Boyce, 1994). The first statement of a network equilibrium in the form of a variational
inequality was the SUO route choice model of Smith (1979). Dafermos (1980) developed
an elastic demand model with disutility functions using the variational inequality approach.
An elastic demand model with demand functions was introduced by Dafermos and Nagur-
ney (1984). Fisk and Boyce (1983) also presented a set of alternative VI formulations for
network equilibrium travel choice problems. Nagurney (1993) summarized the modeling and
algorithmic aspects of VI models for static route choice problems.

Using the variational inequality approach, Friesz et al. (1993) formulated a simultaneous
departure time/route choice model. Smith (1993) proposed a route-based VI formulation
using the packet representation of vehicle groups. Wie et al. (1995) formulated the DUO
route choice problem as a variational inequality problem in discrete time in terms of route cost
functions. A heuristic algorithm is employed to generate numerical results on a hypothetical
network (four arcs, two origins and one destination) and the well-known Sioux Falls, South
Dakota test network.

Inevitably, explicit route enumeration is required by solution procedures of route-based
VI models. However, since dynamic traffic flow does not have constant flow rate during flow
propagation, the route-based VI can not be transformed into a link-based VI. Therefore,
it is very difficult to develop a solution algorithm for a route-based VI without explicit
route enumeration. Explicit route enumeration for la,rge—scale»networké with dynamic flows
is intractable, especially for continuous time formulations. This characteristic makes the
route-based VI models impossible for realistic applications.

To overcome the critical drawback of route-based VI dynamic route choice models, Ran
and Boyce (1995) presented a link-based VI DUO route choice model. In addition to devel-
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oping the link-based formulation, this model has a traffic engineering orientation, which is
more appropriate for realistic applications. Based on this link-based VI model, Ran, Hall and
Boyce (1995) developed a link-based VI model for the dynamic departure time/route choice
problem. Boyce, Lee, Janson and Berka (1995b) proposed a link-time-based VI formulation
to provide an improved theoretical basis for the solution algorithm of DYMOD, which was
applied to the ADVANCE Network.

2.2.4 Simulation-Assignment-Based Approach

In reviewing the simulation-assignment-based approach to the dynamic route choice problem,
we use the term simulation-assignment instead of simulation to distinguish this approach
from simulation models that do not consider route choice. This group of models adopts car-
following simulation techniques, which relate speed and density on the link to macroscopic
relations, but move vehicles individually or in platoons. This approach is situated somewhere
between microscopic simulation and macroscopic simulation, and is sometimes referred as
mesoscopic (De Romph, 1994).

Two models using this approach are INTEGRATION (Van Aerde and Yagar, 1988) and
DYNASMART (Mahmassani and Peeta, 1993). Both models are designed in the context
of in-vehicle route guidance systems. Various speed-flow functions are available in INTE-
GRATION which are determined by using four different user-defined parameters (free flow
speed, speed at capacity, capacity and jam density). Routes are based on real-time traf-
fic conditions and are instantaneous. Intersection delays, traffic signal effects and different
classes of drivers are able to be modeled by INTEGRATION. DYNASMART simulates indi-
vidual vehicles, moving them at speeds determined by the total flow on the link. A modified
Greenshields speed-density function is adopted for DYNASMART. The selection of a route
is decided by each .individual vehicle at each decision point in the network. Intersection
delays are explicitly modeled within DYNASMART. Multiple classes of drivers are defined
in DYNASMART which facilitates its use in simulating various ATIS scenarios.

2.2.5 Notes

Optimization-based approach has a long standing history in dynamic route choice modeling.
Many solution algorithms have been developed and applied to optimization-based dynamic
route choice models (e.g., Janson and Robles, 1995; Boyce, Lee, Janson and Berka, 1995a,
1996). Although more theoretical limitations are found in optimization-based models, which
may cause these models to fail to provide good descriptions of traffic dynamics in certain
situations, optimization-based models are feasible to solve, as compared with optimal control-
based models.

ke
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Optimal control theory is suitable for describing a time-dependent dynamic process.
Optimal control-based dynamic route choice models exhibit sound theoretical formulations
and mathematical derivations, and provide continuous-time formulations which correspond
to the defined equilibrium states. However, computationally practical procedures for solving
large-scale control theory-based route choice models are not available.

Variational inequality-based models provide more generalized formulations of dynamic
route choice problems. Using the link-based VI formulation, the DUO route choice model
can be solved on a large-scale network (Boyce, Lee, Janson and Berka, 1995b).

Compared with optimization and optimal control approaches, simulation-assignment
models lack an analytical model formulation. Proofs of existence, uniqueness and conver-
gence of solutions are unavailable for simulation-assignment models. Simulation-assignment
models, however, are easier to be implemented than analytical-based dynamic route choice
models for traffic control schemes applied in ATMS/ATIS because there is no concern of
violating the solution properties which is crucial for an analytical-based model. In addition,
for an analytical-based dynamic route choice model, a complicating factor in modeling many
route choice options is that route choice decisions must be based on travel times which are
temporally-consistent with future link flows. This restriction makes the incorporation of
traffic controls schemes applied in ATMS/ATIS into analytical-based dynamic route choice

models more challenging.

2.3 Review of Variational Inequality Theory

Since our DUO route choice model is formulated as a variational inequality, the review of
literature includes an overview of variational inequality theory. The variational inequality
problem is a general formulation that encompasses a set of mathematical problems, includ-
ing nonlinear equations, optimization problems, complementarity problems and fixed point
problems. Variational inequalities were originally developed as a tool for the study of certain
classes of partial differential equations such as those that arise in mechanics. This section is
. based on Nagurney (1993) and Ran and Boyce (1994).

2.3.1 Definitions for Variational Inequality Problems

In this section, we present several types of variational inequality problems. First, we discuss
the variational inequality for static problems. Here, we are concerned with a vector of decision
variables z = (z1, 23, -, ,) and a vector of cost functions f(z) = [fi(z), f2(z)," -, fu(2)]-
Define G' as a given closed convex set of the decision variables z; f is a vector of given

continuous functions defined on £". Then, we define the static case as follows.
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Definition 2.3.1. The finite-dimensional variational inequality problem is to
determine a vector z* € G C R", such that

flz] e =27 >0 VzeG (2.1)

In geometric terms, variational inequality (2.1) states that f(z*) is orthogonal to the feasible
set G at the point z*. v

Now, we define the variational inequality problem for dynamic models. The continuous
time formulation is presented first followed by its transformation to discrete time problems
for consistency with the subsequently proposed DUO route choice model. First, consider a

vector of control variables u(t) = [u1(t),u2(t), -, um(t)] and their dynamic processes

2(t) = hlz(t), u(t)]

with state variables z(t) = [z1(t), z2(t), -+, za(t)] and state equations h = [hy(2), ha(t),
+++, hn(t)]. Associated with the dynamic processes, there is a vector of cost functions F(t) =
[Fi(t), F5(t),- - -, Fin(t)]. Each element of the cost function vector is a function of the state

and control variables:
Fi(t) = Fz(t),u(t)] 1=1,2,---,m

Since the state variables z(¢) can be determined by the state equations when the control
variables u(t) are given, the vector of cost functions can be further simplified as F(t) =
Flu(t)]. Let G(t) be a given closed convex set of the control variables u(t). We assume
F(t) is a set of given continuous functions from G(t) to (). Then, we give the following

definition of the dynamic variational inequality problem.

Definition 2.3.2. The finite-dimensional variational inequality problem is to
determine a control vector u*(t) € G(t) C R*(t), such that

/0 " PTr ()] - Ju(t) — wr(®)] dt > 0 Vu(t) € G(t) (2.2)

Many dynamic transportation network equilibrium problems can be formulated as systems

of equations. The systems of equations can be written as
Flu*(#),2°(t)] = 0  (23)

This problem can also be regarded as a special case of a variational inequality.

2.3.2 Conditions for Existence and Uniqueness

Next we discuss the existence and uniqueness of the solution of the variational inequality

problem. For concise notation, conditions for static problems are provided here. However,
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the conclusions also apply to variational inequalities for the dynamic problems. Existence
of a solution to a variational inequality problem follows from continuity of the function f
entering the variational inequality, provided that the feasible set G is compact. In general,

we have the following existence theorem.

Theorem 2.3.1. If G is a compact conver set and f(z) is continuous on G,

then the variational inequality problem has at least one solution z*.

Proving this theorem requires the use of Broywer’s Fixed Point Theorem (Nagurney, 1993).
Qualitative properties of existence and uniqueness are obtained under certain monotonic-
ity conditions. First, we present the following definitions.

Definition 2.3.3. A vector of functions f(z) is monotone on G if

[f(z") = f(z®)] - (' —=2®) >0 Va',2’eG (2.4)
where z' and z? are any two points on G.

Definition 2.3.4. A vector of functions f(z) is strictly monotone on G if

[f(z) = f(e?)]- (a' —2%) >0 Vz'z? € G o # (2.5)

Definition 2.3.5. A vector of functions f(z) is strongly monotone on G if for
some a >0

[f(e!) = f@)]T - (a! —2®) 2 a|la’ = 2’| Va'2’ €@ (2.6)

Assume that f(z) is continuously differentiable on G and V f(z) is strongly positive defi-

nite. Then f(z) is strongly monotone. Then, we have the following theorem for uniqueness.

Theorem 2.3.2. Suppose that f(z) is strictly monotone on G. Then, the solu-

tion is unique, if one exists.
In the following, we present some methods for checking the monotonicity of functions.
Theorem 2.3.3. Suppose that f(z) is continuously differentiable on G and the

Jacobian matriz
0h Oh . O

0z, Oz, Oz
oh oh . 9

Vi(z)= afcl a-’.Bz 3:@

Oh O O
L 0:1:1 8502 8:cn A
is positive semidefinite (or positive definite), then f(z) is monotone (or strictly

monotone).

;-
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Theorem 2.3.4. Assume that f is continuously differentiable at some T. Then
f(z) is locally strictly (or strongly) monotone at T if V f(Z) is positive definite
(or strongly positive definite), that is,

vTf(@Zw>0 YveR™ v#0 (2.7)

vIVf(Z)v > o||v||* for some a >0, VoveR" (2.8)
where v is an arbitrary vector with components of real values.

Given these two theorems for monotonicity, we have the following theorem for uniqueness.

Theorem 2.3.5. Assume that f(z) is continuously differentiable on G and that
V f(z) is strongly positive definite, then f(z) is strongly monotone.

The following theorem provides a condition under which both existence and uniqueness
of the solution to the variational inequality problem are guaranteed. No assumption on the
compactness of the feasible set G is made, which is important for very complicated dynamic

problems when convexity of the feasible set is difficult to prove.

Theorem 2.3.6. If f(z) is strongly monotone, then there exists precisely one

solution z* to the variational inequality.

The proof of existence follows from the fact that strong monotonicity implies coercivity,
whereas uniqueness follows from the fact that strong monotonicity implies strict monotonic-
ity. In conclusion, in the case of an unbounded feasible set G, strong monotonicity of the
function f guarantees both existence and uniqueness. If G is compact, then existence is guar-
anteed if f is continuous, and only the strict monotonicity condition is needed for uniqueness

to be guaranteed. The first conclusion is important for some complicated dynamic problems.
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Chapter 3

A Variational Inequality Model of
the Dynamic User-Optimal Route
Choice Problem

In this chapter, we present a link-based variational inequality (VI) model for the dynamic
user-optimal (DUO) route choice problem. VI models provide the most generalized formula-
tion for describing a dynamic network equilibrium. Although route-based VI models have an
intuitive interpretation, their computational complexity makes them intractable for realistic
applications because of the route enumeration requirement. Dynamic network constraints,
link-time-based conditions and the model formulation are described in the following sections.
First, we provide a conceptual framework for the instantaneous DUO route choice problem
and the ideal DUO route choice problem.

3.1 Instantaneous vs. Ideal DUO State

An important dynamic generalization of the static user-optimal (SUO) concept is DUO
route choice. DUO behavior can imply that travelers choose their best routes based either
on instantaneous or actual travel times. Recall the definitions of instantaneous and actual
travel times in Section 2.1.2. Instantaneous travel time is defined as the travel time based
on the currently prevailing traffic conditions. Actual travel time is defined as the travel time
actually experienced during the trip. Consequently, the instantaneous DUO state and the
ideal DUOQ state are determined.

3.1.1 Instantaneous DUO State

The instantaneous DUO route choice problem is to determine vehicle flows at each instant of

time on each link resulting from drivers using minimal-time routes under currently prevailing
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travel times. The link-time-based instantaneous DUO state is defined as (Ran and Boyce,
1994):

Link-Time-Based Instantaneous DUO State: If, for each O-D pair at each
decision node at each instant of time, the instantaneous travel times to the desti-
nation over all routes that are being used equal the minimal instantaneous route
travel time, the dynamic traffic flow over the network is in a link-time-based

instantaneous dynamic user-optimal state.

Although instantaneous user-optimal travel times for all routes that are being used are equal
at each decision node at each instant of time, route flows with the same departure time and
the same O-D may actually experience somewhat different route travel times. This is because
the route travel time may subsequently change due to rapidly changing traffic conditions,
even though at each decision node the flows select the route that is currently the best. This
instantaneous DUQ definition is also referred as the reactive DUO state (Jayakrishnan et al.,
1995), since travelers seek to minimize their own travel times by continuously updating the

route choices according to currently prevailing traffic conditions.

3.1.2 Ideal DUO State
An alternative definition of DUO is called ¢deal DUQO. The i¢deal DUO route choice problem is

to determine vehicle flows at each instant of time so that the actual travel times experienced
by vehicles departing at the same time and with the same O-D attributes are minimal and
equal. The travel-time-based ideal DUO state is defined as (Ran and Boyce, 1994):

Travel-Time-Based Ideal DUO State: For each O-D pair at each interval
of time, if the actual travel times experienced by travelers departing at the same
time are equal and minimal, the dynamic traffic flow over the network is in a

travel-time-based ideal dynamic user-optimal state.

This ideal DUO definition is also referred as the predictive DUO state (Ran and Boyce, 1994),
since the actual route travel time is predicted using the corresponding route choice model.
Under the ideal DUO state, travelers have no reason to change their routes. Therefore, the

obtained DUO state can be viewed as an equilibrium.

3.2 Dynamic Network Constraints

The dynamic network constraints of the proposed link-time-based VI model are presented in

this section. The constraint sets include definitional constraints, nonnegativity constraints,

;o
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flow conservation constraints, flow propagation constraints and FIFO constraints. We con-
sider a multiple O-D network that is represented by a directed graph G = (N, A) where N/
is the set of nodes and A is the set of directed links. Note a node can represent an origin
or a destination, as well as an intersection. In the following subsections, the index r denotes
an origin and the index s denotes a destination. Both d and t (¢ > d) denote a time inter-
val. However, d denotes the departure time interval and ¢ denotes a specific time interval
during the journey. Platoons are defined as the traffic flows departing from origin zones in
successive time intervals. The constraints described in this section that convert a discrete

time formulation into a quasi-continuous time formulation are based on Janson and Robles
(1995).

3.2.1 Definitional Constraints

Consider a fixed time period [0, 7] which is long enough to allow all vehicle flows departing
during the peak period to complete their journeys. Let
z.[t] = total flow on link a in time interval ¢;

z7°[d] = flow of vehicles from origin r to destination s on link a
that departed in time interval d.

Therefore, for total flow on link a in time interval ¢, Equation (3.1) must hold.

t

=L el ol Vet a= (i) (3:1)

—1rs

where ¢2[t] is the fraction of all flows departing zone r in time interval d that crosses node
¢ in time interval ¢.. Equation (3.1) defines total flow on link @ in time interval ¢ to be the
sum of flows departing from zone r in any time interval d from interval 1 up to and including
t (t > d) using link a in time interval ¢. For a non-continuous time formulation, ¢%t] is
needed to load the flows onto the network and maintains temporally continuous routes in

successive time intervals.

3.2.2 Flow Conservation Constraints

For a dynamic route choice model, flow conservation needs to be discussed for different types
of nodes including intermediate nodes, origins and destinations. 7 is defined as the minimal
travel time actually experienced by flows departing from origin r to node ¢ in time interval
d, where 7% denotes the number of time intervals traversed in 7% and At is defined as the

duration of each time interval.

th=w if wrd/At<w+1 (3.2)

1 Tt

22



where w is an integer (0 < w < 7). Equation (3.2) makes the actual travel time 7% equal to
a multiple of the time increment At. Define ¢,;[d] as flows from zone r to node j departing
in time interval d via any route. Let z]°?[t] be the flow on link a in time ¢ from zone r to s
on route p. Equation (3.3) constrains the inflow minus the outflow at any intermediate node
J (j # r,s) in each time interval (¢ > d) to the proper departure flows in each time interval
between each O-D pair.

t

Sl eld=YY | T el - ¥ arein 63

d=1 sp d=1 |a€B(j) a’€A(7)
Vgt a=(i,4); a' = (4, k); p

where quj[d]=qrj[d] vrJ,d
P

A(j) is the set of links whose tail node is j, and B(j) is the set of links whose head node is
J

Conservation of flow at origin r requires the flow originating at node r in time interval d
to equal the flow entering the links leaving origin r.in time interval d. Equation (3.4) states

the flow conservation at origins.

frs[d] = E szsp[d] v r’37d (3'4)

a€A(r) P
Similarly, conservation of flow at destination s requires the flow exiting at node s in time
interval ¢ to equal the flow entering destination s in time interval ¢. The flow conservation

‘at destinations is expressed by Equation (3.5).

> 2ol =enlt]  Vrsit (3.5)
«€B(s) P
Note that e,,[t] is a variable; Equation (3.5) describes the solution of the model, but does

not constrain z7°?[t] in this version.

3.2.3 Flow Propagation Constraints

For static route choice models, flow propagation constraints are not necessary because the
flow from origin to destination propagates instantly over the entire route. However, in a
dynamic route choice model, flow will remain on a link for a duration of time; therefore, the
representation of time-dependent flow propagation needs to be considered.

The proposed DUO route choice model requires nonlinear mixed-integer constraints with
node time intervals (a2[t]) and flow fractions (¢%][t]) indicating the time intervals where flows
originating from each origin cross each node in order to maintain temporally-correct routes

-
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and time-continuous flow propagations over time intervals. Recall in Section 3.2.1, ¢%[t] is
defined as the fraction of all flows departing zone r in time interval d that crosses node 7 in
time interval ¢. Define a%|[t] as a [0,1] variable indicating whether the flow departing zone
r in time interval d has crossed node ¢ in time interval ¢. Each node time interval acts as
an (if-then) operator to activate or deactivate certain constraints. A node time interval only
applies to the last trip (strictly, the end of the platoon or pulse of flow) departing in each
departure time interval. The difference between the crossing times at node ¢ of the flows
departing in successive time intervals, defined as A7, is applied to equations (3.6)—(3.8) to

determine the temporal spread of trips crossing node i from the same origin.

Lt — k] = {min [1, (v - (¢ - D)AL) /Ard] bodlt]  VE=0 (3.6)
Lt — K] = (At/AxE) o4{t] Yk >0 for which #%' — (t—1—k)At <0 (3.7)
wlt = K = {max [0, (At(t — k) = x/7) /Ar ]} ol (3:8)

for minimal k for which 7% (¢t — 1 — k)At > 0
where Ard =74 — 741 and 7% =7L — At Vr,id
where £ is used to count the number of boundaries of time intervals spanned by the difference
in node crossing times of the last vehicle in the platoon between successive time intervals.

We now use Figure 3.1 to explain Equations (3.6)—(3.8). In Figure 3.1, the y-axis denotes
the departure time intervals of platoons and the z-axis denotes the sequence of node along
an example route. As shown in Figure 3.1, platoon 1 departs a given origin in its departure
time interval 1; the last vehicle of platoon 1 crosses node A in time interval 3. Similarly,
Platoon 2 departs the same origin as platoon 1 in time interval 2 and the last vehicle of
platoon 2 crosses node A in time interval 4.

Now look at the node crossing times of those two platoons at node D. Equation (3.6)
determines the fraction of platoon 2 crossing node D in time interval 7. This fraction equals
the elapsed time between the starting time of interval 7 and the node D crossing time of
the end of platoon 2 (represented by dash line in Figure 3.1), divided by the elapsed time
between the node D crossing times of platoons 1 and 2. Equation (3.6) is designed for £ = 0.
The need to take min[l, etc.] is that this calculation can exceed 1 when computing this
fraction for platoons departing in time interval 1, since there is no node crossing time for a
previous platoon. _

Equation (3.7) determines the fraction of platoon 2 crossing node D in the whole time
interval (if any) between the node D crossing times of platoons 1 and 2. The whole time
interval is interpreted as follows. Suppose platoon 1 crosses node D in time interval 5 and
platoon 2 crosses node D in interval 7 because delays have caused vehicles in platoon 2 to

fall farther behind platoon 1. Under this situation, a fraction of platoon 2 crosses node D
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Figure 3.1: Effect of Flow Propagation Constraints

in interval 5, another fraction of platoon 2 crosses node D with whole time interval 6 and
another fraction of platoon 2 crosses node D in interval 7. In this case, however, there are
no so-called whole time intervals.

Equation (3.8) determines the fraction of platoon 2 crossing node D in time interval 6.
This fraction equals the elapsed time between the crossing time of node D of the last vehicle
in platoon 1 (represented by solid line) and the starting time of interval 7, divided by the
elapsed time between the crossing times of node D of platoons 1 and 2. Equation (3.6) is
designed for k£ = 1. The need to take max[0, etc.] in Equation (3.8) is that this fraction can
be negative when éomputing this fraction for platoons departing in time interval 1, since
there is no node crossing time for a previous platoon.

Note that ¢%[t], a%[t] and 74[t] used in Equations (3.6)—(3.8) are not solved simulta-
neously. They are updated iteratively once of;[t] and 7d[t] are initialized by the starting
flow pattern, and ¢%[t] is revised according to Equations (3.6)—(3.8). See Section 4.2 for
additional details and Section 4.3 for the procedure of updating oZ;[t] and =4[]

An issue to be considered is whether shorter time intervals can be adopted to approximate
continuous flow propagation instead of using the flow fractions defined by Equations (3.6)-
(3.8). The answer is a tentative yes. However, shorter time intervals definitely require
more computational effort to solve the model. First, more time intervals spanning the
same analysis period require more calculations than using a longer time interval, plus the
additional constraints of flow fractions. Second, FIFO ordering of trips in this discrete

Vs
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time formulation is best maintained if link travel times remain well below the length of
time interval. Therefore, using shorter length of time intervals may involve dividing links
into shorter links which increases the effort of network coding and computation. Using
flow fractions defined by Equations (3.6)—(3.8) converts a discrete time formulation into a

quasi-continuous model.

3.2.4 First-In-First-Out Constraints

Although FIFO conditions may or may not occur in the real world, FIFO conditions should
be strictly maintained in a dynamic route choice model. If FIFO conditions are violated for
any link, a late entering trip flow will propagate faster than an earlier entering flow. Thus,
temporally-correct flow propagation is not maintained for all O-D pairs. For a continuous
time model, the flow propagation constraints imply FIFO constraints if a rigorous travel
time function is used in the flow propagation constraints to ensure flow z,[t] on link a with
travel time 7,(z,[t]) regardless of the O-D source of this inflow. For a discrete or a quasi-
continuous time model, however, FIFO conditions need to be explicitly stated to prevent
potential violations.

Equations (3.9)—(3.12) state FIFO constraints between all O-D pairs according to their
travel times in successive time intervals. Define 8% as the time at which the last flow
departing zone r in time interval d crosses node ¢ via its shortest route less FIFO delay time
at node ¢; 0%t] is defined as the fraction of a time interval ¢ that the last flow departing
zone r in time interval d crosses node 7; and ul,[t] is defined as the average travel time on
link a of the last flow departing zone r in time interval d. The value & (0 < h < 1) is the
fraction of a time interval that the end of the platoon (the last vehicle) departing from zone
r in time interval d must follow the end of the platoon departing from zone r in time interval
d — 1. Vehicles are assumed to make one-for-one (or zero-sum) exchanges of traffic positions
along any link, which is an acceptable and expected feature for any aggregate traffic model
(Janson and Robles, 1995).

r =max (8% , 75+ hAL) Vri,d and 7% =7l — At (3.9)
0Llt] = [(74 — (t — 1)At) /At] ollt] Vr,i,d,t (3.10)
pialt] = [B5EIma(alt]) + (1 — %[t 7a(wals))] @hlf] Vrya,dit, s=t—1 (3.11)
{#% —max [xf; , (= 1)t + Arlls]] } edilt] < il [Hoild (3.12)

Vrya,d,t, s=t—1; where Arj[s] = 14(z,[s]) — ,u‘rla[t]

Equation (3.9) is a vehicle following constraint that regulates flows departing from the
same zone in successive time intervals from passing each other. When solving for 72, on the
left hand side of Equation (3.9), 7% on the right hand side is held fixed. If & = 0, a trailing
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platoon can completely overlay (but not overtake) a leading platoon so that the two platoons
become coincident, which is not realistic. If 2 = 1, a trailing platoon can never partly gain
ground on a leading platoon.

Since Equation (3.9) does not insure FIFO ordering between all O-D pairs, Equations
(3.10)—(3.12) are required. Equations (3.10) and (3.11) determine the average travel time on
link a of the end of the platoon departing zone r in time interval d adjusted for the time into
interval ¢ versus ¢ — 1 that the platoon enters the link. Equations (3.10) and (3.11) dampen
speed transitions between time intervals in a quasi-continuous manner so that vehicle speeds
do not abruptly change if flows enter links just seconds before or after a time interval change.

In most cases, the link travel time is well below the duration of each time interval (At).
However, Equation (3.12) is needed to prevent FIFO violations in cases where link travel
times exceed At. Equation (3.12) does not entirely replace the need for Equation (3.9).
Equation (3.12) allows trips between different O-D pairs to become concurrent while sharing
the same route. Equation (3.9) insures a minimum separation of the last platoon departing
from the same zone in successive time intervals. Trips from the same zone bunch together
and cause excessively dense flows if Equation (3.9) is removed. By using Equations (3.9)-
(3.12), the FIFO conditions are maintained in a quasi-continuous manner for the proposed
VI route choice model.

3.2.5 Nonnegativity Constraints

Finally, all variables must be nonnegative at all time intervals. We have

z2°[t] >0 Vr,s,a,t; (3.13)
ersft] >0 Vr,s,t; (3.14)
4] >0 Yr i, d,t. (3.15)

3.3 Link-Time-Based Conditions

The link-time-based VI model of the DUO route choice problem is proposed to solve for
the travel-time-based ideal DUO state defined in Section 3.1.2. In the case of an ideal DUO
state, the equilibration of route travel times is stated for each O-D pair instead of each
decision-node/destination pair because the ideal DUO focuses on the optimal state along
the entire journey.

We now derive the equivalent mathematical inequalities for the travel-time-based ideal
DUO state using link variables. For any route from origin r to destination s, link a is
defined as being used in time interval ¢ if z7°[t] > 0. Define 7% as the minimal travel time

actually experienced by flows departing from origin r to node ¢ in time interval d, the asterisk

;-
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denoting that the travel time is calculated using DUO traffic flows. For link a = (4, ), the
minimal travel time 7r : from origin r to node j should equal to or less than the minimal
travel time 7% from orlgln r to node 7 plus the actual link travel time 7,[d + 7%] in time
interval [d 4+ 7%], where the 7% denotes the number of time intervals traversed in 7%; see
definition in Section 3.2.2 and Equation (3.2). The first time interval of [d + 7¢] must be
the earliest time interval that flow departing zone r in time interval d can enter link a. It
follows that

8 4 nld+ 78] > 7r Ya=(ij),r,d. (3.16)
If, for each O-D pair (r, s), any departure flow from origin r in time interval d enters link a
at the earliest time interval [d + 7% ], or z,[d + 7% ] > 0, then the ideal DUO route choice
conditions require that link @ is on the route with minimal travel time. In other words, the
minimal travel time 1r ; from origin r to node j should equal to the minimal travel time 7%
from origin r to node 3 plus the actual link travel time 7,[d + 7% ] in time interval [d 4+ 7%].

It follows that
8 =8 L ld+ 7], if 27 [d+7E]>0 Ya=(5,5),rs,d (3.17)

)

The above equation is also equivalent to the following:
27 (d+ 75 78+ rld+ 75 -] =0 Va=(i,4),ms,d. (3.18)

Thus, the link-time-based ideal DUO route choice conditions can be summarized as below:

mh A rnld+rs]—rh >0 Ya=(i,)),n ' (3.19)
zy’ [d+7'r‘][7rm+7'a[d+7r |-r&] =0 Ya=(ij),rsd (3.20)
”[d+7r ‘1>0 VYa=(i,5),rs,d. (3.21)

3.4 The Link-Time-Based VI Model

Define Q% as the difference between the minimal travel time from zone r to node i plus the
travel time on link @ and the minimal travel time from zone r to node j for flows departing

from zone r in time interval d.

O, =75 +1ald+ 75 ] — 7 (3.22)

TJ

The link-time-based ideal DUQO route choice conditions are rewritten as:

QL >0 VYa=(,4),rd | (3.23)
o [d+ 75050 =0 Va=(i,)),rsd; (3.24)
z;’ [d + 7?;1;] >0 Ya={(s7),r,s,d. ’ (3.25)
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The equivalent VI formulation of the link-time-based ideal DUO route choice conditions
defined in Equations (3.23)—(3.25) can now be stated as follows.

Z X 0 {apld+ 78] - [d+ 751} >0 (3.26)

rs a

where * denotes the DUO state, and where the dynamic traffic flow pattern must satisfy the
constraints described in Equations (3.1)—(3.15).

3.4.1 Proof of Necessity

We need to prove that link-time-based ideal DUO route choice conditions defined in Equa-
tions (3.23)-(3.25) imply to variational inequality (3.26). For link a, a feasible inflow in time
[d+ 7% is

z’ld+77] 2 0 (3.27)
Multiplying Equation (3.27) and the DUO route choice condition (3.23), we have

zr[d 4+ 7% QL > Va=(ij),rs,d. (3.28)
Next, subtract the ideal DUO route choice condition (3.24) from Equation (3.28) and obtain
{erld+ 78] - 2" ld+ 751} af > Va=(ij),rsd (3.29)

Summing Equation (3.29) for all links a (a € A) and O-D pairs (r,s) (r,s € Z), it follows
that

ZZ{’sde?rd]—w” [d+751} o > (3.30)

Summing Equation (3.30) for all time intervals, the following variational inequality is ob-
tained and is identical to Equation (3.26).

CLE o {arle+ A - ol d+ 7T 20 (331)
Q.E.D.

3.4.2 Proof of Sufficiency

For any solution z7*'[d + 7%] to variational inequality (3.26), we need to prove that it
satisfies the link-time-based ideal DUO route choice conditions defined in Equations (3.23)-
(3.25). Since Equations (3.23) and (3.25) must hold by definition, only the equivalence of
Equation (3.24) needs to be proved.

Assume that the second ideal DUO route choice condition (3.24) does not hold only for a
link & = (1, ) for O-D pair (#, §) during time interval [d1 — 6,d1+ 6] € [0, T] where & denotes
the specific time interval. Thus,

-
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i [d+ %f:] >0 and Q% >0 (3.32)
In other words, we have
o [d+ 75| 0 >0 (3.33)
Since the second ideal DUO route choice condition (3.24) holds for all cases other than link
& = (1,7) for O-D pair (#,5) during time interval [dy — 6, d; + 6], it follows that

SEY 0o [t 78] =508 oF [1475] >0 (3.30
d d

TS a

Note all other terms in Equation (3.34) have vanished because of ideal DUO route choice
condition (3.24).

For each O-D pair (r, s), a minimal travel time route p for flow departing origin r in time
interval d can always be found, where route p is evaluated under the DUO flow pattern,
zre’ [d + 7d ] For this route p, the first ideal DUO route choice condition (3.23) becomes
an equality by definition. That is

Q¢ =0 Ya=(,4),r a€p. (3.35)
Next, we need to find a set of feasible inflows zr’ [d + 74 ] so that Equation (3.36) holds.
o [d+ 75|06 =0 Va=(i,j),rs,d. (3.36)

For each O-D pair (r,s) at each time interval d, we assign O-D departure flow f,;[d] to the
minimal travel time route p, which was evaluated under the DUQ flow pattern, z7*" [d + 7 ] .
A set of feasible inflow pattern z7° [d + 7 ] that always satisfies Equations (3.35) and (3.36)
is generated because flows are never assigned to routes without minimal travel times. Sum-
ming Equation (3.36) for all links a and all O-D pairs (r, s), we obtain

Sy e [d+75]0h =0 Va=(,4),ns,d (3.37)

TS a

Summing Equation (3.37) for all time intervals, we have

Sy Y ar[d+rE] ek =0 (3.38)
d

TS a

We subtract Equation (3.34) from Equation (3.38) and get

SO>S ol {alld+af] - 2 [d+ 78]} <0 (3.39)
d Ts a
Q.E.D.

The above equation contradicts variational inequality (3.26). Therefore, any optimal solution
23" [d + 7] of Equation (3.26) satisfies the second ideal DUOQ route choice condition (3.24).
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3.5 A Combinafion of the Instantaneous and Ideal
DUO States

In the ideal DUO route choice problem, travelers are assumed to have perfect information
about the future network conditions at the times of their departures. This strong assump-
tion benefits DUQO route choice modeling because route choice decisions must be based on
travel times which are temporally-consistent with future link flows at time of link use for
an analytical-based route choice model. On ‘the contrary, this assumption complicates the
modeling of many realistic route choice options. The assumption is appropriate for recur-
rent trips and traffic conditions, scheduled events (e.g., detour, road construction) and even
for predicted weather conditions. However, this behavioral assumption is inconsistent with
unezpected capacity reducing events (e.g., accidents, stalled vehicles) at future times because
drivers have very limited capability to be informed about the times and locations of such
events before they encounter unusual queuing delays caused by those incidents. Enroute
diversions are thus expected to happen when incidents are encountered by drivers.

As for the instantaneous DUO route choice problem, travelers always choose routes ac-
cording to currently prevailing traffic conditions. This behavioral assumption may be un-
realistic because travelers may not change routes continuously but can do so when unusual
congestion caused by unexpected capacity reducing events are encountered. Therefore, trav-
elers may choose to divert to avoid congestion if instantaneous route choice is applied.

In this thesis, the proposed model described in Sections 3.2 and 3.3 is used to solve the
ideal DUQO route choice problem without considering any capacity reducing events. How-
ever, alternative route choice strategies based on both anticipatory (ideal DUO) and non-
anticipatory (instantaneous DUQ) traffic conditions can be combined to limit the possible
incident impacts between the least and most severe cases in the algorithm when solving
the model. Detailed modeling issues and approaches related to this issue are presented in
Section 5.6.
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Chapter 4

Solution Algorithm

The algorithm used for solving the proposed link-time-based VI model of DUO route choice
is stated in this chapter. Static route choice problems can be solved efficiently by convex
combinations methods (e.g., the Frank-Wolfe (F-W) algorithm) for nonlinear programs with
linear constraints. These methods, however, may create temporally discontinuous flows when
directly applied to dynamic route choice problems. Instead, a diagonalization (or double
relaxation) algorithm is proposed to solve the VI DUO route choice model to convergence.
This algorithm consists a sequence of diagonalization iterations. First, in the initialization
step, the node time intervals and shortest route travel times are initialized based on the initial
link flows. Then, the algorithm solves a sequence of route choice problems (called inner
problems) using the F-W algorithm with fixed node time intervals until the convergence
criterion of the route choice problem is satisfied. Next, the node time intervals and shortest
route travel times are updated (called outer problems) based on the most recently assigned
link flows from the inner problem. Adjustments of link capacities are made between the
inner and outer problems to account for capacity changes caused exogenously (e.g., signal
timing changes, incidents and other unexpected capacity reduction events) or generated
endogenously (e.g., queue spillbacks). The algorithm terminates when the changes of the
node time intervals obtained from two consecutive outer problems are within a prespecified
tolerance. Figure 4.1 shows the steps of the solution algorithm, which are described in detail

in the following sections.

4.1 Initialization

In the initialization step, we need to do the following:
1. input the O-D matrix, trip departure rates, network data, and initial link flows;

2. initialize the shortest route travel times and node time intervals.

o
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Figure 4.1: Flowchart of the Solution Algorithm




Depending on data availability, the O-D matrix usually covers a much longer time period
(e.g., 1-hour or 24-hour) than the length of time interval (typically from 5 minutes to 15
minutes) used in the solution procedure. Consequently, departure rates for each zone and
each time interval to convert the O-D matrix from a longer time period into shorter time
intervals are necessary. As for the network data, link-node incidences, free-flow travel times,
link capacities and other data that fulfill the need for calculating link travel times such as
green-splits and signal cycle lengths are needed. Initial link flows are optional, and can be
set to zero, but the static user-optimal flows scaled down to the duration of the selected time

interval might be good starting values. Based on the initial link flows (z,[t]), the shortest
d

route travel times (%) and node time intervals (a%[t]) are initialized by solving a shortest

route problem (see Section 4.3 for details).

4.2 Solving the Route Choice Problem

According to the optimal values of shortest route travel times (74) and node time intervals
(e&[t]), flow fractions (¢%t]) departing zone r in departure time interval d that cross node i in
time interval ¢ are computed using Equations (3.6)—(3.8). Once the flow fractions are updated
using the node time intervals and shortest route travel times, they are held fixed when the
objective function is minimized subject to Equations (3.1)-(3.8) and Equations (3.13)—(3.15).
The flow fractions are required to maintain temporally-correct routes and time-continuous
flow propagations over time intervals. This step can be viewed as solving a sequence of
static route choice problems. The algorithm of Frank and Wolfe (1956), or other appropriate
convex combinations method, can be applied to solve this step to convergence. The steps of

the F-W algorithm to solve the inner problem are described as follows.

Step 0: Initialization. Perform an all-or-nothing assignment based on fixed node time
intervals, flow fractions and initial minimal-cost (travel time) route for each O-D pair
in each departure time interval. This yields a main-problem solution (z%[t]) of the

inner problem. Set inner iteration n = 1.

Step 1: Update. Recalculate the link travel times 77(z,[t]) for each link in each time

interval based on the assigned link flows.

Step 2: Direction Finding. Based on the updated link travel times 77(z,[t]), search
minimal-cost (travel time) routes for each O-D pair in each departure time interval.
Perform an all-or-nothing assignment, yielding a subproblem solution (y2[t]) of the

inner problem.
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Step 3: Line Search. Find an optimal step size A (0 < A < 1) that solves the one-

dimensional search problem.

(1=Nez [+ [¢]

i ©F [ ra(zald]) dz (w1)

The bisection method is selected to find the optimal step size A of the inner problems.
The integration of the objective function is avoided if the bisection method is adopted.

Step 4: Move. Using the optimal step sizé, find a new solution by combining the main-

problem and subproblem solution of the inner problem.

Set zM[t] = (1 — N)z?[t] + \y[t]  Va,t. (4.2)

Step 5: Convergence Test for Inner Iterations. If n equals a prespecified iteration
number, go to the outer problem (Section 4.3); otherwise, set n = n+1 and go to Step
1 of the inner problem.

4.3 Updating the Node Time Intervals

The purpose of updating the node time intervals is to maintain the temporally-correct routes
and time-continuous traffic flow propagations in successive time intervals as well. In each
outer iteration, the node time intervals are updated by solving the shortest route problem
with time-dependent link travel times obtained from the inner problem (route choice prob-
lem). The adopted shortest route algorithm has been modified for dynamic problems so that
the link travel times used in pivoting from a node depend on the time interval in which the
shortest route tree departs from that node and the link flows in that time interval.

To update the node time intervals (a2[t]), the following procedure is applied:
1. find the shortest route travel times (7%) and time intervals (ﬁfi);

2. reset values of (a4[t]) as follows:

if (ﬁf,- < tAt) and (ﬁfi > (t—1)At), then afi[t] =1;

otherwise o%[t] =0 .

performforall re 2, 1€ N;d=1,---T and t=d, d+1,---T
T

note: Y a%ft]=1;
t=d

3. set 7 =dAt, Vre Z,deT;

P
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4. enforce the first-in-first-out (FIFO) conditions stated in Equations (3.9)~(3.12).

Note 72, equals the start time of the end of the platoon departing zone r in time interval
d. 7 is set to dAt in order to set the clock correctly to the end of each time interval.
Although o%[t] can never equal 1 when ¢t = 1, flows departing in interval 1 are uniformly
distributed over the previous time span (7} — At) at each node of the network such that

some flows are still assigned in time interval 1.

4.4 Adjustment of Link Capacities

A key feature of this model is that link-specific capacity adjustments are explicitly considered
in the solution process to improve further the reality of the solution. Adjustments of link
capacities are made between the inner and outer problems to account for capacity changes
caused exogenously or generated endogenously.

Exogenous link capacity adjustments can be specified to the program when they are
detected by the roadway surveillance systems (e.g., detectors, CCTV), reported by the drivers
and/or highway patrols and scheduled to occur. The capacity adjustment events include
traffic accidents, stalled vehicles, dropped objects, dangerous chemical spills, weather effects,
changes of signal timing plans, roadway constructions, time-of-day roadway usage restrictions
(e.g., reversible lanes), etc. Endogenous link capacity adjustments are usually caused by
spillback queues that reduce capacities of upstream links. However, if mechanisms of ramp
metering and/or advanced traffic signal systems (e.g., actuated, adaptive and responsive
signal timing schemes) are presented or integrated into the model, the caused endogenous
capacity adjustments can be captured as well.

Adjustments of link capacities are made on inflow links to nodes whose outflow links have
flow greater than ~ times of the original capacity (y = 1.05 is being used). If queues on
outflow links have spilled back to their tail node (at the intersection), then speeds on inflow
links should approximate the weighted speed of outflow links. The fraction of link a that
is blocked By a queue within time interval ¢, (4%), must also be measured. If ! is smaller
than 1, then there is no effect of inflows on link a in time interval ¢. If ¢! is greater than 1,
then the portion of the time interval of the inflow link affected by this queue is determined.
In addition, whether the queue is decreasing or increasing within the time interval is also

decided. The essential steps of these capacity adjustments and queue propagations are:

1. track the location of multiple queue spillbacks in the network;
2. weight the effects of multiple queue spillbacks that jointly affect inflows to any node;

3. adjust the capacities of the inflow links to each node in proportion to the fractions of

flows affected by each queue.

e
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- Based on Janson and Robles (1995), the procedure of queue propagation and capacity ad-
justment is described next. Note that all nodes in the network representation are configured
such that:

1. For each merge node, there is only one outflow link.

2. For each diverge node, there is only one inflow link.

Therefore, no node has multiple inflow and outflow links simultaneously (i.e., no node is both
a merge node and a diverge node). Intersections always have turning movement links, and
weaving sections on freeways always have connecting links between the diverge and merge

nodes. Steps of capacity adjustment starting from original unadjusted capacities are:

Step 1. Increment the iteration number from 1 until changes of link capacities of all links

in all time intervals are stabilized.
Step 2. Increment the time interval index from 1 to 7.
Step 3. Increment the node number from 1 to V.
Step 4. For each outflow link:

1. Compute the cumulative queue equal to all excess flow exceeding the capacity

through the current time interval.

2. The fraction (¥}) of link length occupied by queue during the current time interval
(say t) is computed as the cumulative queue divided by the absorbable flow of
link a. If ¢ < 1, then there is no effect on inflows to link @ in time interval ¢. If
YL > 1, then the fraction of time interval of the affected inflows depends on when
this condition occurred, and whether this queue is increasing or decreasing. The
absorbable flow of link a is computed as:

absorbable flow of link a = (density? - density') x (length of link a)

where density!’ = flow!/speed! = density before the queue (less dense).

density? = flow?/speed? = density inside the queue (more dense).

flow! = flow before the queue (below original but above adjusted
capacity).

flow? = flow inside the queue (assumed to equal adjusted capac-
ity).

speed! = link length divided by travel time for flow! with original
capacity.

speed?> = link length divided by travel time for flow? with adjusted
capacity.
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Step 5. Inflow links are unaffected until a queue extends beyond the tail node of an
outflow link (i.e., ¢ > 1), and only a fraction of time interval will be affected when
this queue spillback first occurs. The affected time interval fraction equals (the interval
starting time)—(time that the queue reaches the tail node of outflow link) divided by
the duration of each time interval (At).

Step 6. Compute the weighted flow-to-capacity ratio for each affected outflow link. For
each affected outflow link, this ratio is weighted by the flow and the affected time

interval fraction found in Sfep 5.

Step 7. Adjust the capacity of each inflow link so that the corresponding flow-to-capacity
ratio equals the weighted flow-to-capacity ratio of the outflow links found in Step
6. Return to Step 3 until all nodes processed, then return to Step 2 until all time
intervals processed. If the capacity of any link in any time interval changes more than
the prespecified percent, return to Step 1 for the next iteration; otherwise, stop the

procedure of link capacity adjustment.

In order to capture the effects of potential multiple queues from different locations in the
network and queues spilling back farther than one link in any time interval, multiple iterations
of the capacity adjustment procedure are performed until the capacity of each link in all time
intervals do not change significantly. Constraints are added to prevent endogenously adjusted
capacity from becoming too small and to prevent queues from dissipating too quickly. That
is, during the queue dissipation, the link capacity cannot exceed the adjusted capacity and
its reduced capacity in the prior time interval. Then, adjusted capacities are returned to
the inner problem stated in Section 4.2. Consequently, both link flows and capacities are

time-dependent in the adopted link travel time functions.

4.5 Convergence Test of the Outer Iteration

The last step of the solution algorithm is the convergence test. The convergence index of the
solution algorithm is defined as the changes of the node time intervals between two consec-
utive outer iterations of the algorithm. The solution algorithm terminates if the changes of
the node time intervals (NDIFFS) are less than nodes x zones x intervals x . This index
indicates that only z changes of the total node time intervals are allowed for the last flow in
the platoon departing from each zone over the total analysis period. A sensitivity analysis
of the z-value might be needed. With the perfect convergence, the changes of the node time

intervals equal zero.
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4.6 Summary of the Solution Algorithm

The steps of the solution algorithm of the proposed link-time-based variational inequality

dynamic user-optimal route choice model are summarized as follows.

Step 1: Initialization. Input the O-D matrix, time-dependent trip departure rates,
network data and initial link flows (optional). With the initial link flows, the shortest
route travel times and node time intervals are initialized as well. Set outer iteration

m = 1.

Step 2: Solve the Route Choice Problem (Inner Problem). Using the F-W algo-
rithm, the route choice problem is solved to convergence with the optimal values of the

node time intervals from the outer problem.

Step 3: Link Capacity Adjustments. Perform exogenous and endogenous link capacity

adjustments.

Step 4: Update the Node Time Intervals (Outer Problem). Update the node time
intervals with time-dependent link flows and FIFO constraints by solving the shortest

route problem.

Step 5: Convergence Test for Outer Iterations. Sum the total number of differences
of the node time intervals (NDIFFS) between iterations m — 1 and m. If NDIFFS <
allowable percentage of all node time intervals, then the algorithm stops; otherwise,

return to Step 2.
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Chapter- 5

Model Implementation

Issues of model implementation are addressed in this chapter. The test network, network
representation and adopted link travel time functions are described. The contents extend
to the preparation of required data including travel demand, time-dependent trip departure
rates and roadway facility attributes such as types of links, types of turning movements
and types of intersection control, etc. A notable extension is that this model is capable of
modeling enroute diversions resulting from incidents. Issues and modeling approaches to

enroute diversion are presented as well.

5.1 Test Network

The test network selected for testing the proposed dynamic user-optimal (DUO) route choice
model is the ADVANCE Network. ADVANCE (Advanced Driver and Vehicle Advisory Nav-
igation Concept), a field test of ATIS was recently concluded by the Illinois Department of
Transportation (IDOT) and the Federal Highway Administration (FHWA), in collaboration
with the University of Illinois at Chicago, Northwestern University, and the IVHS Strategic
Business Unit of Motorola, Inc. The ADVANCE Network is depicted in Figure 5.1. It is lo-
cated in the northwestern suburbs of Chicago and covers about 300 square miles (800 square
kilometers). Diversified land use patterns including dense residential communities, office
centers, regional shopping centers, subregional government centers and the O’Hare Interna-
tional Airport are located in the ADVANCE Test Area. The topology of the test network is
almost a regular grid with a few diagonal major arterials directed towards the Chicago CBD
(Central Business District). The freeway system includes 1-90, 1-94, 1-190, 1-290, 1-294,
IL-20 and IL-53. Except for the remote northwest corner, the freeways serve nearly all parts
of the test network. The southwest quadrant is characterized by modern, multi-lane arterials
designed for high volumes. In Figure 5.1, collectors, arterials and freeways are drawn with

lines of different widths, freeways being the widest line. The heavy black line indicates the

-
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boundary of the ADVANCE Network.
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Figure 5.1: The ADVANCE Test Area in the Northwestern Suburbs of Chicago

Table 5.1 lists the frequency of links by the facility type and related data. Table 5.2
presents the breakdown of arterial/collector intersections by the number of legs and types of

traffic control.

5.2 Expanded Intersection Representation

In a conventional route choice model, the network is coded with each intersection repre-
sented as a single node and each approach is represented as a single link. This network

representation defines travel times in terms of approach attributes and traffic flows. Using

Lo
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Table 5.1: Network Characteristics

| Type of Facility | No. of Links |
Arterial/Collector 4,061
Tollway /Freeway 197
Freeway Ramp 202
Toll Plaza 14
Freeway Weaving Section 11
Centroid Connector Links 2,491
Approach Link - 874
Total 7,850
Number of Nodes 2,552
Number of Zones 447

Table 5.2: Intersection Frequency by Number of Legs and Control Type
| | Signalized | Priority | All-way-stop | Total |

Three-leg 257 174 51 482
Four-leg 558 52 60 670
Five-leg and more 7 0 0 7
Total 822 226 111 1,159
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the conventional network representation, 7,850 approach links and 2,552 nodes are included
in the ADVANCE Network (Table 5.1).

One of the goals of this research is to provide dynamic and specific link travel time esti-
mates for the network including turning movements. Therefore, a more appropriate network
representation known as an expanded intersection representation is required. The expanded
intersection representation consists of defining a special network representation so each turn-
ing movement is represented by a separate link called an intersection link. Road segments
between intersections are represented by links called non-intersection links. More precisely,
an approach node is defined for each approach to an intersection, and the number of inter-
section links originating from this node equals the number of possible turning movements.
Similarly, an exit node is defined for each exit from an intersection. Non-intersection links
connect an exit node of one intersection with an approach node of another. For exam-
ple, a typical four-leg intersection with two-way approaches without any turning restrictions
(U-turn excluded), four approach nodes, four exit nodes and twelve intersection links are
required in this expanded network representation. The expanded intersection representation

is described by Figure 5.2.
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Figure 5.2: Expanded Intersection Representation

The expanded intersection representation procedure is applied only to nodes representing
an intersection of arterials or collectors. Nodes that do not need to be expanded are freeway
nodes, no-delay intersections, and other nodes not representing intersections. In the case

of freeways, delays can be directly assigned to the link. No-delay intersections are those

s
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intersections where no approach flow experiences any delay; for example, a diverge to a
freeway ramp from an arterial. To keep this expanded intersection representation simple, all
the turning restriction links have been removed from the network representation. '

Because of the expanded intersection representation, the network size increases about
three times in comparison with conventional network representation. To that end, 22,918
links and 9,700 nodes are actually modeled in solving the proposed DUO route choice model.
Note the detailed delay functions by turning movements are applied only within the actual
ADVANCE Network. The network expansions are performed by the network builder program
that was originally developed by Meneguzzer et al. (1990) and enhanced by Berka et al.
(1994).

5.3 Link Travel Time Functions

This section presents mathematical functions used within the route choice model to estimate
link travel times for given flow rates. The choice of the delay functions involves several

criteria:

1. the desired mathematical properties of the function to satisfy the condition for a unique

solution of the model;
2. the cost and limited availability of road data;
3. the computational effort required by the model;
4. the desired accuracy of the travel time estimates generated by the model.

Considering the nature of this research, analytical functions are preferred over regression-
based models because the former generate reasonable estimates over a much wider range of
input flows and other parameters. Criteria (1) and (2) above exclude many highly detailed
traffic engineering-based models. Criterion (3) excludes simulation models, which are more
suitable for small networks.

Delay functions selected for this study can be classified by road type and intersection
type. First, delay functions for signalized intersections are presented (Section 5.3.1); second
for unsignalized intersections (Section 5.3.2); and third for freeway-related facilities (Sec-
tion 5.3.3).

5.3.1 Signalized Intersections

In general, delay models for signalized intersections consist of three modules: (1) saturation

flow analysis; (2) signal timing procedure; and (3) link travel time (delay) function. In this

Ve
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research, signal timings and initial saturation flows are obtained from an asymmetric static
user-optimal route choice model (Berka et al., 1994). During the solution procedure, the
signal timings are held fixed and the saturation flows are adjusted if spillback queues and
other capacity adjustment events (such a,sAincidents) occur.

The specific delay function for links at signalized intersections applied in the research has
the following form (Akcelik, 1988):

_0.5C(1 —u)?
- 1—uzx

d + 9007y [ x,_1+\/(x_1)2+8(_:v_—_0._5) (5.1)

cT

where d is the average delay per vehicle (second/vehicle), C is the signal cycle length (second),
u = g/C is the green split, g is the green time (second); = = v/c is the flow-to-capacity ratio,
T is the duration of the flow (hour) and v =1 for z > 0.5, and 0, otherwise. The first term,
called the uniform delay, was originally proposed by Webster (1958). It reflects the average
delay experienced by drivers in undersaturation conditions, that is when the arrival flow
does not exceed capacity. In oversaturation conditions, z = 1 is used in the uniform delay
term. The second term of Equation (5.1) is called the overflow delay. It reflects the delay
experienced by the vehicles when the flow rate is close to or exceeds the capacity. Temporary
overflow at an intersection may also occur when the average arrival rate is lower than the
capacity, due to a random character of the arrival pattern. The earliest delay functions (for
example, Webster, 1958) were based on the steady-state model and were defined only for

undersaturation conditions. Figure 5.3 shows an example of an Akcelik function.
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Figure 5.3: Steady-State Delay Model vs. Time Dependent Formulae
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5.3.2 Unsignalized Intersections

Delay functions for unsignalized intersections, whether major/minor priority intersections or
all-way-stop controlled intersections, are much simpler then functions for signalized inter-
sections. For major/minor priority intersections, formulae developed by Kimber and Hollis
(1979) are adopted by a related study of an asymmetric route choice model. Although the
delay function developed by Kimber and Hollis is presently being tested in the ADVANCE
Network using the asymmetric static route choice model, the BPR function is temporar-
ily used for estimating delays at major/ minor priority intersections with the following form

(Bureau of Public Roads, 1964):

t = to {1 +0.15 (%)4] (5.2)

where ¢ is the link travel time, v is the link flow and c is the capacity of the link at a
specified level of service. One main advantage of using the BPR function as a delay model
for priority intersections is that it is defined for all flow-to-capacity ratios. This property
is essential if the function is to be used in the context of a network equilibrium model. On
the other hand, a significant drawback is that the BPR function is relatively flat at low v/c
ratios, since it was originally conceived as a link performance function (Meneguzzer et al.,
1990). Although using the BPR function as an intersection delay model is somewhat outside
its designated scope, the lack of alternative functions with the desired analytical properties
for use in a network equilibrium model mandates the use of the BPR function. Note that
using the BPR function requires a non-zero free-flow travel time. Since intersection links
in this research are coded as having a short length, it is necessary to attribute to them the
physical characteristics (such as length and free-flow travel time) of their parent links, that
is non-intersection links from where they originate.

As for the dela,y function for all-way-stop intersections, the following exponential delay
model is used (Meneguzzer et al., 1990).

d = exp [3.802(v/¢)] (5.3)

where d is the average approach delay (second/vehicle), v is the total approach flow and
c is the approach capacity. Note the form of this exponential function, which is relatively
flat at low flow-to-capacity ratio but becomes very steep as the degree of saturation in-
creases, reflects the operational characteristics of all-way-stop intersections well. Kyte and
Marek (1989) found that approach delay is approximately constant and in a range of five
to ten seconds per vehicle for approach flows up to 300 to 400 vehicles/hour, but increases

exponentially beyond this threshold. An increase in conflicting and opposing flows has the
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effect of reducing this threshold. Equation (5.3) is suitable for use in a network equilibrium

model, since it is defined for any flow-to-capacity ratio.

5.3.3 Freeway-Related Facilities

Several types of freeway-related facilities are found within the network including basic free-

way segments, ramp junctions, weaving areas, toll plazas and ramps which are characterized
as follows (Berka et al., 1994).

1.

Basic freeway segments are those segments of the freeway not affected by merging or

diverging movements at nearby ramps or by weaving segments.

Ramp junctions are the points at which on— and off-ramps join the freeway. The area
around these points is in a state of turbulence due to the concentration of merging
or diverging vehicles; for the purpose of this project, only delays due to on-ramps are

considered.

Weaving areas are those segments of the freeway where two or more vehicle flows cross
along a freeway segment. The freeway section between on— and off-ramps is considered
a weaving area if an additional lane is provided and the distance between the ramp

intersections is shorter than 3,200 feet.

Toll plazas are fully controlled access roadways with toll gates/booths for the purpose

of collecting tolls from motorists.

Ramps are roadways designed to connect the arterial system with the freeway system:;
the on-ramps allow vehicles entering the freeway to merge smoothly with the through
traffic on the freeway; the off-ramps allow the vehicles to exit the freeway and enter

the arterial/collector road system

For the pufpose of travel time calculations, four different freeway segments and one ramp

segment are defined:

1.

basic freeway segment;

. basic freeway segment with an on- or off-ramp junction at downstream end of segment;

. weaving area;

toll plaza;

. ramp segment.

-
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Table 5.3: Total Vehicle Flow per Hour

|| Time Period | Total Flow ]

Night 19,439
AM Peak 184,185
Mid-day 170,573
PM Peak 203,278
Evening, 146,092

Y | W DN =

In general, the travel time of the freeway segment is modeled as the travel time along the
basic freeway section plus the delay at the bottleneck associated with the segment. The
bottleneck is a location on the freeway where the vehicle flow is slowed or disturbed in some
other way, causing deterioration of the travel condition upstream of that location. Ramp

intersections and toll plazas are examples of bottlenecks.

5.4 Travel Demand and Time-Dependent Departure
Rates

The ADVANCE Network is divided into 447 zones, originally specified by the Chicago Area
Transportation Study (CATS), to assign time-dependent travel demand. Actually, these
zones define a somewhat larger area called the extended test area. Daily trip tables based
on CATS estimates for 1990 were factored to represent travel demand for five time-of-day
periods that are listed below; see Zhang et al. (1994) for details.

Night 12 am to 6 am
Morning Peak ~ 6 am to 9 am
Mid-day 9 am to 4 pm
Afternoon Peak 4 pm to 6 pm
Evening 6 pm to 12 am

The total vehicle flow per hour for the five time-of-day periods of the ADVANCE Network
are shown in Table 5.3.

Each time-of-day period needs to be further divided into shorter time interval to solve the
proposed dynamic route choice model. The 10-minute time interval is selected for applying
in the solution algorithm. To load the travel demand represented by the O-D matrix onto
the network time-dependently, 10-minute departure rates for each origin zone are derived
from time-of-day half-hour departure rates obtained from CATS.

Steps used to derive the 10-minute flow departure rates are described as follows.

Lo
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Step 1. Compute the normalized (sum to 1) half-hour flow departure rates of the analysis
period (3-hour for the morning peak period and 2-hour for the afternoon peak period)
based on the half-hour departure rates of 24-hour period obtained from CATS.

Step 2. Solve a nonlinear multiple regression model based on the half-hour flow depar-
ture rates of the analysis period obtained in Step 1. The selected nonlinear multiple
regression model has the following form:

Y =ag+ a1z + asz + a2 + ¢ (5.4)

where y is the flow departure rate (dependent variable), ao is the constant of this
regression model, z represent the time interval (independent variable), a1, ay and as

are the regression coefficients, and ¢ is the error variable.

Step 3. Substitute the values of the independent variables that represent the 10-minute
time intervals into Equation (5.4) with estimates Go, G;, G, and a; obtained in Step 2.

Then, estimates of the corresponding § are obtained.

Step 4. The 10-minute flow departure rates are computed by normalizing the estimates of
the dependent variable () obtained in Step 3.

Figures 5.4 and 5.5 show the time-dependent flow departure rates of the ADVANCE
Network in the morning peak and afternoon peak, respectively; the flow departure rates are

identical for all zones in the model.

5.5 Traffic Input Data

In order to calculate the delay (travel time) at diversified types of traffic facilities in the
ADVANCE Network, besides the typical network supply data such as link capacity (or
saturation flow) and free-flow travel time, additional traffic-related data are needed for this

purpose including:
1. types of turning movements (e.g., left, through, right);
2. link facility types-(e.g., centroid connector, freeway, tollway, arterial);
3. types of traffic control at intersections (e.g., signalized, priority, all-way-stop);
4. signal timing information (e.g., cycle length, green split).

Moreover, for the purpose of intersection delay calculations, collector and arterial intersec-

tions are further classified into 12 categories according to the type of intersection control,

P
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CATEGORY CATEGORY NUMBER LANE CONTROL/PHASING

NUMBER OF LEGS DESIGNATION
USED IN

THE CODE

1 1 3or4 \I/' Signal, single phase
2 3 3or4 ‘\I I [/' Signal, single phase

3 4 3or4 % / Signal, single phase

4

| Signal, exclusive LT phase +
! ° 4 \ I / all-movement phase

Signal, exclusive LT phase +

5 6 4 \ I/ all-movement phase
Signal, excl. LT and RT phase +

6 7 4 \ T / all-movement phase

7 9 3 | \ / Signal, single phase

8 - 10 4 Unspecified All-way-stop
9 ' 11 3 Unspecified All-way-stop
10 12 4 Unspecified Major-minor priority
11 13 3 Unspecified Major/minor priority

12 15 6or8 % I/ Signal, single phase

Figure 5.6: Classification of Street Approaches to an Intersection
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Table 5.4: Intersection Approaches Classified by Category in the ADVANCE Network

| Category | Number of Approaches |

1 381
2 17
3 871
4 944
5 319
6 264
7 153
8 224
9 165
10 , 160
11 535
12 ‘ 29

Total 4,062

the intersection layout and the approach geometry. Intersection categories are shown in
Figure 5.6. Table 5.4 shows a breakdown of intersection approaches among these categories.

A few remarks about the classification of intersection categories are appropriate. Cat-
egory 1 is used for any l-lane approach. Category 7 is used only for 2-lane approaches
when the opposing approach does not exist. The lane designation for unsignalized inter-
sections (categories 8 through 11) is not specified because the delay functions adopted for
these intersections do not depend on the geometry of the approach. The last category is
used for all intersections with more than 4 legs, assuming only that each approach has an
opposing approach. The above described classification procedure was originally developed
by Meneguzzer et al. (1990) and revised by Berka et al. (1994) for the ADVANCE Network.

5.6 Alternative Route Choice Strategies

The problematic dynamic user-optimal assumption that complicates the modeling of many
route choice options is that route choice decisions must be based on travel times which
are temporally-consistent with future link flows at time of link use. The assumption is
appropriate for recurrent trips and traffic conditions and is also acceptable for scheduled
events (e.g., ballgames, concerts, detours, road constructions) and even for predicted weather "
conditions. However, this behavioral assumption is inconsistent with unezpected capacity

reducing events (e.g., stalled vehicles, dropped objects, accidents) at future times because

-
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drivers have very limited capability to be informed about the times and locations of such
events before they encounter unusual queuing delays caused by those incidents. Enroute

diversions are thus expected to occur when incidents are encountered by drivers.

5.6.1 Modeling Issues

The capacity reducing (lane blocking) events raise interesting questions with regard to how
drivers make route choices. Two critical questions are (1) when do drivers learn of the
blockage, and (2) how do drivers react to this knowledge. The three following route choice
strategies may be very difficult (perhaps infeasible mathematically) to include within a math-

ematically valid and temporally-consistent dynamic route choice model:
1. time-of-departure route choice based only on current information;
2. enroute diversion when unusual traffic conditions are encountered;
3. enroute diversion guided by an in-vehicle information system.

Note all three alternative route choice strategies inevitably produce unequal-cost routes used
by trips between any given O-D pair. Although this difficulty may seem minor (given that
equilibrium solution is never reached exactly), a solution algorithm that is not designed
to achieve the equal-cost O-D route objective can create erratic link flow fluctuations in
successive time intervals (Janson and Robles, 1995).

The difficulty of modeling these three alternative route strategies is that equilibrium
models use link travel time functions describing the route choice objective (e.g., ideal DUO)
of all travelers on a given link in a given time interval. The adopted link travel time function
is assumed to be known to each traveler at the time of route choice and is independent of trip
origin and travel time to the link. Strategy (1) is clearly dependent on departure time and
not the time interval of link is being used. Strategy (2) must assume anticipatory knowledge
of traffic conditions beyond the bottleneck, or adopt the invalid assumption of strategy (1).
That is, the remaining part of route is based on current knowledge only. Strategy (3) requires
a very burdensome algorithm to update and revise routes in each time interval. All three

strategies assume less than full anticipatory knowledge at the time of flow departure.

5.6.2 Modeling Approach

Considering the issues described in Section 5.6.1, there are two approaches that are mathe-

matically valid and limit the possible impacts between the least and most severe cases.

1. The first approach is to assume zero incident diversion such that drivers always se-

lect expected routes based on anticipated traffic conditions without incidents. This
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approach requires a set of alternative routes that is generated under usual traffic con-
ditions and in a temporally-correct manner; then the routes will remain the same for
flows even as routes are affected by incident-related queues and caused capacity reduc-
tions. This approach is similar to typical queuing analysis in which no route diversion
is considered. This approach is anticipatory to usual traffic conditions but not antici-
patory or reactive to unusual developing conditions. In general, this approach produces
more severe queuing on incident routes than in reality because diversions are expected

to occur under incident conditions.

2. The second approach is to assume that routes are selected according to full anticipatory
knowledge. Consequently, this approach tends to underestimate the potential delays
that are caused by incidents. However, the solution properties of this approach are
quite clear and thus deficiencies of this solution are well understood. This approach
can be extended as: one group of drivers choose routes based on time-of-departure
traffic conditions, and another group of drivers diverts enroute because of incidents.
In either case, full anticipatory knowledge remains the underlying assumption. This
approach may produce less severe queuing on incident routes than in reality because

excess diversions may occur because drivers are assumed to have too much information.

Despite violating the temporal consistency to some extent, the following method is em-
ployed to estimate the impacts of different percentages of drivers diverting enroute to alter-

native routes.

Step 1. First, assign the entire O-D matrix to the network assuming usual (incident-free)
conditions. Save the aggregate link flows for each link in each time interval; a set of
base-level link flows are thus generated. Denote this base-level array as bvol, where

bvol(a,t) defines the base-level flow on link a in time interval ¢.

Step 2. Next, select the percentage (say 7) of all drivers that may change routes to avoid
unusual congestions. Therefore, (1 — ) is the percent of all drivers that will not divert
to alternative routes. That is, (1 — ) percent of drivers remain on the routes generated

in Step 1 even when unusual congestion is encountered.

Step 3. Last, assign 7 percent of O-D matrix to the network and activate the links and time
intervals that are affected by the capacity reduction events to estimate the flow (say
zvol(a,t)) on each link in each time interval that may have rerouted. Consequently,

the flow-to-capacity ratio must be computed on the basis of_:.

flow-to-capacity ratio = [zvol(a,t) + (1 — 7) X bvol(a,t)] /capacity(a,t) (5.5)
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Through this approach, drivers who choose the non-diverting strategy are actually based
on fully anticipatory travel times when performing route choices. This approach might
violate temporal continuity of flows in those time intervals where non-diverting base-level
flows using the links are affected by enroute diversion flows. However, it becomes less severe
as the non-diverting portion of drivers increases. Further, this approach also provides an
estimate of related traffic characteristics when enroute diversions are guided by in-vehicle
information.
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Chapter 6

Computational Solution and Analysis
of Results

In this chapter we present computational results for the link-time-based VI model of DUOQ
route choice described in previous chapters. Five global network performance measures are
defined to monitor the solution process of the model and assess the dynamic traffic condition
over the ADVANCE Network. The selected global network performance measures are average
travel time, average travel distance, network space mean speed, average flow-to-capacity ratio
and algorithm convergence indezx. Next, we describe the platforms used for solving the model

and their computing performance.

6.1 Computing Platforms and Performance

The algorithm was programmed in Fortran 77 and can be implemented on most available
computing platforms including personal computers, workstations and supercomputers. For
implementation on the ADVANCE Network, the model was executed on the CONVEX-
(3880 at the National Center for Supercomputing Applications (NCSA), University of Illinois
at Urbana-Champaign. The Convex-C3880 is a vector shared memory machine consisting
of 8 proceséors (240 MFLOPS per processor peak), 4 Gbytes of memory and 60 Gbytes of
disk space. For the ADVANCE Network with morning peak of 3 hours divided into 18 ten-
minute time intervals, travel demand (552,597 total flow) and 512 Mbytes of memory, nearly
60 CPU hours are needed to reach a very fine convergence from a zero flow initial solution.

A modified version of the computer code can be executed with a much smaller memory
requirement (55 Mbytes for the same problem size described above), and thus can be imple-
mented on a workstation or even on a personal computer. However, it requires more CPU
time and more disk space. The computational time of the modified version on a Sun Sparc
2 workstation (with 128 Mbytes of memory) is nearly 168 CPU hours.

;-
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6.2 Dynamic Network Performance and Convergence
Measures

Five global network performance measures are defined to monitor the solution process of the
model and assess the dynamic traffic condition over the ADVANCE Network. Definitions of

these global network performance measures are listed below:

1. Average travel time

c= % N calt]zal[t]
a t
where ¢ = average travel time (minutes)
R = total flow during the analysis period (trips/period)
ci[t] = travel time on link @ at time interval ¢ (minutes)
z,[t] = flow on link a at time interval ¢

2. Average travel distance )
= LY St
a t

where ¢ = average travel distance (miles)
£, = length of the link a (miles)

3. Network space mean speed
S =1/(¢/60)

where S = network space men speed (mph)

4. Average flow-to-capacity ratio

xa[t]
r= KT ZZ AU

where Zz = average flow-to-capacity ratio
K = number of links in the network
T = number of time intervals
C.lt] = -capacity of link a at time interval ¢

5. Convergence Index

The convergence index monitors the change in node time intervals between two con-

- secutive outer iterations. The solution algorithm terminates if the change in node time

;-
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intervals (NDIFFS) is less than nodes x zones x intervals x z. This index indicates
that only = changes of the total node time intervals are allowed for the last flow that
departed from each zone over the total analysis period. A sensitivity analysis of the
z-value might be needed. With the perfect convergence, the changes of node time

intervals equal to zero.

6.3 Analysis of Network Performance Measures

Selected traffic characteristics from the final outer iteration of the solution for the ADVANCE
Network and separate road classes using the morning peak and afternoon peak travel demand
are tabulated in Tables 6.1 and 6.2. Figures 6.1, 6.3, 6.5 and 6.7 show the variations in the
global network performance measures for morning peak solutions of the outer iterations of

the algorithm. The results for the afternoon peak are shown in Figures 6.2, 6.4, 6.6 and 6.8.

For analytical-based route choice models, average travel times tend to decrease with the
iterations of the algorithm, indicating flows are assigned to better routes leading to shorter
travel times. Both Figures 6.1 and 6.2 show an overall pattern of decreasing average travel
times. Based on the results shown in Tables 6.1 and 6.2, the afternoon peak is slightly
more congested than the morning peak for the ADVANCE Network. In addition, arterials
have higher travel times than collectors and freeways (see Figures 6.1 and 6.2), showing
that about 70% of the average flow occurs on arterial links of the ADVANCE Network, as
measured by travel time, and about 60% as measured by distance. Note in Figure 6.1 that
the average travel times of collectors increase sharply in the fifth outer iteration; a slight
increase in average travel times of arterials is observed in the same iteration. According to
the computational experience of this model, the average travel times decrease in the first
few iteratidns, and then oscillate before the defined fine convergence is reached. However,
further investigation of the increase in average travel times may be revealing.

Figures 6.3 and 6.4 indicate that the average travel distance does not vary much among
the solution iterations, implying the used routes are found quickly, but the algorithm still
needs to adjust the node time intervals to reach the convergence. These results show that the
afternoon peak period has a slightly shorter average travel distance than the morning peak
in the ADVANCE Network. Considering the layout of freeways in the ADVANCE Network,
the usage of freeways seems low based on the results shown in Table 6.1 and 6.2. In the
ADVANCE Network, arterials are used extensively in the morning and afternoon peak.

A general observation is that the network space mean speeds tend to be increasing with
the outer iterations, which is reasonable since the average travel times are decreasing. In-
tuitively, freeways have the highest space mean speed, then arterials, and finally collectors.

P
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Table 6.1: Solution Characteristics for Morning Peak Period by Road Class

Link Travel Travel Mean
Class Distance Time Speed
(miles) (minutes) (mph)
Collector | 1.18 (1.34) | 4.20 (5.97) | 16.86 (13.47)
Atterial | 6.03 (6.83) | 17.42 (21.65) | 20.77 (18.92)
Freeway 2.82 (3.01) | 3.62(3.95) | 46.74 (45.73)
All Classes | 10.02 (11.18) | 25.24 (31.61) | 23.81 (21.22)

(+) results from Berka et al. (1994)

Table 6.2: Solution Characteristics for Afternoon Peak Period by Road Class

Link Travel Travel Mean

Class Distance Time Speed

‘ (miles) (minutes) (mph)
Collector | 1.16 (1.36) | 4.04 (5.69) | 17.23 (14.37)
Arterial | 5.85 (6.60) | 18.66 (22.78) | 18.81 (17.37)
Freeway | 2.79 (3.11) | 3.59 (4.11) | 46.63 (45.37)
ATl Classes | 9.80 (11.07) | 26.29 (32.63) | 22.37 (20.35)

(+) results from Berka et al. (1994)
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Space mean speeds on arterials and freeways of the afternoon peak are lower than for the
morning peak.

Figures 6.7 and 6.8 show changes in the flow-to-capacity ratios of the morning and after-
noon peak periods, respectively. Since the DUO flow pattern is obtained after several outer
iterations, it is reasonable to see the decreasing flow-to-capacity ratios. These results imply
that the successive adjustments of the node time intervals lead to a DUO state. In the last
outer iteration, the flow-to-capacity ratio is 0.68 for the morning peak versus 0.69 for the

afternoon peak.

AN
.

Average Travel Time (minute)

104--- 2

Outer Iteration

Figure 6.1: Average Travel Time of the Morning Peak Period

Compared with the results from the asymmetric SUO route choice model (Berka et al.,
1994), the dynamic model of the ADVANCE Network exhibits less congestion based on the
selected network performance measures described above. Besides generating these global
network performance measures, the model is capable of providing time-dependent traffic-
related information such as link travel time, travel speed, capacity and queue spillbacks.

Unfortunately, empirical link flow and link travel time data are not available for the
ADVANCE Network, either in general, or more specifically for the O-D matrix used in this
solution. These data, as well as route flow data, are urgently needed to advance the state
of the art of network modeling for ITS. Although not fully validated, the results from this

model are internally consistent.
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Figure 6.2: Average Travel Time of the Afternoon Peak Period
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Figure 6.3: Average Travel Distance of the Morning Peak Period
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Figure 6.4: Average Travel Distance of the Afternoon Peak Period
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Figure 6.5: Network Space Mean Speed of the Morning Peak Period
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Figure 6.6: Network Space Mean Speed of the Afternoon Peak Period

0.9-
O-OE
8
&
[*}
.‘? O-U
g
<
Q
£ o7
3
[}
=
07 AN
\-/ \-\-
0.65

1 2 3 4 5 6 7 ) 9 10

Outer Iteration

Figure 6.7: Flow-to-Capacity Ratio of the Morning Peak Period
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Figure 6.8: Flow-to-Capacity Ratio of the Afternoon Peak Period

For the convergence measures, nodes = 9,700, zones = 447, intervals = 18 for the
morning period and 12 for the afternoon period; z = 0.001 is used in the solution algorithm.
A rather small value is chosen for z, indicating a fine convergence of the algorithm is desired.

After 10 outer iterations, NDIFFS equals to 20,537 showing the algorithm has converged
at the level of z ~ 0.00026 for the morning peak period. For the afternoon peak period, the
algorithm converges after 9 outer iterations with NDIFFS equal to 25,658, indicating the
algorithm indeed cdnverges at the level of z ~ 0.00049.

As shown in Figures 6.9 and 6.10, the rate of change of the node time intervals is calculated
as the change in the node time intervals divided by the total possible change of the node
time intervals (i.e., nodes x zones X intervals; 78,046,200 for the morning peak period and
52,030,800 for the afternoon peak period) between consecutive outer iterations. Figures 6.9
and 6.10 display the rates of change of the node time intervals which indicate that this
model was solved quite smoothly both for the morning and afternoon travel demand. From
Figures 6.9 and 6.10, we can find the rate of change of the node time intervals moves faster
in the first four iterations than in the later iterations.

If a higher value of z is chosen for calculating NDIFFS, the algorithm converges in
only four outer iterations, yielding a saving of nearly 60% of CPU time. Based on the

computational experience, z = 0.006 is an acceptable value for applications. Note that we
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Figure 6.9: Rate of Change of Node Time Intervals of the Morning Peak Period
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Figure 6.10: Rate of Change of Node Time Intervals of the Afternoon Peak Period
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omit the value of the first outer iteration in Figures 6.9 and 6.10 to provide a better display
of the variations in the rest of iterations.

6.4 Enroute Diversions Resulting from Incidents

In this section, we present the results of an analysis of incidents. First, we place an incident
on a through movement of an intersection on a southbound major arterial and assume that
50% of drivers choose a diversion strategy to avoid the incident. Next, we place another
incident on a major eastbound arterial which is a primary traffic corridor in the southeast
corner of the test area. We assume no driver chooses a diversion strategy since this vicinity

offers no alternative routes in the incident direction (eastbound).

6.4.1 Casel

Mannheim

Legend:
© mmmmP jncident link

Figure 6.11: Layout of the Incident Analysis Area—Case 1

To demonstrate the effects of enroute diversions that result from incidents, an incident
is placed on a southbound through-movement link of an intersection which causes a 50%
capacity reduction from time interval 7 to 12 (7 AM to 8 AM), one-half of the drivers were
assumed to choose a diversion strategy. The intersection is a four-leg signalized intersection
on a major arterial with no turning restrictions (U-turn excluded). Note that the scale of
capacity reduction can also be specified over intervals to account for the gradual loss of
capacity caused by the incident. Figure 6.11 shows the layout of the incident intersection.
Figure 6.12 shows the flow profile of the incident link by time interval. Obviously, the

flows on the incident link are lower than the non-incident flows during the incident period.

-
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Following the removal of the incident, the incident flows become higher than the non-incident
flows. Although the flows of the incident condition are lower than the non-incident condition,
the link travel times of the incident condition are still higher than the non-incident condition
because of the loss of capacity (see Figure 6.13). The upstream link has similar results as the
incident link as shown in Figures 6.14 and 6.15. Since intersection links are being discussed,

link travel speeds are not interesting to show in this case.

8
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Predicted Link Flows per Interval

8

Figure 6.12: Predicted Flows of the Incident Link-Case 1

Significant flow diversions appear in the right-turn and left-turn links during the incident
periods (see Figures 6.16 and 6.17). Figures 6.18 and 6.19 show the variations of travel times.
The diversions on the right-turn link are quite obvious; the incident flows are higher than
the non-incident flows during the incident period and a few subsequent time intervals.

The flow profile of the left-turn link is complex, but is still reasonable. The incident flows
begin to exceed the non-incident flows at the second incident interval because of the normal
left-turn delay. The incident flows drop soon and return to the usual used links following the
clearance of the incident because of the capacity restoration on the incident link. Although
diversion could occur in upstream intersections, results shown in Figures 6.16 and 6.17 imply
flows are choosing alternative routes. Based on this modeling capability, this model can be
utilized as a tool to assess an area-wide incident management strategy and the resulting flow
pattern.
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Figure 6.13: Link Travel Times of the Incident Link-Case 1
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Figure 6.14: Predicted Flows of the Upstream Link-Case 1
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Figure 6.15: Link Travel Times of the Upstream Link—Case 1
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Figure 6.16: Predicted Flows of the Right-Turn Movement-Case 1
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Figure 6.17: Predicted Flows of the Left-Turn Movement—Case 1
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Figure 6.18: Link Travel Times of the Right-Turn Movement—Case 1
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Figure 6.19: Link Travel Times of the Left-Turn Movement-Case 1

6.4.2 Case 2

Now, a two car collision is placed on the inside lane of a two-lane eastbound arterial which
is a major corridor in the vicinity. Figure 6.20 shows the layout of the analysis area. As
mentioned previously, the scale of capacity reduction can be specified over intervals to ac-
count the gradual capacity loss caused by the incident. The following capacity reductions
are applied:

Interval Action Capacity Loss
4:40-4:50 PM accident occurs 65%
4:50-5:00 PM police arrive 80%
5:00-5:10 PM tow car arrives 85%
5:10-5:20 PM accident is removed 65%

We assume a traffic accident occurs at 4:40 PM and persists for 40 minutes (i.e., from time
interval 5 to 8). In the incident interval, the traffic accident occurs and blocks 65% of the
link’s capacity. The police come to the scene and block one lane to process the accident,
which causes a loss of 80% of the link’s capacity during the second incident interval. In

the third incident interval, the involved cars are moved to the shoulder and tow cars arrive,

-
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causing an 85% capacity reduction. In the fourth incident interval, the involved cars are

towed away from the scene, and traffic returns to normal; 65% loss of capacity is assumed.

1-294 N
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Figure 6.20: Layout of the Incident Analysis Area—Case 2

As shown in Figure 6.21, the link travel times for the incident condition during the
incident period are significantly higher than for the non-incident condition. Because of the
zero diversion assumption, the link flows remain the same both for the incident and non-
incident conditions (Figure 6.22); therefore, flows are not delayed in this incident scenario.
Consequently, the link travel time is about 13 minutes in the most congested time interval
(7). This treatment will generate vertical queues on affected links so that queues will not
propagate properly under this condition. Although this may be an unrealistic treatment
and can be viewed as a shortcoming of this modeling approach, it provides a severe impact
estimate of the incident.

The highest flow of the incident link appears in time interval 6 (see Figure 6.22), but the
highest travel time occurs in time interval 7 due to the most severe capacity loss and queuing
effect, captured by the link capacity adjustments of the solution algorithm. Although the
incident period ends in time interval 8 (5:20 PM), the queuing effect results in the travel
time returning to the normal condition only in time interval 10. Similar observations apply
to the link travel speed (see Figure 6.23).
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Figure 6.21: Link Travel Times for Incident and Non-Incident Conditions—Case 2

Since the vicinity offers no alternative routes in the incident direction, the solution algo-
rithm detects that the incident causes queue spillbacks to the upstream links. As shown in
Figure 6.20, links A and B are affected by the spillback queue originating from the incident
link.

73



Predicted Link Flows per Interval

100

T3 3 7 § & T ® 5 T 0 o
Time Interval (10-min.)

Figure 6.22: Link Flows for Incident and Non-Incident Conditions-Case 2
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Figure 6.23: Link Travel Speed for Incident and Non-Incident Conditions—Case 2
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Chapter 7

Conclusions and Future Research

In this concluding chapter, we offer an account of the contributions and the notable find-
ings of this research in Section 7.1. Recommendations for future research are presented in
Section 7.2.

7.1 Conclusions

This research presented a quasi-continuous time formulation of the link-time-based varla-
tional mequahty model of dynamic user-optimal route choice for evaluating time- dependent
traffic characteristics for Advanced Traffic Management Systems (ATMS) and Advanced
Traveler Information Systems (ATIS) such as the recently concluded ADVANCE Project.

The proposed DUO route choice model can be efficiently solved to convergence by using
the diagonalization algorithm described. For most links a realistic traffic engineering-based
link travel time function, the Akcelik function, is adopted in this research, in place of the
simplistic but widely used BPR (Bureau of Public Roads) function, to estimate delays and
travel times for various types of links and intersections. An expanded intersection represen-
tation mechanism is employed so that each turning movement is treated as an individual
link. To this end, nearly 23,000 links and 10,000 nodes are modeled in the solution process.
The time-varying total flows of the morning peak (6 AM to 9 AM; 552,597 trips per 3-hour
period) and the afternoon peak (4 PM to 6 PM; 406,556 trips per 2-hour period) in the
ADVANCE Network are solved by the algorithm.

Various time-dependent traffic characteristics such as link flow, travel time, travel speed
and flow-to-capacity ratio are available both at the link and network-wide levels. Further-
more, queue spillback information is also generated from the model to detect unusual queues
and congested bottlenecks in the network. The converged solution is obtained and analyzed.
The problem scale solved in this research is believed as the first and the largest solution of

an analytical-based dynamic route choice model obtained to date. In particular, this model
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is solved for a real-world traffic network rather than a hypothetical network.

Unexpected lane-blocking events that cause nonrecurrent traffic congestion are capable of
being analyzed with this model. Although full anticipatory knowledge of traffic conditions
remains the underlying assumption, the approach described in Section 5.6.2 provides an
estimate of the impact of different percentages of drivers diverting enroute to alternative
routes. This approach provides an estimate of enroute diversions, if guided by an in-vehicle
information system.

Although not yet fully validated, this model is able to predict time-dependent traffic
characteristics for a large-scale traffic network which are reasonable and internally consistent.
Eventually, dynamic route choice models should be integrated into a traffic management
center to support the decisions on the adjustments of arterial signal timing, ramp metering,
incident management and future route guidance strategies, etc.

Significant contributions of this research are identified as follows.

1. This research describes the largest dynamic route choice model that has been solved
to date. Consequently, this research establishes a new benchmark for dynamic route
choice modeling. Solving dynamic route choice models on a realistic and large-scale

traffic network is no longer an intractable task.

2. This research proposes a link-time-based variational inequality formulation of a DUO
route choice problem. Traffic flows propagate over the network in a quasi-continuous
manner. FIFO ordering of flows between all O-D pairs are highly maintained to ensure

temporally-correct routes and time-continuous flow propagations.

3. The network used in the solution is highly detailed. Links are classified based on geo-
metric characteristics, types of highway facility and types of traffic control. Estimates
of delays and. travel times of various types of link including turning movements are

generated by the proposed model.

4. A key feature of the proposed model is that endogenous and exogenous changes of
link capacity are considered. Therefore, adjustments of link capacity are performed to

reflect traffic dynamics.

5. Using the proposed model, dynamic network traffic is analyzed which provides a good
platform for future ATMS and ATIS applications.

7.2 Future Research

Although this model has successfully demonstrated the capability of solution for a real,

large-scale traffic network, several future research needs are identified.
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. This model does not include an integrated traffic signal setting mechanism. The traffic
signal timing plan is given as an input and is kept fixed in the solution algorithm.
Thus, the dynamic interaction of traffic signals and dynamic traffic flow is thus unable

to be analyzed by the current model.

. Although link capacity is adjusted when queue spillbacks occur, the model does not
provide an internal capacity analysis mechanism. Consequently, the caﬁacity used in
the solution process might be inappropriate for dynamic traffic conditions and might
affect the calculation of intersection délays and link travel times. More precisely, an
internal capacity analysis procedure, which is an essential element of a delay model,

should be considered in the future.

. Although realistic traffic engineering-based delay functions are adopted for signalized
intersections, the delay functions for freeway-related facilities and unsignalized inter-
sections are still relatively simplistic. Delay functions for freeway-related facilities and

unsignalized intersections being tested should be incorporated.

. The O-D matrices used in this research are based on CATS estimates for 1990. To
provide more appropriate estimates of traffic dynamics, time-dependent O-D estimation

and forecasting are needed to improve the validity of the model.

. Unfortunately, link flow and link travel time data are not available for the ADVANCE
Network, either in general, or more specifically for the O-D matrix used in this solution.
Although the results of this model are internally consistent, they have not been fully
validated. These data, as well as route flow data, are urgently needed for the model

validation and to advance the state of the art of network modeling for ITS.

. A more generalized and mathematical-correct dynamic route choice model in consider-
ation of the alternative route choice strategies stated in Section 5.6.1 is still expected to
provide a more precise and improved estimates of traffic conditions when unexpected

lane-blocking events occur.

. This model is solved using ten-minute time intervals to perform quasi-continuous dy-
namic route choice modeling. A sensitivity analysis for different duration of the time

interval with respect to the network scale is needed.

. A sensitivity analysis of using different convergence criterion with respect to the accu-

racy of the result is needed.

. A graphical user interface that helps to monitor the dynamic changes in the traffic flow

pattern and to visualize the results of the model is worth developing.
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10. Parallelization and optimization of the code is needed for the target computing platform

to make this code available for application in practice.
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