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Abstract. Urban ozone arises as a consequence of the emissions of nitrous oxides and
hydrocarbons into the atmosphere, but it is also very strongly affected by meteorological
conditions. In analyzing ozone data, it is hard to separate genuine trends, that might be
explained by changes in the levels of emissions, from apparent ones determined by meteo-
rology. Previous statistical studies of this problem have used classification and regression
techniques. In particular, Bloomfield et al. (1993) have developed a detailed nonlinear
regression model fitted to weighted averages of measured ozone concentrations at 45 mon-
itoring stations in the Chicago area. Here, based on the same data set, we develop an

alternative analysis aimed specifically at characterizing the probability of exceeding a high
threshold.
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1. Introduction

A major difficulty in the analysis of urban ozone data is how to separate genuine
trends, that might be the consequence of changes in precursor emissions, from the effects
of meteorological variability. This problem has been reviewed in Chapter 2 of the report
of the National Research Council (1991), which discussed three broads approaches to it:

e Measurement approaches: Find some other ozone indicator (besides the present
national ambient air quality standard, which is based on the number of daily ozone maxima
exceeding a threshold of 120 ppb), which would be more “robust” against meteorological
variability — for example, if might be beneficial to monitor the 80th or 95th percentile of
the ozone distribution, or exceedances of lower thresholds;

e Classification approaches: Find a suitable classification of meteorological “types”,
and consider ozone exceedances separately within each type;

e Regression approaches: Construct a regression model linking ozone level to meteo-
rological variables, and use that to identify days which have high ozone levels relative to
the background meteorology.

Of the three approaches, the regression approach is the one most amenable to a de-
tailed statistical analysis. In earlier work as part of the current project, Bloomfield, Royle
& Yang (1993) used principal components analysis to determine suitable weighted averages
of ozone levels at 45 urban stations in the Chicago area, and then constructed a nonlin-
ear regression model to relate the resulting weighted average to measured meteorological
variables. Their model will be described in more detail in Section 4.

One possible disadvantage of regression approaches is that they may fail to charac-
terize well what is happening in the extremes of the distribution. Since the current ozone
standard is defined in terms of extremes, this is a natural concern. The report of the
National Research Council (1991) specifically mentioned this as a drawback of regression
analysis, pointing out that high ozone levels have been underpredicted by such analyses,
and suggesting that the explanation lies in the standard method of fitting a regression
model, which is based on minimizing the sum of squares of residuals over the whole data
set, not giving enough attention to the extremes of the data. Cox & Chu (1992) recognised
this as a difficulty with standard regression analyses based on the normal distribution, and
proposed an alternative model based on the Weibull distribution, using a maximum like-
lihood fit. The reports of Cox & Chu (1992) and Bloomfield et al. (1993) considered the
power of their models to predict the 95th and 99th percentiles of the ozone distribution,
with seemingly satisfactory results, but this leaves open the question of whether alternative
analyses, focussed specifically on extreme quantiles or threshold crossings, could produce
better results. The main purpose of the present paper is to consider alternative methods
of analysis with just such an objective.

Extreme value theory is that branch of statistics concerned with distributions of ex-
treme values in random samples. Classical extreme value theory is based on asymptotic
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distributions for extremes in large samples (Gumbel 1958). Although there have been ap-
plications of classical extreme value techniques in air quality problems (Singpurwalla 1972,
Roberts 1979), these are somewhat restricted in their applications because data series are
generally too short for analyses based on annual maxima, which is the classical domain of
the theory. A more specific objection to classical extreme value theory, in the context of
the present study, is that it would be almost impossible to figure out how to incorporate
the meteorological effects which are our main interest in the context of a classical analysis.

An alternative method of extreme value analysis which has been developed extensively
in recent years, however, is that based on exceedances over high thresholds. Among the
papers developing this approach are Smith (1989), Davison & Smith (1990) and a recent
review by Smith (1993). The broad aim of these methods is to find suitable probability
distributions for exceedance times and excess values, which can then be estimated by
maximum likelihood. A specific selling point of these methods is that they can easily
be extended to include covariates through a regression analysis, and indeed the paper of
Smith (1989) showed how such an analysis could be used to study trends in the extreme
values of urban ozone, though in that paper without making any attempt to account for
meteorology.

Davison & Hemphill (1987) analyzed the crossings of a single threshold level, taking
account of missing values, through a generalized linear model for binary data. In their
analysis, temperature was admitted as a covariate. Shively (1991) adapted a Poisson
process viewpoint proposed by Smith (1989) to incorporate a number of meteorological
variables, but still only for crossings of a single threshold level. In other words, his analysis
accounted for the probability of crossing a given threshold, but did not attempt to model
the actual values or excesses of those ozone readings above the threshold. This would be
adequate if it were possible to formulate the entire study in terms of exceedances of a
single threshold level, but in most cases, to calculate adequate extremal properties, it is
necessary to extrapolate to higher thresholds than the one on which the statistical analysis
is based, and for that, we need to model the excesses as well.

In the present report, we apply and extend these techniques to a number of data
sets extracted from the Chicago ozone study. Specifically, we pick out three stations at
which ozone levels are high, and also consider daily maxima across the Chicago network.
A detailed description of the data used is in Section 2. Section 3 presents an analysis of
the exceedances of a single threshold. In Section 4, this is compared with the model of
Bloomfield et al.; essentially, our conclusion is that there are difficulties in applying the
Bloomfield model to determine probabilities of crossing a high threshold, which do appear
to be resolved by the model we are proposing. Section 5 then extends the analysis to include
excesses over the threshold. In Sections 6 and 7, we propose some interpretations of these
results in the light of the broader scientific aims of the project. More specifically, Section 6
discusses ways of identifying extreme ozone days after making adjustments for meteorology.
This information may be useful in establishing control strategies or in suggesting ways that
the interpretation of the ozone standard might be modified to account for meteorology.
Section 7 presents a methodology for establishing how extreme a particular year was, in
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the light of past patterns of meteorology — this is of particular interest with regard to the
year 1988, which has seen the highest ozone levels of recent years. Section 8 presents an
alternative analysis, based on sums of exceedances over a threshold rather than the daily
maximum. Finally, Section 9 summarizes the results of the report.

2. The data

The ozone data consist of hourly averages at 45 stations in the Chicago area. Detailed
description of the stations and their locations is given by Bloomfield et al. (1993). For the
present study, it is of particular interest to focus on stations with high ozone levels. Table
9.1 shows the sample size (i.e. total number of complete days available) and the number
of exceedances of the daily maximum above the levels 120 and 150 ppb., for each of the
45 stations.

Table 2.1: Numbers of exceedances by station

Station Sample Exc. Exc. Station Sample Exc. Exc.
ID size of 120  of 150 ID size of 120  of 150
170310001 655 4 0 170318003 164 0 0
170310003 446 1 1 170431002 765 1 1
170310009 330 1 0 170436001 2288 6 0
170310032 970 13 2 170890005 3284 5 0
170310037 1880 8 3 170970001 3180 15 6
170310038 129 1 0 170971002 3269 38 9
170310044 825 2 0 170971003 275 0 0
170310045 1222 2 0 170973001 3345 17 4
170310050 2286 5 1 171110001 3374 6 2
170310053 1062 4 2 171971007 1770 3 0
170310062 49 0 0 171971008 3192 7 1
170310063 130 0 0 180890011 190 0 0
170310064 467 2 0 180891016 1435 8 2
170311002 1851 6 1 180892001 235 1 0
170311003 1515 15 1 180892002 258 0 0
170311601 1351 7 1 180892008 1056 11 2
170312301 500 1 1 181270020 686 7 2
170313005 431 3 0 181270021 596 7 1
170314002 1595 12 1 181270024 1053 23 5
170314003 1285 5 0 181270903 31 0 0
170315001 282 0 0 181271004 422 8 3
170316002 131 1 0 181271005 266 0 0
170317002 3448 41 11
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Also computed were exceedances of the level 180 ppb., but only four stations had any
~ exceedances here: 170971002, 180892008 and 181270024 had one each, and 170317002 had
three. Based on these results, and taking sample sizes into account, three stations were
selected for detailed analysis: 170317002, 170971002 and 181270024. In the rest of the
report these are referred to as stations P, Q and R, respectively. Figure 2.1 (based on
Figure 1 of Bloomfield et. al, 1993) shows these stations.

In addition to the daily maxima from these three stations, we have analyzed daily
maxima for the whole network. Network maxima are not easy to define, because different
stations have been in operation for different periods of time, and there are many missing
values. However, Bloomfield et. al (1993, Section 4.2) applied median polish kriging to
interpolate missing values within a subset of 16 stations and subsequently (Section 6.6)
used the same data to construct network maxima based on those 16 stations. We use the
same constructed data set here.

The meteorological data consist of surface weather data at a single station in Chicago.
Data are available on an hourly basis, but for the purpose of the present study, only the
noon values are considered. Bloomfield et al. (1993) consider extending the analysis to
incorporate lagged data (i.e. using previous days’ meteorology, as well as that of the
current day, as covariates in predicting the ozone level of a specific day) and to use upper
air data, but these have not been brought into the present analysis.

The measured meteorological variables are given in Table 2.2. Amongst these, TOT-
COV and CHT were omitted from the analysis, TOTCOV because it is generally considered
that OPCOV is a more relevant measure of cloud cover for the ozone problem, and CHT
because it is difficult to interpret (a missing value or 0 actually meaning that the ceiling is
too high to be measured). Both omissions are supported by statements in Bloomfield et

al. (1993).

Table 2.2: Measured meteorological variables

Variable name  Description

TOTCOV Total cloud cover (%)
OPCOV Opaque cloud cover (%)
CHT Ceiling height (m.)

PR Barometric pressure (mb.)
T Temperature (°F)

TD Dewpoint Temperature (°F)
RH Relative humidity (%)

Q Specific humidity (g./kg.)
VIS Visibility (km.)

WSPD Wind speed (m./sec.)
WDIR Wind direction (° from North)
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In addition, several additional variables were created from the above, and are described
in Table 2.3. These are mainly motivated by the results in Bloomfield et al. (1993),
who factored windspeed into directional components, and also used up to cubic terms
in temperature (the divisors 10 and 1000 being introduced into T2 and T3 to improve
numerical stability of the coefficients). Finally, the inclusion of the T.WSPD variable is
motived by the conclusion of Bloomfield et al. (1993) that there is a strong temperature-
windspeed interaction, though in their case the actual model is highly nonlinear (see Section
4) and it is open to question whether a single cross-product term, as here, will capture
that effect.

Table 2.3: Additional variables created from the data

WIND.U —WSPDx sin(2 x © x WDIR/360)
WIND.V —WSPDx cos(2 x © x WDIR,/360)
T2 (T-60)2/10

T3 (T-60) /1000

T.WSPD WSPD x (T-60)

In addition to the meteorological covariates, YEAR was used as a covariate (=1 for
1981, through to 11 for 1991), and two variables CDAY and SDAY, defined by

CDAY = cos(2 x = x DAY/365.25), SDAY =sin(2X 7 X DAY/365.25),

where DAY represents the day within the year (=1 for January 1, etc.). The inclusion of
CDAY and SDAY is intended to reflect the fact, also discussed by Bloomfield et al. (1993),
that there remains a residual seasonal effect even when the direct influence of season on
meteorology has been taken into account.

3. Exceedances of a single threshold

Suppose now we are concerned to model the probability, as a function of the covari-
ates, that the ozone on a specified day exceeds a specified threshold. For most of the
discussion that follows, the threshold will be taken as the ozone standard 120 ppb, though
the methodology applies to any high threshold and, especially in conjunction with the
analysis of exceesses over the threshold (Section 5), there can be advantages in adopting a
lower threshold so as to capture more data.

For the initial analysis we shall assume that separate days are independent. Such
an assumption is not unreasonable, because it is widely believed that persistence of high-
ozone conditions has more to do with persistence of meteorology than with the ozone itself.
Nevertheless, the independence assumption is not exactly satisfied, and further on we shall
describe ways to get around it. :
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Under this independence assumption, the likelihood for the data may be defined by
L=]pF(-p)""% (3.1)

where p; denotes the probability that the threshold is exceeded on day 7, and §; is an
indicator of whether the threshold is in fact exceeded on day 2 (6; = 1 if the threshold is

exceeded, 0 otherwise).

As a model for p;, we assume the familiar logit model:
bi _
log (1 - p.) = ziiB;, (3.2)
' J

where z;; is the value of the j’th covariate on day i and §; is the corresponding coefficient.
We always assume z;; = 1, i.e. there is always a constant term in the model, but the other

covariates are selected from those described in Section 2.

For a given set of covariates, estimation proceeds by maximum likelihood, i.e. choose
Bi, B2, ... to maximize L as defined by (3.1) and (3.2). In most of the examples in this
paper, this has been achieved using Fortran programs employing the DFPMIN (Davidon-
Fletcher-Powell variable metric function minimization) algorithm of Press et al. (1986),
Chapter 10, to minimize the objective function — log L. The algorithm was converted to '
double precision with EPS reset to 10—, and for most runs the convergence parameter
FTOL was taken as 10~% (the algorithm is taken to converge as soon as two consecu-
tive function evaluations are within FTOL). The algorithm requires first-order derivatives
of the objective function, as well as the function itself, but these have been adequately
approximated using simple first-order differences (9f/0z = {f(z + ¢) — f(z)}/6, where
we have taken § = 10~%). The other modification of the published DFPMIN algorithm
was to retain the HESSIN matrix as an argument of the function. This matrix contains
an approximation to the inverse of the Hessian matrix of — log L. In maximum likeli-
hood theory this is the observed information matrix, used as an approximation to the
variance-covariance matrix of the parameter estimates {B;, i =1,2,...}. In particular, the
square roots of its diagonal entries define approximate standard errors for the parameters.
However, it should be remembered that these standard errors are only an approximation
and that alternative methods of obtaining standard errors, for instance via jackknife or
bootstrap procedures, may well give better results. The procedure requires specification
of starting values, but it does not appear to be sensitive to these and even starting from
B; = 0 for all j produced convergence in all cases tried, though sometimes rather slowly
(504 iterations). The only other programming point that requires care is to guard against
exponential overflow; a trap was built into the function minimization routine to test for
this, the objective function being set equal to a very large number (10%?) if the test failed.

For this specific model, specialized programs are not in fact required as it is a well-
known model for which a number of packaged routines exist, for instance the glm command
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to fit generalized linear models in Splus, or the LOGISTIC procedure of SAS. Shreffler
(1993) successfully used the latter to obtain a very similar analysis of data from St. Louis,
Missouri. However, the more complicated models to be discussed in Section 5 do not fit
within the generalized linear models framework, and so do require specialized program-

ming.
Stepwise selection of variables

Although the maximization of the likelihood function is mechanical, given the covari-
ates, the process of deciding which covariates to include is not. The standard method of
doing this is a stepwise selection, in which the variables are introduced one at a time, the
minimized values of the negative log likelihood — log L, hereafter referred to as NLLH,
being used to decide which variables to introduce and when to stop. This is sometimes
combined with, or replaced by, a backward selection procedure, in which initially too many
variables are included, and the least significant ones are then dropped until all the remain-
ing variables are significant. As a test of significance, one widely used measure is the t ratio
defined as the value of the parameter divided by its standard error. As a rough guide, any
variable with a t ratio greater than 2 in absolute value is considered significant. However,
as mentioned above, the standard errors obtained from the function minimization routine
are only approximate, and so should not be used as the sole criterion for including or
excluding any variable. As an alternative to ¢ ratios, NLLH may be used directly. Here, a
suitable rule of thumb is that a variable is significant if its inclusion in the model reduces
the NLLH by more than 2. This is based on the approximate x? distribution for the
deviance statistic (twice the difference of NLLHs for the two models being compared). If
more than one variable is introduced at a time, then the x? distribution is replaced by x';’,
where ¢ is the number of new variables introduced.

As an indication of how these ideas are applied, we now go in detail through the
selection of variables for Station P, threshold 119.9 (the threshold was set slightly below
120 to ensure that a daily maximum of exactly 120 would be counted as an exceedance).
In other cases considered in this paper, a similar procedure was followed, though in most
cases, not in so much detail.

One other point to be noted is that there are certain combinations of variables which
do not make sense. For instance, it would not make sense to include either of CDAY or
SDAY without the other, since the relation between them depends on the quite arbitrary
decision to define DAY with respect to January 1, rather than any other fixed date of
the year. Similarly, WIND.U and WIND.V go together, but we do not include both
‘them and WSPD, since the latter is determined completely (albeit nonlinearly) by the
former. Also, we do not include the T.WSPD interaction term unless one of WSPD or the

WIND.U/WIND.V pair is present.

With these considerations in mind, the detailed analysis is as follows.

Step 1. Since YEAR can be considered as a trend variable, an initial analysis is made
using just YEAR as a covariate. This results in NLLH=221.740.
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Fig. 5.12: Simulation comparisons for network maxima
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Step 2. Various other variables were added to the model, in each case calculating
NLLH. For example, when CDAY and SDAY were added together, NLLH dropped to
168.680. Other tries were OPCOV (NLLH=210.587), PR (221.722), T (136.369), TD
(186.833), RH (202.383), Q (191.617), WSPD (206.610), WIND.U+WIND.V (220.636),
VIS (221.481). T is clearly the most significant, so it is added to the model.

The model therefore now contains variables YEAR, T and has NLLH=136.369.

Step 3. New variables added to model: CDAY+SDAY (133.455), OPCOV/(135.040),
PR (134.204), TD (132.040), RH (132.045), Q (130.936), WIND.U+WIND.V+T.WSPD
(123.821), WSPD+T.WSPD (123.369), VIS (136.250). The combination of variables
WSPD+T.WSPD gives the biggest reduction in NLLH and so is selected. The model
now contains variables YEAR, T, WSPD, T.WSPD and has NLLH=123.369.

Step 4. New variables: CDAY+SDAY (121.061), PR (122.925), OPCOV (122.076),
TD (118.505), RH (118.438), Q(117.019), VIS (122.861). Q selected. The model now
contains variables YEAR, T, Q, WSPD, T.WSPD and has NLLH=117.019.

Step 5. New variables: CDAY+SDAY (114.553), PR (117.018), OPCOV (116.936),
TD (115.536), RH (115.514), VIS (116.972). CDAY+SDAY selected. The model now
contains variables YEAR, CDAY, SDAY, T, Q, WSPD, T.WSPD and has NLLH=114.553.

Step 6. Once again PR (114.553), OPCOV (114.323), TD (113.382), RH (113.545)
VIS (114.485) were added to the model but it is clear that none of these is significant, so
they were not included.

Step 7. The model is now complete in terms of the original variables tried, but there
are still some additional models to be considered. All the current variables appear to be
significant — the only one with a ¢ ratio less than 2 in magnitude was SDAY (—0.9), but
as discussed above it would not make sense to drop SDAY and retain CDAY, while the
latter has a t ratio of —2.04, which clearly indicates it should be retained. However, we
still have not used T2 and T3. In fact, including T2 reduces the NLLH to 114.215 while
adding T3 as well creates no further reduction. Thus we do not include T2 and T3.

Step 8. So far, we are still modeling the days as independent. One way to improve on
that assumption is to include an additional variable PDAY, defined to be 1 if the previous
day is an exceedance (of the same threshold) and 0 otherwise. If the previous day is
missing, this variable is simply omitted. Although this can be incorporated with minimal
change in the software used to fit the model, the actual effect is to turn the model from
independent observations into a first-order Markov chain — of which, more will be said
in Section 5. In this case, adding PDAY reduces NLLH to 112.729, indicating that this
variable is borderline significant. However, adding another variable PDAY2 (=1 if the
previous day but one was an exceedance, otherwise 0) does not have any further effect
(NLLH=112.618), indicating that the first-order Markov chain is adequate.
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Step 9. A final step, considering that a major purpose of this whole analysis is to
determine the significance of the YEAR variable in the presence of the meteorological
factors, is to repeat the most important analyses without YEAR. For the model of Step 7,
if YEAR is omitted, NLLH rises from 114.553 to 117.503. For the model of Step 8, it goes
from 112.729 to 115.451. Either way, YEAR is still significant.

- The two principal models that have been identified (with and without PDAY) are
summarized in Tables 3.1 and 3.2.

Table 3.1: Station P, threshold 119.9 (NLLH=114.553)

Variable Estimate Stand. error t Ratio
CONST —38.58 4.837 —-7.977
YEAR -.1574 .06184 —2.545
CDAY —2.995 1.471 —-2.036
SDAY —.4992 5331 —.9364
T 4476 .05628 7.954

Q —.2166 .06017 —3.599
WSPD .4800 1781 2.695

T.WSPD —.03308 .006211 —5.326

Table 3.2: Station P including PDAY, threshold 119.9 (NLLH=112.729)

Variable Estimate Stand. error t Ratio
CONST —36.66 5.142 -7.13
YEAR —.1548 .06739 —-2.297
CDAY —2.857 1.557 —1.835
SDAY —-.5030 .6109 —.8233
PDAY 1.044 5261 1.984
T 4248 .05992 7.089
Q —-.215 .06278 -3.424
WSPD 4402 1872 2.351
T.WSPD —.03144 .006639 —4.735

Similar analysis is applied to Station Q and Station R. The resulting models are the
following. Note that T2 is included among the variables for station Q. In neither of these
cases was PDAY significant.
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Fig. 5.10: Network maxima exceedances, dependent model
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Table 3.3: Station Q, threshold 119.9 (NLLH=99.317)

Variable Estimate Stand. error t Ratio
CONST —-171.2 46.05 -3.72
YEAR —0.09339 0.0699 -1.34
T 2.256 0.6182 3.65
WIND.U 0.02198 0.09156 0.24
WIND.V 0.05041 0.09536 0.53
T2 —0.3335 0.1056 -3.16
T.WSPD —0.02139 0.005378 —-3.98
Table 3.4: Station R, threshold 119.9 (NLLH=67.524)

Variable Estimate Stand. error t Ratio
CONST —25.76 3.637 —7.083
YEAR —.3851 .1614 —-2.385
T .2846 .04539 6.270
PR .1660 .06312 2.623
WIND.U .2024 .09925 2.040
WIND.V —.1822 .08821 , —2.066
T.WSPD —.01382 .006699 —-2.063

If the variable YEAR is omitted, then NLLH rises to 100.359 in the case of station Q
and 70.166 for station R. This is still significant in the case of station R, but for station
Q, whether judged from the ¢ ratio or by the increase in NLLH, the trend does not appear
to be significant.

One possible disadvantage of this analysis is that the actual number of exceedances
(41, 38 and 23 respectively for stations P, Q and R), although in excess of the standard,
is still rather small for making a definitive assessment of the trend in the light of so many
covariates. We therefore consider also an analysis based on threshold 100, for which there
are far more exceedances (94, 84 and 55). As we shall see in Section 5, it is still possible
to construct estimates of the probability of exceeding the level 120 (or any higher level)
by combining these results with models for the excesses over a threshold.

Tables 3.5, 3.6 and 3.7 show the results of the best model, after repeating the entire
process of variable selection, for each of the three stations.

11
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Variable

CONST
YEAR
CDAY
SDAY
PDAY

T

TD

Q
WIND.U
WIND.V
VIS
T.WSPD

Variable

CONST
YEAR
CDAY

- SDAY

PDAY
T

TD

Q
WIND.U
WIND.V
T.WSPD

Estimate

—28.99
—0.08892
—-1.572
—0.2333
1.192
0.3058
0.1805
—0.6315
0.06596
0.07411
—0.05836
—0.02171

Estimate

—34.84
—0.01963
~1.717
~0.4778
1178
0.3056
0.2692
—0.7543
0.06855
0.1563
—0.02176

Stand. error

3.684
0.0432
0.719
0.317
0.3201
0.02899
0.09277
0.2178
0.04931
0.05648
0.02333
0.003469

Stand. error

4.917
0.04365
0.8759
0.3835
0.3648
0.0327
0.1179
0.2675
0.05627
0.063
0.003745

12

Table 3.5: Station P, threshold 99.9 (NLLH=220.315)

t Ratio

—7.87
—2.06
-2.19
-0.74
3.72
10.55
1.95
-2.90
1.34
1.31
—2.50
—6.26

Table 3.6: Station Q, threshold 99.9 (NLLH=205.190)

t Ratio

—7.08
—0.45
—1.96
-1.25
3.23
9.35
2.28
—2.82
1.22
2.48
-5.81
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Variable ~ Estimate Stand. error t Ratio
CONST —68.16 13.8 —4.94
YEAR —0.184 0.1278 —1.44
T 0.8645 0.1639 5.27
RH 0.2951 0.07919 3.73

Q —-1.344 0.3067 —4.38
WIND.U 0.08165 0.07059 1.16
WIND.V —0.1845 0.07138 —2.58
VIS —0.09188 0.03728 —2.46
T.WSPD —-0.01191 0.00487 —2.45

Table 3.7: Station R, threshold 99.9 (NLLH=106.066)

If the variable YEAR is dropped, then the NLLH rises to 222.289, 205.289 and 107.202
respectively for stations P, Q and R. This is still significant in the case of P (just!), but still
not significant for Q and also no longer significant for R. There is thus some suggestion
that it is harder to establish significant trends when the threshold is lowered. We shall
return to this point later (Section 5).

One more issue is whether a linear trend is adequate — for instance, should we be
using a quadratic trend? This can be tested by adding a new variable YEAR2, defined as
the square of YEAR, and repeating the above analysis. In only one of the cases considered
so far was this found to be significant, namely for station P at threshold 119.9, but in view
of its importance for later discussion, we give the full result here:

Table 3.8: Station P including YEAR2, threshold 119.9 (NLLH=110.410)

Variable Estimate Stand. error t Ratio
CONST —41.45 : 5.274 —7.86
YEAR .7496 .3505 2.14
YEAR2 —.0782 .02997 —-2.61
CDAY -3.07 1.576 -1.95
SDAY —.4892 .6051 -.81

T 461 .05928 7.78

Q —-.2318 .06393 -3.63
WSPD .468 .1859 2.52
T.WSPD —.03463 .006423 -5.39
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Comparison with a Poisson process formulation

Shively (1991) approached exactly the same problem, but using slightly different me-
teorological variables and data from Houston instead of Chicago, from a Poisson process
viewpoint. This was apparently motivated by the procedure in Smith (1989), which itself
was motivated by the fact that much of the modern probabilistic theory of extremes (Lead-
better et al. 1983, Resnick 1987) uses point process formulations as the most natural way
of looking at the exceedances of a high level. Indeed, this approach unifies the different
approaches towards the limit theorems of extreme value theory.

A nonhomogeneous Poisson process on (0,00) with intensity function A(t), t > 0,
is defined by the property that the probability of an “event” (in the present context, an
exceedance of the threshold) in a short time interval (¢, + 6t) is of the form A(t)6t + o(8t),
the probability of more than one such event being o(ét), and such events are independent
over different time intervals. For such a process, the number of events observed in any
finite time interval, (¢;,%2) say, has a Poisson distribution with mean

/t @)

The intuitive reason why we might expect such a process to be relevant to high-level
exceedances of ozone stems from the fact that exceedances are “rare events” (at least,
they are if the threshold is high enough), and if we also assume that the independence
assumption is at least approximately satisfied, then a nonhomogenous Poisson process is
the natural model which results. :

Suppose now we have such a process with intensity function A(t; §) depending on an
unknown parameter vector 3. Suppose we observe the process on an interval (0,7) and in
that time observe N events (a random number) at times T, ...,Tn. The likelihood function
to be maximized is given by

N T
L= H/\(Te;ﬁ) - exp {—/0 At; ﬂ)dt} (3:3)

For a careful but non-measure-theoretic derivation of this, see Section 3.3 of Cox & Lewis
(1966). A modern and mathematically rigorous treatment of inference from point process
is the book by Karr (1986).

Shively (1991) modeled the dependence on the covariates through a logarithmic link

function of the form
log A(t; 8) = Y ziBj, (34)
J

where z,; is the value of the j 'th covariate at time ¢. Using a discrete approximation to
the integral in (3.3), he was then able to define a likelihood function for the parameters
Bj, 1 =1,2,..., and so to obtain maximum likelihood estimates.
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Fig. 5.6: Station Q exceedances over several levels
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An alternative viewpoint on this approach, however, is to note that the nonhomo-
geneous Poisson process, with each of the covariates being defined on a daily basis, is
equivalent to assuming that the number of exceedance on day i, for each ¢ within the
observed period, has a Poisson distribution with mean A;, which we may write, imitating
(3.4), in the form

log \i = Y xijB;. (3.5)
J

If 6; denotes the observed number of exceedances on day i, then the likelihood is propor-
tional to

L= H/\f‘e_)“. (3.6)

Of course, in reality &; will only be 0 or 1, since we are applying these ideas to the daily
maxima.

Comparing the likelihood defined by equations (3.1) and (3.2) with that defined by
(3.5) and (3.6), the difference is seen to be the following: defining A; = Y3 zijP;, the
component of the likelihood arising from day ¢ in the binomial model is

eA.' &

1+ edi’

whereas that arising in the Poisson model is
exp(Aib; — eA‘).

Thus, going from the binomial model to the Poisson model amounts to replacing 1 + e
by exp(e4). This will make little difference if p; or A; are uniformly small, i.e. if we are
genuinely in the situation where we might expect the Poisson and binomial distributions
to be indistinguishable, but otherwise the two models could produce substantially different
results.

‘To make a comparison between the two kinds of model, each of the models in Tables
3.1-3.7 was refitted, both with and without the YEAR variable, under this alternative Pois-
son assumption. The results are summarized in Table 3.9. Note that the model selection
process was not repeated, though it is possible that the optimum choice of variables under
the Poisson model will be different from that under the binomial model. The results do
not change any of our broad conclusions about the significance of YEAR, but quite a few
of the individual parameter estimates and their levels of significance were changed under
the new model. Table 3.10 gives one instance of this, in which the complete results for the
model of Table 3.2 are repeated under the Poisson assumption.
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Table 3.9: Neg. log. likelihoods under Poisson model

Model of Table NLLH with YEAR NLLH without YEAR
3.1 122.979 125.788

3.2 122.487 125.181

3.3 105.784 106.446

3.4 71.571 74.118

3.5 248.234 249.952

3.6 226.114 226.276

3.7 133.627 134.319

Table 3.10: Model of Table 3.2, under Poisson assumption

Variable Estimate Stand. error t Ratio
CONST —28.11 5.443 -5.17
YEAR —0.1405 0.06103 —2.30
CDAY —2.241 1.311 -1.71
SDAY —0.4288 0.5317 —0.81
PDAY 0.4277 0.4212 1.01

T 0.3157 0.06302 5.01

Q —0.1535 0.05165 —-2.97
WSPD 0.2571 0.3325 0.77
T.WSPD —0.02072 - 0.0118 - ‘ —1.76

These results suggest that the comparability between the binomial and Poisson models
is not as good as had been previously supposed. The binomial model is preferred, both
on the reported NLLH values and because it more directly reflects the nature of the data,
being based on daily maxima so that by definition there is no more than one exceedance
per day. The reason for the difference between the models would seem to be that the p;
or )\; are not uniformly small. There are some days when the weather will be conducive
to a high ozone level and for these days the difference between the Poisson and binomial
distributions is important.

For this reason, we do not pursue the Poisson model any further in the present paper,

though in order to establish a firm framework for future studies of the same nature, it
would seem to be important to continue to consider both approaches.
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Analysis of network maxima

As explained in Section 2, we have also considered model fits to a data file of network
maxima constructed from a subset of 16 ozone stations (April-October only), using a
median polish technique to interpolate missing values (Bloomfield et al. 1993, Section
6.6). The same analysis was applied to these data, using a threshold 119.9. The best
model found is given in Table 3.11. Note that YEAR, YEAR2 and PDAY are all included
in this analysis and all appear significant as judged by the standard errors.

Table 3.11: Network maxima, threshold 119.9

Variable Estimate Stand. error t Ratio
CONST —22.9 2.357 -9.72
YEAR .3416 .1632 2.09
YEAR2 —.04268 .01395 -3.06
CDAY —.8855 .7036 —1.26
SDAY .5628 2011 1.93
PDAY .6829 - .2736 2.50
T .2928 .02747 10.66
RH —.01799 .01058 -1.70
WIND.U —.03688 .04011 -.92
WIND.V —.1887 .0449 —4.20
VIS —.06959 .02065 -3.37
T.WSPD —.01945 .002992 —6.50

As a comparison of different models, Table 3.12 gives the NLLH values for six models
in which PDAY is either present or absent, and there is no trend, a linear trend (YEAR)
or a quadratic trend (YEAR and YEAR?2).

Table 3.12: Network maxima, threshold 119.9
Comparison of models using NLLH

Trend/PDAY No Yes

None 319.299 313.211
Linear 309.023 305.025
Quadratic 302.984 299.934

Table 3.12 reinforces the conclusion that YEAR, YEAR2 and PDAY are all significant.
However, adding PDAY?2 did not improve the fit.

Our results up to this point reinforce the overall conclusion that there has been a
downward trend in the rate of ozone exceedances, after accounting for meteorological
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effects, during the period of study. In the two cases (station P and the network maxima)
where we found evidence of a quadratic trend, the fitted model supports a slight increase
in ozone levels up to 1984 or 1985, followed by a decrease in the subsequent years.

Predictive assessment of model fit

An important part of any statistical modeling is to be able to assess the fit of the
model adopted. In the case of continuous data, there are a number of approaches, both
informal ones such as graphical plots of residuals, and more formal procedures such as the
Kolmogorov-Smirnov and Cramer-von Mises tests, which are widely used. For inhomoge-
neous binary data, such as we have here, these approaches are not so easily applied.

Nevertheless, there is an extensive literature of the subject of probability forecasting,
well exemplified by the references Dawid (1982, 1984, 1986), DeGroot & Fienberg (1983)
and Seillier-Moiseiwitsch & Dawid (1993). The usual paradigm is weather forecasting.
Each day, a forecaster quotes the percentage probability of rainfall, in practice invariably
expressed to the nearest 10%. After many days, we are able to compare the sequence of
forecasts with the sequence of binary variables representing the observation of whether or
not it rained on each day. How should we assess how well the forecaster is performing?

One criterion is that the forecaster should be well-calibrated. This means that ob-
served frequencies should be close to forecast probabilities. For example, if we were to look
at all the days on which the forecaster had quoted a 30% chance of rain, then the actual
frequency of rain on those days should be close to 30%.

However, being well-calibrated is not enough to make a good forecaster. For example,
a forecaster could be perfectly calibrated by making exactly the same forecast every day.
If this forecast probability matched the true long-run probability of rainfall, then the
forecaster would indeed be well calibrated, but of course such a forecast would be entirely
useless in practice.

A second criterion is resolution (also called refinement). This is a measure of how
well the forecaster discriminates. A forecaster who always quoted the probability of rain
as either 0 or 1 would have maximum resolution, while one who always quoted the same
probability would have the minimum.

It is not too difficult to measure how well a forecaster is calibrated. Chi-squared
goodness of fit statistics can be constructed based on groupings of forecast values, and
we shall give examples of this below. The main technical difficulty associated with this
method is the justification of an asymptotic chi-squared distribution when the forecasts
are sequential and possibly dependent on past data. However, much is now known about
this problem, cf. Seillier-Moiseiwitsch & Dawid (1993).

Resolution is much harder to measure. Dawid (1982, 1986) argued that a criterion
for a forecaster to be both well-calibrated and to have good resolution should be that her
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forecasts remain well-calibrated when restricted to any subsequence of the data, subject
to a selection rule that requires the decision whether or not to include a particular day in
the subsequence should depend only on the information available to the forecaster herself,
which in most cases means the data available from previous days. DeGroot & Fienberg
defined rules for comparing two forecasters in terms of whether one was more refined than
the other. It is not so easy, however, to construct specific tests based on these concepts.

An older idea is that of scoring rules. A scoring rule is simply a measure or score
of how well a forecaster is performing. There are a number of such rules known, but
the best known are the Brier scoring rule Y (a; — p;)?> and the logarithmic scoring rule
S {—ailogp; — (1 —a;)log(1l — p;)}. Here a; is the observed value (0 or 1) on day . These
are both proper scoring rules, which have the property that if there is such a thing as a
“true model” generating the data, then the minimum score will be achieved by quoting
the probabilities given by that model.

In the context of the present study, prediction of ozone exceedances is not one of
our primary aims. We are much more concerned with long-term issues such as whether
there is a trend in the data or whether a particular year such as 1988 represents unusual
conditions when judged against long-term climatology. Nevertheless, the models that have
been used in this section are very much of a predictive nature, since they allow us to
quote a “probability of exceedance” based on current weather conditions and (if PDAY
is included) past ozone exceedances. Therefore, we can use ideas from the probability
forecasting literature to assess their goodness of fit. In the models with PDAY, this is a
genuinely sequential problem, so we do need the recent theory of sequential tests developed

by Dawid (1984) and Seillier-Moiseiwitsch & Dawid (1993).

There is, however, one further complication in applying these ideas here. The litera-
ture we have described is concerned with an “honest” forecasting procedure in which the
forecast for day : depends only on data observed preceding day :. This is not the case if
we are considering a parametric model whose parameters have been estimated from the
whole data set. The issue is similar to the familiar one in goodness of fit testing, that
tests constructed on the assumption that the model is known are not valid without some
adjustment if the model depends on parameters which are estimated from the data.

One version of this problem has been considered by Seillier-Moiseiwitsch (1993) for
the case of a linear logistic model. She considers a procedure in which, before making a
forecast for day 7, the parameters of the model are re-estimated based on all the data up to
time 7 — 1. Under this set up, the asymptotic properties of the procedure are identical to
those of a sequential forecasting scheme as in Seillier-Moiseiwitsch & Dawid (1993). The
difference between the two papers is that the analysis of Seillier-Moiseiwitsch & Dawid
(1993) is based on the null hypothesis that the sequential forecasting scheme is indeed
the exact model that generated the data, whereas Seillier-Moiseiwitsch (1993) assumes
that the parametric model is correct and makes explicit allowance for the fact that the
parameters at each stage are estimated.
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In the present context, it is not practicable to update the model after every obser-
vations but we have employed a variant which seems to achieve the same effect: for each
year, the model was refitted to the data omitting that year and then used to produce prob-
ability forecasts for the year. All the resulting forecasts were then combined to assess how
well they performed on the observed data on threshold exceedances. Thus the analysis is
honest in the sense that no forecast probability of exceedance depends on the exceedance
itself, or on nearby correlated values.

As an example of these ideas, Table 3.13 is concerned with the calibration of proba-
bility forecasts produced by the model of Table 3.1. This table is very similar to Table 1 of
Seillier-Moiseiwitsch & Dawid (1993). Each row of the data represents a specific interval of
forecast probabilities, denoted (Pmin, Pmaz]- The frequency n denotes the number of days
for which the forecast lay in that interval, and r is the observed number of exceedances
based on forecasts within the interval. The next value e is the expected number of ex-
ceedances Y. pi I(Pmin < Pi < Pmaz) and w is its variance S pi(1 = pi) I(Pmin < pi <
Pmaz ), under the assumption that the p; do indeed represent true forecast probabilities.
The final column gives the test statistic z = (r — e)//w. In large samples, these will have
approximately standard normal distributions, independent for non-overlapping probability
intervals. The main difference from Seillier-Moiseiwitsch & Dawid (1993) is that we have
used unequal probability intervals to reflect the fact that the forecast probabilities are
heavily weighted towards 0. Finally, the last row of Table 3.13 gives an overall assessment
of calibration by combining the intervals together.

Table 3.13: Calibration of probability forecasts
Station P, threshold 119.9, linear trend without PDAY

DPmin DPmaz n r e w z
0.000 0.050 3210 9 8.602 8.406 0.137
0.050 0.100 76 2 5.508 5.095 —1.554
0.100 0.300 72 17 11.182 9.302 1.908
0.300 0.500 20 9 8.042 4.723 0.441
0.500 1.000 14 4 9.084 3.091 —2.892
0.000 1.000 3392 41 42.418 30.617 —0.256

Considering the z values in the last column, it can be seen that there is some indication
of significant values in the third and fifth rows. Computing } 2? based on the first 5 rows,
we obtain 14.63, which is significant against the xZ null distribution (5% point 11.07, 1%
point 15.09). Thus there is some indication that the model is not well calibrated.

The same calculation has been repeated for the models with no trend, a quadratic
trend, and a linear trend including PDAY. The overall pattern of results was similar the

Table 3.13 in each case, but the values of Y 22 were respectively 3.35, 14.27 and 7.62.
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Thus it seems, contrary to our earlier evidence, that the model with no trend is the best
calibrated amongst these four, but also that the model with linear trend and PDAY passes
the test. For the moment we treat these result cautiously since it is not at all clear how
sensitive a test this is (for example, we do not know how sensitive it is to the grouping
intervals). The other values for the overall z value (last row) are 0.137, —0.090 and —0.245,
none of them remotely significant.

A second way of classifying the data is by year. Table 3.14 shows a table constructed
similarly to Table 3.13 but where the rows represent individual years of data. Recall that
each year’s entry is based on a model fit excluding that year’s data. The z values suggest
that the model significantly underpredicted in 1988, and (surprisingly) overpredicted in
1991. The other clear feature of the z values is that they go from negative to positive and
back to negative — it was in fact this feature which induced us to consider the quadratic
trend.

Table 3.14: Calibration of probability forecasts by year
Station P, threshold 119.9, linear trend without PDAY

Year n r e w z

1981 268 2 2.775 2.022 —0.545
1982 280 1 3.274 2.754 -1.370
1983 307 7 10.209 6.164 —1.293
1984 329 4 2.507 2.320 0.980
1985 324 3 1.648 1.553 1.085
1986 324 2 1.690 1.588 0.246
1987 323 6 3.130 2.791 1.718
1988 328 14 8.466 5.293 2.406
1989 331 1 2.726 2.095 . -1.193
1990 317 0 0.677 0.653 —0.838
1991 261 1 5.316 3.384 —2.346

Table 3.15-3.17 show the corresponding results for no trend and for the quadratic
trend without PDAY, and for the linear trend with PDAY. For no trend (Table 3.15), the
individual z values again do not look too bad, except for 1991, but there is a clear trend.
Except for 1982, the z values are all positive at the beginning and negative at the end,
and this reinforces the fact that we really do need a model with trend to fit these data
adequately. For the quadratic trend (Table 3.16), there is no evident trend and the only
apparently significant z value is the first (1981), though since this is based on a very small
expected number of exceedances it should probably not be taken too seriously. Finally,
the linear trend with PDAY (Table 3.17) shows similar results to Table 3.14 but generally
a slightly better fit — in particular, the z values for 1988 and 1991, though still the largest

two in absolute value, are reduced compared with Table 3.14.
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Year

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

Year

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

Table 3.15: Calibration of probability forecasts by year

Station P, threshold 119.9, no trend, no PDAY

268
280
307
329
324
324
323
328
331
317
261

r

HO O =N

e

1.400
1.664
6.168
1.941
1.483
1.766
3.851
9.974
3.821
1.292
6.891

w

1.199
1.531
4.447
1.832
1.410
1.664
3.375
6.258
2.812
1.219
4.226

0.548
—0.537
0.395
1.521
1.278
0.181
1.170
1.609
—1.682
-1.170
—2.866

Table 3.16: Calibration of probability forecasts by year
Station P, threshold 119.9, quadratic trend without PDAY

n

268
280
307
329
324
324
323
328
331
317
261

— O ODN WK ~JHN

<

e

0.509
1.842
10.833
3.390
2.727
3.020
4.862
10.168
2.573
0.287
1.276

22

w

0.473
1.635
6.054
3.050
2.469
2.697
4.047
5.760
1.833
0.282
1.062

z

2.168
—0.659"
—1.558
0.349
0.174
—0.621
0.566
1.597
~1.162
—0.541
—0.268
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Table 3.17: Calibration of probability forecasts by year
Station P, threshold 119.9, linear trend with PDAY

Year n r e w z

1981 268 2 2.514 1.932 —0.370
1982 280 1 3.088 2.664 -1.279
1983 307 7 10.079 5.494 -1.314
1984 329 4 2.653 2.390 0.871
1985 324 3 1.903 1.734 0.833
1986 324 2 1.604 1.519 0.321
1987 323 6 3.085 2.755 1.756
1988 328 14 9.589 5.481 1.884
1989 331 1 2.398 1.971 —0.996
1990 317 0 0.632 0.613 —0.807
1991 261 1 4.792 3.180 -=2.127

Finally, we consider the Brier scores. For the four models of Tables 3.14-3.17, the
Brier scores are 33.95 (0.97), 34.63 (1.00), 31.50 (0.55) and 34.36 (1.15). Here the figures
in parentheses are z values for the Brier scores, corresponding to the quantity called Y;2 in
Seillier-Moiseiwitsch & Dawid (1993), page 359. None of these values are significant, but
on the other hand this is just another measure of calibration. Of more interest than the
z value is the Brier score itself, and we note again that the model with no trend appears
to do better than either of the models with a linear trend, but from this point of view the
quadratic trend model really does perform the best of the four.

Now let us consider the same analysis based on network maxima. For the best model
we found (quadratic trend including PDAY), the calibration results are summarized in
Tables 3.18 and 3.19. In Table 3.18, the forecast probabilities have been classified into
a greater number of intervals to reflect the greater number of exceedances. The only z
value to look remotely significant is that for the first row, but the overall value of 3 22
(9.51) is clearly not significant against its nominal x?, distribution. Table 3.19 is a little
more disturbing since the model has clearly overpredicted the exceedances for 1989 and
greatly underpredicted for 1991, though for the most important years, 1983 and 1988,
the agreement of observed and predicted numbers of exceedances is remarkably good.
The underprediction for 1991 should make us cautious about extrapolations based on
the quadratic trend, especially when contrasted with the overprediction for 1991 that we
observed in Table 3.14 when using a linear trend for station P.
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Table 3.18: Calibration of probability forecasts
Network maxima, threshold 119.9, quadratic trend with PDAY

Pmin Pmaz n r € w z

0.000 0.025 1660 13 7.724 7.621 1.911
0.025 0.050 182 10 6.574 6.327 1.362
0.050 0.075 102 3 6.282 5.890 —-1.352
0.075 0.100 65 G _ 5.640 5.147 —0.282
0.100 0.200 132 18 18.949 16.131 —-0.236
0.200 0.300 70 21 17.692 13.161 0.912
0.300 0.400 45 15 15.832 10.227 —0.260
0.400 0.500 28 11 12.629 6.913 —0.620
0.500 - 0.750 46 26 28.813 10.551 —0.866
0.750 1.000 24 21 20.889 2.614 0.069
0.000 1.000 2354 143 141.024 84.581 0.215

Table 3.19: Calibration of probability forecasts by year
Network maxima, threshold 119.9, quadratic trend with PDAY

Year n r e w z

1981 214 8 11.119 7.642 -1.128
1982 214 11 11.129 7.847 —0.046
1983 214 26 28.326 12.358 —0.662
1984 214 18 12.870 8.695 1.740
1985 214 13 - 8.398 6.597 1.792
1986 214 9 10.058 7.907 —-0.376
1987 214 18 19.274 10.312 -0.397
1988 214 24 23.433 11.509 0.167
1989 214 3 11.909 7.750 -3.200
1990 214 3 2.207 2.026 0.557
1991 214 10 2.301 1.938 - 5.530

This analysis was repeated for all six models in Table 3.12, and in all six cases the
basic calibration table was similar to Table 3.18, with no significant discrepancies. For the

" analysis by year, the model with no trend showed a distinct pattern of z values similar
to that for station P, with a significant underprediction of exceedances in 1984 and 1985
and a significant overprediction in 1989 and 1991. The model with linear trend again
showed a pattern of negative z values at the beginning, then positive, and then negative
again, with the most significant z values being —2.823 (1981), 2.546 (1984), 2.886 (1985)
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year are based on refitting the model to the rest of the data with that year omitted, and
using the refitted model to determine the expected number of exceedances in that year.

Figure 5.6 Same as Figure 5.5, for station Q with no-trend and linear-trend model
fits.

Figure 5.7 Same as Figure 5.5, for station R with no-trend and linear-trend model fits.

Figure 5.8 Same as Figure 5.5, for network maxima fitted to threshold 119.9, with
no-trend, linear-trend and quadratic-trend model fits.

Figure 5.9 Same as Figure 5.5, for station P with model fits based on the dependent
model with linear trends in both the probability of exceedance and excess value compo-
nents.

Figure 5.10 Same as Figure 5.8, for network maxima with model fits based on the
dependent model with linear trends in both the probability of exceedance and excess value
components.

Figure 5.11 Simulations of the final (dependent) model for station P. Shown is a plot
of all values over 120, plotted against day from 1/1/81, for the real data (top left plot)
and five independent simulations.

Figure 5.12 Same as Figure 5.11, but for network maxima and the corresponding fitted
model.

Figure 7.1 Expected exceedances for four thresholds in each year from 1959 (year 1) to
1991 (year 33). The calculations use actual meteorological data and predicted exceedances
according to the model. The model in this case is the one fitted to network maxima
assuming independent days, but refitted without any trend component.

Figure 7.2 Same as Figure 7.1, but using the model fitted to Station P.

Figure 8.1 Probability plots for normalized residuals for sums of excesses over the
threshold uy =60, station P, based on stepwise selection of covariates. Four models: (a)
exponential distribution, (b) GPD, (c) exponential distribution with power transformation,
(d) TGPD.

Figure 8.2 Same as Figure 8.1, but relative to uo = 80.

Figure 8.3 Same as Figure 8.1 for station R.

Figure 8.4 Same as Figure 8.2 for station R.
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and —3.192 (1989). These results are all for models including PDAY; the results without
PDAY showed identical patterns in each of the three cases, but generally more extreme 2
values. Finally, the Brier scores and associated z values were:

No trend, no PDAY 94.82 (0.52)
No trend, include PDAY 92.54 (0.52)
Linear trend, no Pday 93.28 (0.40)
Linear trend, include PDAY 91.63 (0.40)
Quadratic trend, no PDAY 90.81 (0.75)
Quadratic trend, include PDAY 89.67 (0.86)

These results confirm the pattern that the model improves with increasing order of
trend, and is better including PDAY than omitting it.

The logarithmic scoring rule has also been considered, but does not seem to produce
satisfactory results. Seillier-Moiseiwitsch & Dawid (1993) comment on the difficulty of
applying this rule when many of the forecasts are near 0 or 1. Our situation is better than
theirs, since we are not obliged to deal with probabilities rounded to the nearest 0.1, but
nevertheless we suspect that the results are highly sensitive to a few forecast probabilities
very close to 0 or 1.

In Figure 3.1, we have shown the observed numbers of exceedances for station P
together with the expected exceedances under each of the models with no trend, linear
trend and quadratic trend. Figure 3.2 shows the same thing for the network maxima. To
avoid the picture becoming too cluttered, we have shown only the models without PDAY
in the case of station P, and only the models with PDAY in the case of annual maxima.

4. Comparison with the nonlinear regression approach

A natural question is how the preceding analysis ties in with the nonlinear regression
approach of Bloomfield et al. (1993). The purpose of this section is to investigate that.

Bloomfield et al. (1993) constructed weighted averages of ozone over a set of the
monitoring stations, and then fitted a nonlinear regression model. The model used in this
section does not correspond exactly to theirs: we have used a slightly different parametriza-
tion to improve numerical stability, and have not included all the variables they did. For
example, we have not included any lagged meteorological variables in our approach, and
with some of the ones that are common to the two models, our definition differs slightly
from theirs, for example, by being based on noon values rather than daily averages or
maxima. An additional feature is that, in view of earlier results, we have included the
possibility of a quadratic trend (not just linear). The model as we consider it is as follows:
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Figure Captions

Figure 2.1 Locations of 43 monitoring stations around Chicago. The three specific
stations identified for this study have been marked with the letters P, Q and R.

Figure 3.1 Number of exceedances per year over threshold 119.9 for Station P. Actual
(observed) counts denoted by solid points; model fits by solid and broken lines.

Figure 3.2 Same as Figure 3.1, but for network maxima.

Figure 4.1 Same as Figure 3.1, but using four examples of nonlinear fits. The solid line
represents a least squares fit to the whole data, analogous to the method of Bloomfield et
al. (1993). The three broken lines represent models refitted to the binary data consisting of
excesses over the threshold, using the probit model with linear trend and the logit models
with both linear and quadratic trend.

Figure 4.2 Same as Figure 4.1, but for network maxima.

Figure 4.3 Illustration of instability in the model of Table 4.4. The same model
was refitted to the same data starting from the previous fit. The result was a reduction
in negative log likelihood of just 0.002, but with substantial changes in the individual
parameter estimates. In this plot, the ratios of all 18 parameter estimates for the two fits
are plotted.

Figure 4.4 Same pair of models as Figure 4.3, but the forecast probabilities of exceeding
the threshold, under the two models, for each of the 2354 days in the data set, are plotted
against each other. The plotted points lie almost exactly on the straight line of unit slope
through the origin; maximum discrepancy 0.002. We conclude that, although the two
model fits differ substantially in their parameter values, they are 1ndlst1ngmshable in their
predictive performance

Figure 5.1 Probability plot of normalized residuals for excesses over threshold 99.9 for
station P. Four models: (a) exponential distribution, (b) GPD, (c) exponential distribution
with power transformation, (d) TGPD.

Figure 5.2 Same as Figure 5.1, but for station Q.

Figure 5.3 Same as Figure 5.1, but for station R.

Figure 5.4 Same as Figure 5.1, but for network maxima and threshold 119.9.

Figure 5.5 Observed (solid points) and predicted (solid and dotted lines) numbers
of exceedances of four levels, based on the logit models with no trend and with quadratic
trend, for the threshold crossing probabilities and the GPD for excesses, fitted with respect

to threshold 99.9 assuming independence of daily values. The predicted values for each
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Here we are following the convention of letting lower-case italic letters denote param-
eters, while upper case Roman letters are the covariates, defined as in Section 2. Although
Bloomfield et al. proposed this model for weighted averages of ozone, it seems reasonable
that it would apply to ozone from a single station as well. The main feature of the model is
the complicated interaction term between temperature and windspeed, intended to reflect
the facts that (a) ozone is a nonlinear function of temperature, the slope increasing as tem-
perature rises, (b) high winds tend to nullify the effect of temperature. In addition, there
are multiplicative terms reflecting the influence of the other meteorological variables, and
additive terms reflecting seasonal effects. This form of model was determined by Bloom-
field et al. after extensive initial examination of the data, and subsequently confirmed to
be a suitable fit.

For this section we consider the network maxima first, and fit the model (4.1) to the
data set, by nonlinear least squares assuming the random errors to be independent normal
with mean 0 and variance o?. Also, initially we assume just a linear trend (y = 0). This
produces the parameter estlmates shown in Table 4.1. In this and subsequent models fits,
we quote the logarithm of the scale parameter, log ¢ in place of ¢, as this has again been
found to improve numerical stability. The results are comparable to Table 9 of Bloomfield
et al. (1993) — although using slightly different covariates from theirs, there is not much
difference in the overall R? (.64 as against their .67).
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Table 4.1: Nonlinear regression model of (4.1),
Normal errors, fitted to all network maxima

Parameter Estimate Stand. error t Ratio
my 56.38 2.888 19.52
my 13.28 1.6 8.30

t1 2.003 0.154 13.00
to 63.31 6.141 10.31
ts -0.1989 0.221 -0.90
Vp 21.87 2.239 9.76

r -2.933 0.4282 -6.85
0p -0.8051 0.171 -4.71
v -9.19 0.8704 -10.56
my, -3.268 1.45 -2.25
My -3.013 1.519 -1.98
1 -0.1317 0.01566 -8.41
a; -5.53 2.289 -2.42
by 6.715 0.9121 7.36
az -1.443 : 1.115 -1.29
b, 0.3204 0.9041 0.35
logo 2.788 0.01471 189.50

A natural question to ask is to what extent this model adequately represents the
probability of crossing a high threshold. To study this, first let us rewrite equation (4.1)
in the form

03(¢) = f(zi;8) + Zi, - (4.2)

where O;3(7) represents observed daily maximum ozone on day ¢, z; is the vector of covari-
ates on day z, § is the vector of unknown parameters in (4.1), and the Z; are assumed
independent N(0,02). Then the probability p; of exceeding a high threshold u, on day i,

is given by
u — f(zi; B)
pi = 1-¢ p s (4.3)

where ® is the standard normal distribution function. The likelihood function is defined
by (3.1), with p; defined by (4.1)-(4.3). With u = 119.9 as before, on the basis of the
parameter values defined in Table 4.1, NLLH turns out to have the value 357.787, which
is completely uncompetitive with any of the values quoted for this data set in Table 3.12.

However, this should not be surprising. We have chosen a high threshold corresponding
to less than 5% of the data set; it is only natural that the model should have to be refitted
to obtain good results at this threshold level. What we might expect is that the form of
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the model will be an improvement on the linear dependence on covariates of the models
in Section 3.

With this in mind, we have re-estimated the parameters by maximizing the likelihood
defined by (3.1) and (4.1)-(4.3), using just the binary information on exceedances over u.
This leads to NLLH=308.152, which is competitive with, but still not as good as, the best
of the fits given in Section 3. The parameter estimates under this refitted model are given
in Table 4.2, and it can be seen that they are completely different from those in Table 4.1.
In effect, what we have here is a nonlinear probit model.

Table 4.2: Nonlinear regression model of (4.1),
Normal errors, exceedances over threshold 119.9
NLLH=308.152

Parameter Estimate Stand. error t Ratio
mo 103.6 42.69 2.43
my 6.163 7.5 0.82
t 0.5609 1.417 0.40
) 16.7 45.93 0.36
t3 0.005362 0.298 0.02
vy 7.575 4.018 1.89
r -0.5859 1.735 -0.34
0p -0.05895 0.2791 -0.21
v -2.738 7.706 -0.36
My -1.497 5.116 -0.29
My -8.071 22.63 -0.36
Y1 -0.0654 0.1829 -0.36
a1 2.197 11.2 0.20
by 3.186 8.811 ' 0.36
as 2.33 7.283 0.32
b, 0.7938 3.187 0.25
log o 2.12 2.61 0.81

An alternative model widely used in binary data analysis is based on the logistic distri-
bution, i.e. replace ®(-) in (4.2) by ¥(-), where ¥(z) = e*/(1+¢7). In fact this is precisely
the logit model of Section 3, but with a nonlinear instead of linear regression function. Op-
timizing this form of the likelihood produces a NLLH of 307.763, with parameter estimates
shown in Table 4.3.
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In Section 6, some preliminary and tentative suggestions were made as to how the
results might be interpreted from the point of view of identifying extreme ozone days
adjusted for meteorology.

In Section 7, we addressed the issue of “recurrence of 1988” by using the models
(refitted without trend) to project ozone exceedances across the whole period for which
meteorological data are available (1959-1991). The result confirm that 1988 and 1983 were
the two most extreme years in the whole period, from the point of view of meteorological
conditions conducive to high ozone. On the other hand, we have also seen that the models
did not fully explain the very high ozone levels that actually occurred in 1988. Thus we
still leave open the possibility that additional factors, over and above anything that could
be explained by meteorology, were responsible for the ozone levels of that year.

Finally, in section 8 we have made some preliminary proposals for the distribution of
sums over a high threshold, though we concentrated on the definition (8.1), for which some
probabilistic theory is available, rather than (8.2) which corresponds to SUMOS6. In view
of continuing work on this topic, we have not attempted a fully comprehensive analysis
here.
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Table 4.3: Nonlinear regression model of (4.1),
Logistic errors, exceedances over threshold 119.9
NLLH=307.763

Parameter Estimate Stand. error t Ratio
mo 118.4 4.196 28.23
my 3.939 4.213 0.93
t 0.04696 0.1388 0.34
ty 1.345 3.802 0.35
t3 -0.01847 0.0523 -0.35
Up 3.427 3.774 0.91
r -0.04245 0.1257 -0.34
0p -0.005602 0.02154 -0.26
v -0.1829 0.5268 -0.35
my, -0.09017 0.3164 -0.28
m, -0.5198 1.46 -0.36
Y1 -0.004074 0.01139 -0.36
a; -0.2072 1.387 -0.15
by 0.2691 0.8155 0.33
as 0.02903 0.4356 , 0.07
by 0.08388 0.333 0.25
log o -1.19 2.77 -0.43

So far, we have assumed y; = 0 in (4.1). If we add y, to the model, the improvement
of the fit is negligible when fitted by least squares to the whole data set, but it does have
a significant effect in the threshold analysis. As an example, Table 4.4 shows the same
model as Table 4.3 but including y,.

We also calculated the predictive diagnostics discussed at the end of Section 3. For
the least squares model without re-estimation of parameters, the overall calibration was
very poor. The calibration table corresponding to Table 3.18 produced several significant
z values and an overall 3 2% of 80.95, clearly significant against x%,. The overall e value
(last row of table) was 111.8, as against r = 143, resulting in a highly significant z = 4.02.
Looking at individual year’s results, the greatest underprediction of exceedances was for
1984 and 1985. For the models refitted in Tables 4.2 and 4.3, the results are very similar
to the results discussed in Section 3 for a linear trend: the overall calibration table is good,
but there is significant overprediction of exceedances for 1981 and 1989, and significant
underprediction in 1984 and 1985. The quadratic fit of Table 4.4 results in good predictions
for every year except 1989, when it overpredicts, and 1991, when it underpredicts. The
Brier scores resulted in 93.84 (model from Table 4.1), 91.49 (Table 4.2), 93.97 (Table
4.3) and 91.64 (Table 4.4). Thus it is seen that the original fit from Table 4.1, although
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by maximum likelihood, assuming the logit probability is linear in the covariates and with
stepwise selection of covariates. However, we also considered a model with PDAY as a
covariate, this being an indicator of whether the previous day was an ozone exceedance,
so introducing an element of serial dependence into the model. For stations P and R, the
linear trend represented by the covariate YEAR was significant, but not (in this analysis)
for station Q. Also, in station P the variable PDAY was found to be significant, but not
for the other two. An alternative analysis based on threshold 99.9 in fact reduces the
significance of the YEAR variable, suggesting it is no longer significant for R and only just
for P. A quadratic trend was also fitted and found significant for station P.

Comparison with an alternative Poisson process formulation showed less satisfactory
fits for the Poisson model, so this was not pursued further in the paper. A corresponding
analysis for network maxima showed that linear and quadratic trends were both significant,
as was the PDAY variable indicating dependence.

Some ideas from the literature on probability forecasting were adapted to construct
predictive measures of goodness of fit for these models. The results generally supported
the conclusions that had been drawn by a likelihood analysis. :

In Section 4, a direct attempt was made to compare the logit models with linear
covariate structure with the nonlinear models proposed by Bloomfield et al. Fitting a
nonlinear model by ordinary least squares, and using that to predict high exceedances, did
not give good results. On the other hand, rewriting the model as a nonlinear probit or
logit model, and fitting that to the exceedances over a high threshold, did produce results
that were at least as good as the ones from the approach of Section 3. In some cases, the
nonlinear models did better as judged by the predictive diagnostics. On the other hand,
fitting the nonlinear models requires much more computing time and there are problems
with numerical stability of the parameter estimates. Our conclusion is that there may be
advantages in using a nonlinear model as measured by the overall fit, but these do not
seem to compensate the difficulties of fitting such a model.

In Section 5, the analysis was extended to excesses over a threshold. The Generalized
Pareto distribution (GPD) with covariates does uniformly well as a model for the distri-
bution. In the case of station Q, where we earlier found no significant evidence of a trend,
we do find that the trend in the excess values is significant. The predictive assessments of
model fit show good results at lower levels, but suggest that the models significantly fail
to predict what is happening at much higher levels. However, we also introduce a model
for dependence, in which daily values are assumed to follow a Markov chain in which the
joint distribution of successive pairs lies in the domain of attraction of a bivariate extreme
value distribution. This model (the dependent model) does indeed seem to produce a sat-
isfactory fit at higher levels. Although there are still observed discrepancies, especially in
1988, the overall deviation from the model is not significant as measured by the predictive
diagnostics.
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seemingly performing badly from every other criterion, is competitive from the point of
view of Brier score, a result for which we have no ready explanation.

Table 4.4: Nonlinear regression model of (4.1),
Logistic errors, exceedances over threshold 119.9
Include quadratic term: NLLH=301.613

Parameter Estimate Stand. error t Ratio
mo 118.8 2.86 41.52
my 5.21 4.267 1.22
t1 0.04127 0.1042 0.40
to 1.175 2.946 0.40
t3 -0.01565 0.04044 -0.39
vy 4473 3.756 1.19 |
r ' : -0.03539 - 0.09017 -0.39
op -0.002989 0.01427 -0.21
v -0.1584 0.3854 -0.41
My -0.1022 0.2649 -0.39-
My -0.44 1.068 -0.41
Y1 -0.001986 0.005009 -0.40
Y2 -0.1007 0.2473 -0.41
a; ' -0.1613 1.014 -0.16
b 0.2046 0.5507 0.37
asg 0.03245 0.3326 0.10
by 0.04814 0.2094 0.23
logo -1.361 2.414 -0.56

For station P, the NLLH values for the nonlinear probit and logit models, correspond-
ing to Tables 4.2-4.4, were 110.407, 109.014 and 103.292. Since the model based on a
linear trend does not depend explicitly on past values (such as PDAY), the appropriate
comparison is with Table 3.1, where we had NLLH=114.553. Thus, the fit does appear to
be better under the nonlinear models. Under the quadratic fit, the model improves even
more. Note, however, that this is at the cost of introducing more parameters into the
model. In the present case it appears possible to remove t and t3 without significantly
worsening the fit, but no other parameters.

The predictive diagnostics again showed that the nonlinear model in which the pa-
rameters are not re-estimated significantly underpredicts the total number of exceedances:
e = 13.050 against r = 41, resulting in a highly significant z = 10.4, whereas the nonlinear
probit model had e = 48.375 which is not a significant discrepancy (z = —1.35). The
calibration by year for the probit model resulted in Table 4.4, which is to be compared
with Table 3.14 for the corresponding linear-logistic model:
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Table 8.8: Exceedance probability parameters
Station R, Threshold 79.9

‘Variable Estimate Stand. error t ratio
CONST —25.73 4.964 -5.18
YEAR —.07884 .06826 -1.16
CDAY -177 5151 -.34
SDAY 8467 .2346 3.61
T ' 3789 , .06297 6.02
RH .07593 .03169 2.40
Q — 5981 1476 —4.05
WIND.U 04774 .03499 1.36
WIND.V —.156 .03975 -3.93
VIS -.1117 .02276 —4.91

9. Conclusions and summary

In this section we give an overall summary of what the objectives of the study were,
what methods were used, and what we think has been achieved as a result. The section
can be read independently of the rest of the paper.

The study was conceived as a follow-on to the study by Bloomfield, Royle & Yang
(1993), in which nonlinear regression techniques were used to predict ozone levels as a
function of a suite of meteorological variables. Our selection of meteorological variables
does not exactly correspond to theirs — we do not include lagged meteorological variables
or upper-air data, and we base all results on 12:00 noon measurements rather than any
kind of daily average — but the main variables are the same and achieve similar R? in
the only direct comparison made between the two papers, when the nonlinear model of
equation (4.1) is fitted to the network maxima by least squares.

For our study we have concentrated on ozone daily maxima from three stations labelled
P, Q and R, chosen because they had high ozone levels, and also the network maxima as
defined by Bloomfield et al. The overall objective of the study is to fit models that are
based solely on exceedances of a high threshold, so as to answer questions relating to trends
in the high levels of the ozone series. For much of the study, the threshold used was 119.9
(i.e. just below the standard level 120), though for parts of the study which used excess
values as well (Section 5 onwards), it was often found convenient to use a threshold 99.9.
At the lower threshold, there are more exceedances and this helps us fit a good model.

The simplest model of this kind is to fit a logit model to the binary data consisting of
1 if the threshold is exceeded on a given day, 0 otherwise. In Section 3, we fitted this model
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Table 4.5: Calibration of probability forecasts by year
Station P, threshold 119.9, model of Table 4.2

Year n r e w z

1981 268 2 5.071 2.681 —1.876
1982 280 1 2.366 2.002 —0.965
1983 307 7 9.245 4.868 -1.018
1984 329 4 2.293 1.997 1.208
1985 324 3 2.771 1517 0.186
1986 324 2 2.523 1.959 —-0.374
1987 323 6 4.732 3.358 0.692
1988 328 14 12.729 5.994 0.519
1989 331 1 2.332 1.977 —0.947
1990 317 0 0.894 0.873 —0.957
1991 261 1 3.420 2.763 —1.456

Looking at the z values in the last column, the overall pattern is similar to that of
Table 3.14, but there are fewer significant values and 5 22 is smaller (11.8 as against 22.4
for Table 3.14). The Brier scores were 37.08 (nonlinear model without refitting), 31.53

(nonlinear probit model).

Again, a logit model was fitted with both linear and quadratic trends. For the logit-
linear case, the overall fit has e = 46.686 (2 = —1.014), and a calibration by year as
follows:

Table 4.6: Calibration of probability forecasts by year
Station P, threshold 119.9, model of Table 4.3

Year n r e w ' z

1981 268 2 2.400 1.718 -0.305
1982 280 1 2.021 1.854 -0.750
1983 307 7 10.690 4.963 -1.656
1984 329 4 2.496 2.115 1.034
1985 324 3 1.641 1.525 1.101
1986 324 2 2.022 1.856 -0.016
1987 323 6 3.144 2.741 1.725
1988 328 14 11.499 7.507 0.913
1989 331 1 4.089 2.828 -1.837
1990 317 0 1.044 1.019 -1.034
1991 261 1 5.642 3.317 -2.549
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Table 8.6: Exceedance probability parameters
Station P, Threshold 79.9

Variable Estimate Stand. error t ratio
CONST —25.89 2.372 —-10.92
YEAR —.06021 .02917 —2.06
CDAY —1.644 4253 -3.87
SDAY .01026 .2043 .05
OPCOV —.008993 .003259 —-2.76
PR .03602 .02308 1.56
T 3 .02319 12.94
TD 1617 .05357 3.02
Q —.5966 1331 —4.48
WIND.U .04669 .03084 1.51
WIND.V 1414 .03447 4.10
VIS —.09568 .01674 —-5.72
- T.WSPD —.02015 .002457 —8.20

Table 8.7: Exceedance probability parameters
Station R, Threshold 59.9

Variable Estimate Stand. error t ratio
CONST -16.21 2.218 -7.31
YEAR —.07686 .05045 —1.52
CDAY —.3045 2978 -1.02
SDAY 6717 .1599 4.20

T .2864 .03318 8.63

Q —.2503 .04173 —6.00
VIS —.1051 .01786 -5.88
WSPD 1216 .07249 1.68

T.WSPD —-.01032 .004714 -2.19
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In the case of the logit-quadratic model, we had e = 49.361 (z = —1.507), and the
following table for calibration by year:

Table 4.7: Calibration of probability forecasts by year
Station P, threshold 119.9, model of Table 4.4

Year n r e w z

1981 268 2 0.728 0.722 1.498
1982 280 1 1.466 1.401 -0.394
1983 307 7 10.345 5.099 -1.481
1984 329 4 3.002 2.444 0.639
1985 324 3 3.235 2.478 -0.150
1986 324 2 3.064 2.516 -0.671
1987 323 6 5.025 3.733 0.505
1988 328 14 15.899 7.076 -0.714
1989 331 1 3.158 1.978 -1.534
1990 317 0 0.901 0.888 -0.956
1991 261 1 2.539 2.456 -0.982

The Brier scores for the two logit models were 36.49 (linear trend model) and 32.54
(quadratic trend model). In this case, the linear trend model seems to pass all the tests
except for the clear pattern of z values in Table 4.6, while the quadratic trend model seems
fine from every point of view.

Figure 4.1 illustrates these results for the four main models we have applied to station
P. Thus, we show the actual number of exceedances in each year (solid dot), and the
predicted numbers under each of the models, in each case dropping the year being predicted
from the data so that the prediction is based on the model refitted to the remaining years.
The two logit models being fitted here omitted the terms ¢, and ¢3. It can be seen that the
original least squares fit significantly underpredicts most of the exceedances, but the other
three fits all follow the actual counts reasonably well, with the one based on the quadratic
model perhaps identifiable as the best. Figure 4.2 shows the same thing for the network
maxima, with a less clear-cut distinction between the different fits but the quadratic model
still doing best if we exclude the one year (1991) for which it performs badly. However,
since 1991 is the most recent year in the data, we should be concerned about its failure to
predict correctly in that year.

For station Q, we obtained NLLH=93.402 for the nonlinear probit model, which is
to be compared with 99.317 in Table 3.3, but were unable to obtain a fit under the logit
model. For station R, we have NLLH=66.184 (probit), 66.788 (logit) against 67.524 (Table
3.4). Thus the nonlinear model does appear to improve the fit for station Q, but not for
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CONST
YEAR
CDAY
SDAY

T

Q
WIND.U
WIND.V
VIS
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Variable

CONST
YEAR
CDAY
SDAY
OPCOV
PR

T

TD

Q
WIND.U

WIND.V

VIS
T.WSPD

Table 8.4: up=80, Station R

Estimate

—1.84
—.1212
—1.249
—.5489
.09555
—.1306
.06009
—.07609
—.05623
1531
1.018

Estimate

—18.34
—.04824
—-.9727
.7299
—.009412
.04982
.2499
.07584
—.3279
—.01097
.1102
—.0896
—.01122

Stand. error

1.223
.06906
8977
.2709
.01805
.04333
.03706
.03556
.01981
1921
1232

Stand. error

1.417
.0223
2512
1332
.002484
.0162
.01799
.03041
.08207
02112
.02204
.01331
.002127
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t ratio

—1.50
—1.76
—2.09
-2.03
5.29
-3.02
1.62
—-2.14
-2.84
.80
8.27

Table 8.5: Exceedance probability parameters
Station P, Threshold 59.9

t ratio

—-12.95
—2.16
-3.87
5.48
-3.79
3.07
13.89
2.49
—-4.00
-.52
5.00
—6.73
-5.27



station R. Because of the computational time required, we did not compute the predictive
diagnostics for stations Q and R.

We can now attempt some interpretation of these results. The failure of the direct
attempt to apply (4.3), with the parameter estimates from the nonlinear least squares fit, is
disappointing but was anticipated in view of two facts made perfectly clear by Bloomfield
et al. (1993): o is not constant, and the normal distribution does not fit the extreme
residuals. One could, in theory, extend the Bloomfield et al. analysis to model both of
these features, but then the model runs the danger of becoming seriously overparametrized.
At any rate, Bloomfield et al. themselves made no attempt to do this.

The nonlinear probit and logit models might be considered a more reasonable attempt
to profit from the work of Bloomfield et al., using it to establish the appropriate form of a
binary data regression model. The results are mixed: for stations P and Q the evidence is
that the nonlinear model really does improve things, whereas for station R and the network
maxima it does not. The apparent improvement in the fit when we use a quadratic trend
model, in the case of station P and the network maxima, should also be noted.

One point we have not emphasized, however, is that there are computational stability
problems with these models that do not appear to be present with the models of section 3.
We pointed out already that we were unable to obtain a fit for the nonlinear logistic model
with station Q, and the same difficulty arose in one of the instances of station P, when we
attempted to refit the nonlinear logit model (with either linear or quadratic trend) with
the year 1982 omitted. For this reason, the 1982 projections for these two models in Tables
4.6, 4.7 and Figure 4.1 are based on the full data set.

Moreover, even in the cases when we were able to fit a model, it appears that small
perturbations of the model fit resulted in substantial changes in the parameters. As an
example of this, after obtaining Table 4.4, we tried rerunning the nonlinear optimization
program with the previous parameter estimates as starting values. The reduction in NLLH
when we did this was minimal (from 301.613 to 301.611) but the changes in individual
parameters were non-trivial. Figure 4.3 shows the ratios of all 18 parameters under the
two fits, and it can be seen that several differ substantially from 1. However, the forecast
probabilities for the two fits are very similar: Figure 4.4 plots forecast probabilities of
exceedance from one model against those from the other. The two sets are in very good
agreement and in fact the maximum discrepancy is less than 0.002. Thus there appear to
be instabilities in the model which do not affect the final conclusions. One consequence of
this should be noted, however: although standard errors have been quoted in this section
just as they have in other sections of the paper, they should not be trusted! We might also
add that the computational time required for these models was substantially larger than
for those of Section 3.

It is difficult to reach any definitive conclusions from these results, but in comparing
the models of this section with those of section 3, we can note that the models of this section
do indeed appear to be slightly better when exploited to their fullest extent, but there is
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Table 8.2: uo=80, Station P

Variable Estimate Stand. error t ratio
CONST -14.77 2.957 —4.99
YEAR —.09933 .02954 -3.36
CDAY —.749 .4882 -1.53
SDAY 1772 2132 .83
PR .03685 .02101 1.75
T 2131 ' .03049 6.99
TD .05107 .05694 .90

Q : -.1762 .133 -1.33
WSPD .5068 .1681 3.02
T.WSPD —.02725 .006264 —4.35
£ —.04198 .1634 —.26
0 .8169 .08419 9.70

Table 8.3: ug=60, Station R

Variable Estimate Stand. error t ratio
CONST —2.648 1.009 —-2.62
YEAR —.05715 .03077 —1.86
CDAY —.4452 2597 —-1.72
SDAY 1314 1178 1.12
T .09399 .009624 9.77
TD .05699 .0258 2.21
Q —.2594 .06871 -3.78
WIND.U .03126 .01559 2.01
WIND.V —.05123 .01589 -3.22
VIS —.03928 .01057 -3.72
£ —.04785 .08586 —.56

0 1.039 .07002 14.84
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not a substantial difference, and the associated computational and stability difficulties
might well lead one in practice to prefer the approach of Section 3.

Of course, there remain many points of contact between the two approaches, especially
concerning the identification of suitable covariates — as will already be apparent from the
discussion in Sections 2 and 3, we have made extensive use of the results of Bloomfield et
al. in this respect. Where the comparison is less certain is in trying to use their functional
form directly to model threshold crossings.

5. Excesses over a threshold

So far, the analysis has been concerned solely with the probability of crossing a high
threshold. We now extend the analysis so that the excess, or the amount by which the
ozone level exceeds the threshold when it crossed, is also modeled. This is important
for a number of reasons, all connected with the desirability of calculating probabilities
of crossing levels higher than the ones to which the methods of Sections 3 and 4 would
be applicable. For example, even if there are still too many exceedances of the official
ozone standard of 120 ppb, it is possible that the excesses are getting smaller so that we
can say that, from the point of view of its effect on human health, the ozone situation is
improving. A further reason for considering excesses is to allow us to perform comparisons
based on the maximum levels achieved in different years (Sections 6 and 7). The method
developed here provides a possible means of extrapolating to higher thresholds than could
be justified in a direct analysis. At the same time, it is important to be aware that an
extrapolation is involved in this, and it would be unwise to attempt to extrapolate too
far. The discussion that follows will, it is hoped, provide some insight into how far it is
reasonable to extrapolate.

To motivate the development of models for excesses over a threshold, consider first
the simple case in which the underlying observations, X}, ..., X, say, are independent with
common distribution function F. The conditional probability that ¥; = X; —u < y, given
Y; > 0, is represented by

Fu+y)— F(u)
E =
u(v) 1- F(u)

The question is what parametric form would be appropriate for Fy,. In this connection,
Pickands (1975) introduced the generalized Pareto distribution (henceforth GPD) whose
distribution function is given by

(5.1)

-1

/
G(y;a,g)=1—(1+§§-)+ Yoy, (5.2)

where o > 0, £ is any real number, and z; = max(z,0). Thus the rangeof y is 0 < y < o0
for ¢ >0and 0 < y < —o/€ if £ < 0. The exponential distribution, 1 — e~¥/7, appears as
a limiting case when £ — 0. This is of historical importance, because most early attempts
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Probability plots are shown for all four data sets and all four models in Figures 8.1-
8.4. In Figure 8.1, there is no discernable difference among the models but there are three
apparent outliers, corresponding to (from the top) July 12 1982, July 22 1983 and June 19
1983. From Table 6.6 we see that the first and third of these were also events corresponding
to a very low tail probability with respect to their daily maxima, while the July 22 1983
event also appears in both Tables 6.4 and 6.6. Thus it seems, as we might expect, that
there is a high association between extreme events from the daily maximum analysis and
ones from the present results. On the other hand there are no obvious outliers in the other
plots, except in Figure 8.4 where it appears that there is one outlier for the date of June
19 1986. No attempt has been made to remove outliers in this analysis.

To complete the description of sums over a high threshold, we also need a model for
the probability of crossing the threshold. Tables 5.5-5.8 present models that have been

identified for that, using the same methods as in section 3 but repeating the variable
identification with the lower thresholds.

Table 8.1: up=60, Station P

Variable Estimate Stand. error t ratio

CONST —4.66 1.537 -3.03
YEAR —.05252 .01584 -3.32
CDAY —.8205 .1987 —4.13
SDAY .06538 .09482 .69
PR .02687 .01149 2.34
T .1094 .01648 6.64
TD .04833 .02229 2.17
Q —.2004 .05481 —3.66
VIS —.01439 .008711 —1.65
WSPD —.05544 .06709 -.83
T.WSPD —.004823 .002938 —1.64
13 —-.0318 07157 —.44
0 9293 .05059 18.37

57



at this kind of analysis (e.g. in connection with Dutch sea level modeling after 1953) were
based on the exponential distribution.

The theoretical justification for the GPD is based on a theorem proved by Pickands
(1975), which may be interpreted as saying that the GPD occurs as a limiting distribution
of Fy(-), for high u, if and only if the distribution F is in the domain of attraction of
one of the clsssical extreme value distributions described for example in the books of
Gumbel (1958) or Leadbetter et al. (1983). Since the “domain of attraction” condition
is ubiquitous in extreme value analysis, this implies that the GPD is a natural choice
for exceesses over high thresholds in any context where one might try to apply extreme
value theory. Estimation of the parameters o and ¢ can be carried out by the method of
maximum likelihood, which has regular properties whenever £ > —1, a condition which is
almost always met in environmental applications.

In the present context, of course, we want to extend this to include covariates in
the analysis. A general framework for this was laid out by Davison & Smith (1990).
They considered regression models in which the excess (if there is one) on day ¢, say, is
representated by the G(-;0;, ;) with o; and £; depending on covariates. In practice it is
usually adequate (and a lot simpler) to assume £ constant, while the interpretation of o; as
a scale parameter suggests naturally that a logarithmic link function would be appropriate. .
Thus we are lead to consider models of the form

logo; = Ewiﬂj, €i=¢ (5.3)
J

in terms of new coefficients {y;, j = 1,2,...}. There is no reason why the significant
covariates should be the same as in the binary analysis of Section 3, so in general we would
expect to repeat the variable-selection procedure based on the excesses over the threshold.
For the time being, we assume the daily values are independent.

A more general model, whose significance will become clear later on, is to extend the
GPD to include a power-law transformation of ¥;. That is, we assume Y;?, for some 6 > 0,
follows the GPD, so the distribution function of the excess Y; is given by

]

N -1/¢
H(yzaaza€)9)=1—{1+€<gl> } ) y>0, (54)
+

To give this a specific name we call it the TGPD (transformed GPD).

We now consider the application of these models to the three stations we have been
considering, as well as the network maxima. In the case of the three stations P, Q and
R, it was found more satisfactory to use a lower threshold, so we present most of our
results with respect to the threshold 99.9 rather than 119.9. Again, we did not use 100
or 120 as a threshold so as to avoid the difficulties caused by having observations exactly
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8. Sums of excesses over a threshold

A different characterization of the “extremeness” of an ozone day, other than the daily
maximum, is some form of criterion based on the persistence of hourly ozone readings over
a lower threshold than the ozone standard 120. For example, the sum of exceedances over
the threshold 60 is used in calculating the SUMOG6 criterion. In general, we may define a
threshold ug (e.g. uo = 60) and consider either of the criteria

Si=) (Yir —uo)+ (8.1)
k

or

Si = zYikI(Yik > ug), (8.2)
%

where Y;; is the k’th hourly value on day . In (8.1) we use the notation, as previously,
£4 = max(z,0), and in (8.2), I(Yik > uo) denotes the indicator function (1 if Yix > uo, 0
otherwise).

Note: This is the first time in the whole report that we consider hourly ozone values.
Up to now, all the analysis has been in terms of daily maxima. :

In this analysis we confine ourselves to (8.1), whose distribution is easier to characterize
than (8.2). However, current interest in SUMOG is focussed on (8.2), so it would seem to
be important in future work to try to characterize that distribution as well.

The current status of work in extreme value theory is that it has a good deal less
to say about quantities such as (8.1) than it does about overall maxima. Nevertheless,
a recent paper by Anderson & Dancy (1992) has provided a theoretical characterization
and some practical results. In particular, they proposed the TGPD (equation 5.4) as a
distributional form that was consistent with the theoretical characterization and performed
well in a practical (hydrological) data study. Although their result should not be considered
a complete treatment of the problem, it does suggest that an analysis based on the TGPD
would have both theoretical and practical justification, and we therefore pursue that here.

The possibility has also been suggested of trying other values of ugy besides 60. In
particular, one could define a similar criterion based on ug = 80, so that is tried as well.

In Tables 8.1-8.4, the results of the TGPD model are given for uq = 60 and 80, for
stations P and R. In both cases the full model (including both £ and 6) is quoted, though in
no case are both of these parameters actually required. In all four cases, if 6 is included in
the model, then a test of Hy : ¢ = 0 produces a result which is not significant. In fact, only
in the case of station P and ug = 80 is the null hypothesis of an exponential distribution
(¢ =0, 8 = 1) rejected by a likelihood ratio test. In all cases the other parameters were
chosen by a variable selection procedure similar to that used in section 3, though assuming
a linear trend in the YEAR variable.
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on the threshold. One reason for using the lower threshold was that there are many more
exceedances in the data set — 94, 84 and 55 respectively for stations P, Q and R, as-
compared with 41, 38 and 23 for threshold 119.9 — and this improves our ability to fit and
compare different models. For the network maxima, there are plenty of exceedances of the
higher threshold — 143 in all — so we continued to use threshold 119.9 for that data set.

- We now present specific results, starting with station P. All the analyses have used
YEAR as a covariate, and a process of variable selection, similar to that carried out in
Section 3, showed that T, WSPD and T.WSPD were also significant variables. Here are
the results for the model defined by equations (5.2) and (5.3):

Table 5.1: Station P: Excesses over threshold 99.9

Variable Estimate Stand. error t ratio
CONST —-19.03 5.293 -3.60
YEAR —.09418 .0331 -2.85
T 2631 .06151 4.28

WSPD 1.06 ’ .3693 2.87

T.WSPD —.03967 .01468 —2.70
£ —.2846 .138 —-2.06

Here NLLH=365.376. If YEAR is omitted, this rises to 368.904. Thus, the evidence in
a downward trend in the excesses, and not just in the probability of crossing the threshold,
seems clear from this.

As an indication of the effect of £ and 6, with the other covariates remaining the same,
the following results were obtained:

Table 5.2: Station P, threshold 119.9
Comparison of different models for £ and 0

E Stand. err. ) Stand. err. NLLH

— — — — 367.016
—.285 137 — — 365.376
— — .930 .080 366.650

No fit was obtained for the TGPD model including both parameters £ and §. With
this model, the iterative numerical routine moved into the region { < —1 for which no -
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defined as the probability of crossing level ¢t on day n, given the meteorology vector zn
for that day. We can therefore define an expected number of crossings for year N by the

formula
Sv)= Y paltlen).

day n € year N

This quantity can be calculated with respect to each year N for which the meteorological
data are available, and can be thought of as the “ozone potential” for that year.

For an analysis of this nature, it would not make sense to include trends in the model,
so we use only models for which no trend is included. Also, since the model is not being
applied directly to the ozone record, we cannot include PDAY in the model. However, we
can calculate the function Sy (t) with respect to different ozone models that have been
fitted to different stations.

For our main evaluation, we used the models refitted to the network maxima data as
in Tables 3.11 and 5.5, omitting YEAR, YEAR2 and PDAY from the models. The function
Sn(t) was then plotted against N, for each of t =120, 140, 160, 180. The results are shown
in Figure 7.1. The figure shows substantial fluctuations, with high projected ozone levels
for 1966, 1975, 1983 and 1988. Overall 1988 has the highest projected exceedances, though
at the higher levels (160, 180), 1983 is higher. This is consistent with what we have seen
in earlier comparisons. A similar figure computed using model fits for station P (Figure
7.2) gives a very similar message, though in this case with 1988 giving the highest number
of projected exceedances at all levels.

These models were based on independent days. However, the calculations were re-
peated using the Markov models of Section 5, with results indistinguishable from those
in Figures 7.1 and 7.2. There is a distinction between using the Markov model in this
context and for the predictive diagnostics of Section 5, because there, the diagnostics were
computed sequentially (one day’s ozone reading affects the diagnostic for the next). Our
analysis in this section is based purely on expected numbers of exceedances, so it is only to
be anticipated that the dependence in the model has minimal influence on the conclusions.

There are a number of possible interpretations of the results. There appears to be
a general increase of ozone potential over the whole period of the study, which implies
climatological variability. This could therefore be tied in with much broader issues of
climate change, including the greenhouse effect and its possible effect on global warming.
The results do lend some support to the contention that 1988 was the most extreme year
in terms of meteorology in the record. On the other hand, we have seen in Section 5 that
the models still underpredict the actual ozone levels that occurred in 1988, so there is still
some support for the notion that additional factors were responsible for the exceptionally
high levels of that year. '
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local maximum of the GPD likelihood exists (Smith 1985). Although there are theoretical
procedures for obtaining model estimates in the situation (Smith 1993), past experience
with these kinds of models has suggested that the phenomenon is more likely to be due to
having too small a sample to fit the models adequately. Indeed, with the original threshold
of 119.9, this happened even with the GPD model (without the transformation parameter
6), and with several of the data sets. Since a probability plot (Figure 5.1) suggests that
the GPD model fits perfectly well, for the rest of the analysis we adopt that model and do
not attempt to resolve the difficulty concerning the TGPD model.

To construct Figure 5.1, we defined a “residual” Y;/&; with respect to the i’th excess
Y; and the associated estimated scale parameter ;. The residuals were then arranged in
order and plotted against expected order statistics under each of the four models. In the
case of the TGPD model, although not finding a maximum likelihood fit, we did plot the
residuals corresponding to the best model found (with { &~ —1). If the model fits the data,
then the residuals should be tightly clustered around a straight line of unit slope through
the origin (also shown on the plots). The results show clear deviation from this in the
upper tail of the exponential and transformed exponential data sets, but a good fit for the
GPD. In the light of this, we believe that the GPD forms a good fit overall.

For the other stations, in all cases the same model seems to produce a good fit. Tables
5.3-5.5 show GPD model fits for stations Q, R and the newtork maxima, and Figures 5.2—
5.4 are the corresponding probability plots for residuals under each of the four models for
the marginal distribution.

Table 5.3: Station Q: Excesses over threshold 99.9

Variable Estimate Stand. error t ratio
CONST —-8.511 5.414 -1.57
YEAR —.09546 .02657 -3.59
T .1502 .06346 2.37
WSPD .1658 .3652 45
T.WSPD —-.01252 .01424 —.88
¢ —.3603 .09193 -3.92
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Table 6.6: Highest ozone days by joint criterion
All days with Ozone > 120 and #; < 0.1 are tabulated

Station P
Date Ozone Probability n;
June 20 1983 122 ' 0.0012
June 6 1988 164 0.0022
July 12 1982 144 0.0026
August 8 1985 133 0.0048
September 2 1983 141 0.0049
July 27 1985 128 0.0068
May 15 1991 123 0.0101
August 1 1981 - 151 0.0102
June 20 1987 124 0.0123
August 11 1988 149 0.0143
June 23 1983 161 0.0169
July 22 1983 158 0.0171
August 4 1984 172 0.0195
July 28 1986 123 0.0210
August 3 1984 145 0.0258
July 7 1988 215 0.0292
August 7 1988 144 0.0312
August 9 1986 117 0.0327
July 24 1988 144 0.0368
June 8 1985 143 0.0413
August 15 1984 126 0.0433
August 3 1988 160 0.0473
July 13 1984 . 136 0.0576
July 8 1988 215 0.0607
June 19 1987 133 0.0736

7. Recurrence of 1988

One question that has repeatedly occurred in discussion of the ozone problem is “how
extreme a year was 1988?”. Of course we could ask the same question with respect to any
other year in the study, but 1988 is the focus because it is clearly the worst ozone year
in the current record. In this section we attempt to answer this question with respect to
historical climatological data going back to 1959.

Each of the models we have considered can be regarded as providing an algebraic
expression for

Pn(tlmn)
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Table 5.4: Station R: Excesses over threshold 99.9

Variable Estimate Stand. error t ratio
CONST —6.911 3.654 -1.89
YEAR —.2613 1245 -2.10
T .1424 .04434 3.21

WSPD .4443 .3097 1.44

T.WSPD —.01896 .008808 —-2.15
£ —-.4019 1718 —2.34

Table 5.5: Network maxima: Excesses over threshold 119.9

Variable Estimate Stand. error t ratio
CONST —.8527 1.685 ' -.51
YEAR —.04 .03098 -1.29
T .05795 .02026 2.86
WSPD —.1005 .1307 -.77
T.WSPD —.004424 .005415 —.82
£ —.2333 .08884 -2.63

In all four cases, the GPD model was a significant improvement on the exponential
model, and better than the transformed exponential model. Results for the TGPD were
somewhat mixed: in the case of station Q, the TGPD model was fitted successfully, but
with a negligible improvement in log likelihood (0.003) over the GPD model. For station R,
we encountered the same difficulty as with station P, no fit being obtained. For the network
maxima, the TGPD was successfully fitted and did provide a significant improvement in
log likelihood over the GPD (3.363). On the other hand, the probability plot in Figure 5.4
still shows an adequate fit for the GPD, and in view of the difficulties in fitting the TGPD
in the other cases, it was decided to adopt the GPD as the principal model for this case
also. As a comparison, here is the detailed table of results for the TGPD model:
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Table 6.4: 11 highest ozone days and associated probabilities

Station P
Date Ozone Prob. 1 Prob. 2
July 7 1988 215 0.0292" 0.0784
July 8 1988 215 0.0607 0.1192
July 6 1988 186 0.3230 0.4052
August 4 1984 172 0.0195 0.0129
July 5 1988 170 0.1568 0.1789
June 6 1988 164 0.0022 0.0104
June 23 1983 161 0.0169 0.0078
August 3 1988 160 0.0473 0.0676
July 22 1983 158 0.0171 0.0060
July 29 1983 157 0.1712 0.0567
August 1 1981 151 0.0102 0.0016

Table 6.5: Annual highest ozone days and associated probabilities

Station P
Date Ozone Prob. 1 Prob. 2
August 1 1981 151 0.0102 0.0016
July 12 1982 144 0.0026 0.0020
June 23 1983 161 0.0169 0.0078
August 4 1984 172 0.0195 0.0129
June 8 1985 143 0.0413 0.0319
July 28 1986 123 0.0210 0.0198
June 18 1987 149 0.1150 0.1176
June 6 1988 164 0.0022 0.0104
July 6 1989 121 0.3644 0.4480
September 10 1990 107 0.0311 0.0573
May 15 1991 123 0.0101 0.0273
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Table 5.6: Network maxima: Excesses over threshold 119.9

TGPD model

Variable Estimate Stand. error t ratio
CONST .2615 1.226 21
YEAR -.002885 .05484 -.05
T .04926 .01385 3.56
WSPD -.1785 .09756 -1.83
T.WSPD -.004063 .004196 -.97

13 -.5786 2435 -2.38
6 7222 1252 5.77

In three of the four cases, there appears to be a significant improvement as a result
of including YEAR in the model. Using the GPD model as the standard, the difference in
log likelihood when YEAR is omitted are 3.528 (station P), 5.107 (Q), 2.115 (R) and 0.860
(network maxima). Only the last of these is not clearly significant. The result is especially
interesting for station Q, since in that case our earlier analyses based on exceedances of a
single threshold have cast doubt on whether the trend is significant. The present analysis

shows that, for high enough ozone levels, there is a significant downward trend in that case
also.

One additional comment should be made concerning the GPD. Earlier analyses of
ozone data, including those of Smith (1989), have suggested that the high-level exceedances
of ozone have an approximately exponential tail. The present analysis contradicts that,
since in all four cases the GPD is a significant improvement on the exponential tail. This
is clear from the plots in Figures 5.1-5.4, and from the differences in log likelihoods (1.640,
4.420, 2.157 and 2.829 respectively for stations P, Q, R and the network maxima). As a
comparison, we reran all the models without any covariates, focussing just on the com-
parison of the exponential and GPD models, obtaining log likelihood differences of 0.574,
1.041, 0.000 and 0.122. None of these are significant, so we would accept an exponential
tail of the distribution if we ignored the covariates. Thus, our conclusion is that the form
of tail function adopted is dependent on whether covariates are included in the model, but
in the case of interest to us, where the covariates are included, the exponential is too long
a tail and the GPD with £ < 0 is a significantly better fit.
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Table 6.3: Highest ozone days by joint criterion
All days with Ozone 2 130 and #; < 0.05 are tabulated
Network maxima

Date Ozone Probability n;
May 8 1982 170 0.0002
June 30 1981 136 0.0008
July 7 1988 223 0.0012
August 22 1990 130 0.0015
June 6 1988 164 0.0048
July 23 1983 162 0.0050
August 15 1982 135 0.0051
July 8 1988 215 0.0055
August 17 1986 131 0.0063
August 11 1988 173 0.0063
July 19 1991 135 0.0078
May 28 1982 132 0.0087
June 23 1984 160 0.0088
April 18 1987 139 0.0101
August 1 1981 172 0.0116
May 25 1985 146 0.0126
June 18 1987 178 0.0194
August 7 1988 144 0.0201
June 21 1991 134 0.0205
June 28 1984 130 0.0212
August 18 1984 151 0.0233
July 7 1985 130 0.0236
August 16 1982 147 0.0311
June 24 1987 177 0.0312
August 14 1991 134 0.0348
July 3 1982 134 0.0356
July 28 1986 142 0.0356
July 12 1982 144 0.0366
August 15 1984 136 0.0420
June 19 1986 131 0.0444
August 29 1983 155 0.0450
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Predictive assessment of model fit |

Now that we have a model for both threshold crossing probabilities and the distri-
bution of excesses over a threshold, we can compute crossing probabilities and expected
numbers of exceedances with respect to any level larger than the original threshold. This
makes it possible to repeat the predictive diagnostics which were first used in Section 3,
with respect to higher ozone levels.

As an example, here is what happens when the models of Tables 3.11 (quadratic trend
for exceedance probabilities) and 5.5 (linear trend for the distribution of excesses), both
of which were calculated with to respect to the threshold 119.9, are combined and used to
model exceedances of the level 139.9. At this level, the expected numbers of exceedances
are still large enough for standard x? tests to be applicable.

The overall calibration table (compare Table 3.13) is as follows:

Table 5.7: Calibration of probability forecasts
Network maxima, level 139.9, models with trend

Pmin DPmazx n T € w 2

0.000 0.050 2123 10 8.004 7.813 0.714
0.050 - 0.100 84 5 6.108 5.647 —0.466
0.100 0.300 106 22 18.572 14.974 0.886
0.300 0.500 30 10 10.947 6.864 —0.362
0.500 1.000 11 8 6.663 2.537 0.839
0.000 1.000 2354 55 50.295 37.834 0.765

Here, based on the first five rows, Y 2% = 2.35, clearly not significant as a x? variable.
The final .z value (0.765) represents the overall fit, while the Brier score is 40.42 with
a corresponding z (Y;B) value of 0.61. All of these point to the model as being fully
satisfactory in terms of its overall calibration.

The calibrations by year, corresponding to Table 3.14, are as follows:
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to be a sensible thing to do on its own, however, for two reasons. The first is that it
is quite possible for a very small n; to arise on a day when the ozone is not at all high
in absolute terms, if it is merely a lot higher than would have been expected from the
background conditions. Identifying such days would appear to be of little use in dealing
with the overall ozone problem. The second reason for not giving too much attention to
the very small values of 7; is that they are likely to be very sensitive to arbitrary features
of the model, such as which threshold was used or which covariates were included in the
models for p; and o;.

However, another possibility is to adopt a joint criterion: select some intermediate
ozone level, say 130, and some intermediate critical value of 7n;, say .05, and flag all days
where both criteria are violated. The idea is that this will help identify days where the
ozone was high but, in a sense, it should not have been. The results of this are shown in
Table 6.3, arranged in order of increasing 7;.

Similar results for station P are presented in Tables 6.4-6.6. In this case, for the
models with trend, a linear trend in both the exceedance probability and excess value
components was adopted. In Table 6.4, it can be seen that four of the top five values are
from July 5-8 1988, and that despite the fact that we are using the dependent model, so
that the quoted probabilities take previous high values into account, the n; values for July
7 and 8 are still very small, whereas those for July 5 and 6 are much more moderate. The
conclusion from this is that the meteorology through our models will “explain” the values
for July 5 and 6, which are still very high compared with the rest of the record, but that it
still cannot explain the exceptionally high ozone readings of July 7 and 8. Table 6.5 again
presents the annual maxima, and Table 6.6 lists all the days for which the ozone level was
. at least 120 and 7; < 0.1.

The results are necessarily highly tentative. As is already clear from comparing the
results for station P and the network maxima, the results are highly volatile to the selection
of model, and the interpretation of a small value-of n; is far from clear. Nevertheless, it
seems valuable to try to identify those days on which a high ozone level occured which could
not be explained by meteorology, as this gives at least indirect evidence that additional
factors may have been responsible for the high ozone level on those days, which could in
turn point the way towards improved control strategies for the future.
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Table 5.8: Calibration of probability forecasts by year
Network maxima, level 139.9, models with trend

Year n r e w z

1981 214 4 4.346 3.430 -0.187
1982 214 4 3.873 3.273 0.070
1983 214 13 14.527 8.803 —0.515
1984 214 8 4.151 3.489 2.061
1985 214 3 2.482 2.191 0.350
1986 214 1 2.749 2.478 -1.111
1987 214 7 7.002 5.212 —0.001
1988 214 13 6.104 4.742 3.167
1989 214 0 3.357 2.707 —2.040
1990 214 0 0.532 0.513 —0.742
1991 214 2 1.172 0.996 0.830

Here there do appear to be some discrepancies, especially in 1988 where the model
underpredicts the true rate of exceedance, and to a lesser extent in 1984 and 1989. We have
Y- z% = 21.34, which is significant as a x2, variable (5% point 19.68, 2.5% point 21.92),
though this is somewhat questionable as several of the expected values in the e column
are less than 5. If we group the years together as {1981, 1982}, 1983, {1984, 1985,1986},
1987, 1988, {1989,1990,1991} then we obtain the following table:

Table 5.9: Calibration of forecasts by year (regrouped)
Network maxima, level 139.9, models with trend

Year n r e w z
1981-2 428 8 8.219 6.703 -0.085
1983 214 13 14.527 8.803 —-0.515
1984-6 642 12 9.382 8.158 0.917
1987 214 7 7.002 5.212 —0.001
1988 214 13 6.104 4.742 3.167

1989-91 642 2 5.061 4.216 —1.491
for 3 2% = 13.36, which is significant against x& at the 5% level but not at the 2.5% level.
On the other hand, if we fit the same models without any trend parameters (YEAR

and YEAR?2) and repeat the same calculations, we obtain the following results. For the
overall calibration we have:
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Table 6.1: 14 highest ozone days and associated probabilities
Network maxima

Date Ozone Prob. 1 Prob. 2
July 7 1988 223 0.0012 0.0019
July 8 1988 215 0.0055 0.0071
June 23 1983 188 0.0533 0.0239
July 6 1988 186 0.1387 0.1573
July 15 1983 180 0.3319 0.2919
June 18 1987 178 0.0194 0.0170
June 24 1987 177 : 0.0312 0.0345
July 7 1981 176 0.1036 0.0485
July 19 1983 175 0.3272 0.2875
August 11 1988 173 0.0063 0.0104
August 1 1981 172 0.0116 0.0062
August 4 1984 172 0.0714 0.0422
July 5 1988 170 0.0685 0.0679
May 8 1982 170 0.0002 ‘ 0.0002

Table 6.2: Annual highest ozone days and associated probabilities
Network maxima

Date Ozone Prob. 1 Prob. 2
July 7 1981 176 0.1036 - 0.0485
May 8 1982 170 - 0.0002 0.0002
June 23 1983 188 0.0533 0.0239
August 4 1984 172 0.0714 0.0422
June 7 1985 148 0.0699 0.0485
June 8 1985 148 0.0844 0.0592
July 28 1986 142 0.0356 0.0295
June 18 1987 178 0.0194 0.0170
July 7 1988 223 0.0012 0.0019
July 6 1989 139 0.4565 0.5130
August 22 1990 130 0.0015 0.0080
June 1 1991 152 0.0701 0.2589
June 20 1991 152 0.2049 0.4038

An alternative approach to identifying high ozone days might be to identify any day
with an exceptionally small value of 7; as an extreme ozone event. This does not appear
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Table 5.10: Calibration of probability forecasts
Network maxima, level 139.9, models without trend

DPmin DPmaz n r e w z
0.000 0.050 2098 8 8.562 8.378 —0.194
0.050 0.100 110 11 7.942 7.348 1.128
0.100 0.300 108 16 18.760 15.185 —0.708
0.300 0.500 28 15 10.739 6.545 1.666
0.500 1.000 10 5 6.137 2.311 —0.748
0.000 1.000 2354 55 52.141 39.767 0.453

Here 3 22 = 5.15, the Brier score is 41.47, and the z (¥,2) value corresponding to
that is 0.38, none of them significant. The calibration by year is as follows:

~ Table 5.11: Calibration of probability forecasts by year
Network maxima, level 139.9, models without trend

Year n r e w z
1981 214 4 3.006 2.498 0.629
1982 214 4 2.831 2.503 0.739
1983 214 13 10.134 6.618 1.114
1984 214 8 2.875 2.528 3.224
1985 214 3 1.895 1.721 0.842
1986 214 1 2.179 2.014 -0.831
1987 214 7 6.942 5.208 0.025
1988 214 13 8.522 6.368 1.775
1989 214 0 4.711 3.724 —-2.441
1990 214 0 1.763 1.621 —1.385
1991 214 2 7.283 4.964 -2.371

with 3" 2% = 30.62 if the data are grouped as shown, or ) 2z? = 22.81 if the data are
grouped in the same way as Table 5.9. Clearly, these values are much more highly signifi-
cant than for the fit with the YEAR and YEAR2 values. Even though the fit for 1988 is
better, the overall calibration shows a clear downward pattern in the z values.

Similar, but mixed, results were obtained for stations P, Q and R. In every case,
the predictive fit of the model becomes questionable at higher levels when assessed on a
“calibration by year” basis, and it is not always the case that the model including a trend
dominates over the one that does not. As a graphical comparison, Figures 5.5-5.8 show
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6. Identifying the extreme ozone days adjusted for meteorology

Here, some preliminary thoughts are given as to how the preceding results could be
interpreted as a means of identifying extreme ozone days when allowance is made for
meteorology.

Suppose we have a model which defines the probability p;(z) that the ozone on day i
is over a level z. For the models in this paper, this function is defined for any z above the
initial threshold, by a combination of the models defined in Sections 3 and 5, and in the
case of a dependent model as at the end of Section 5, it is to be interpreted as a conditional
probability given past ozone values. If there is indeed an exceedance of the threshold on
that day, with daily maximum at level Y;, then the quantity n; = p;(¥;) can be thought of
as the tail probability associated with the value Y;. A very small value of 7; thus indicates
some additional factor that must have produced extreme ozone on that day.

This n; has a rather different interpretation according to whether or not trend is
included in the model. If trend is not included, then it represents purely an adjustment
for meteorology, not allowing for any other factors that may have affected ozone levels. If
trend is included then, at least within the confines of the current study, it represents the
best available indicator of how extreme a particular day is. The qualification “within the
confines of the current study” is added because, of course, this is one aspect which could
be changed considerably if additional information, such as data on precursor emissions,
were included.

Table 6.1 lists all ozone days over 170 for the network maxima, with associated tail
probabilities calculated both with a trend in the model (probability 1) and without (proba-
bility 2). The model with trend was the same as in Section 5 for threshold 119.9: quadratic
trend in the binomial exceedance probabilities, linear trend in the GPD for excesses, with
the dependence parameter « also included. Thus, the probability n; is actually a condi-
tional probability given the previous day’s ozone. The model without trend is the same
model refitted without the YEAR and YEAR2 covariates.

It can be seen that there are considerable differences among the probabilities associ-
ated with the highest ozone days. The table includes several values from 1988 with very
small n; values, reinforcing the fact that this year’s very high ozone readings cannot be
exaplined solely in terms of meteorology. In contrast, the 1983 values are associated with
much more modest values of 7;.

Table 6.2 is similar to Table 6.1 but computed for, not the overall highest ozone days,
but the highest within each year (including some ties). The effect of the trend on the tail
probabilities can be more clearly seen in this table.
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actual versus predicted numbers of exceedances for several ozone levels. In each case the
models were based on those of Section 3 and the present section, with different assumptions
about trend. In all cases, the predicted numbers follow the general pattern well, but the
results for stations P, R and the network maxima clearly fail to reflect the very high values
for 1988, while for station Q, 1988 was not a particularly extreme year.

Some attempt has also been made to do the same thing using nonlinear models, as
in Section 4, for the probability of crossing the initial threshold, but this does not appear
to improve the results. The difficulty is that the nonlinear models we have tried are still
based on a constant scale parameter, so they cannot reflect relative changes in crossing
probabilities as the level gets higher.

Allowing for dependence

The preceding analysis has allowed for serial dependence in a crude way, in allowing the
variable PDAY as a covariate in the probability of crossing the initial threshold. However,
this does not adequately reflect the dependence that may occur at higher thresholds. In
this section we outline an alternative approach based on a first-order Markov structure
incorporated into a threshold analysis. A recent review paper by Smith (1993) contains
necessary background material.

Suppose we observe data {X1,..., X,} from a first-order discrete-time Markov chain,
i.e. the conditional distribution of each X; given X, ..., X;_; depends just on X;_; through
a conditional density f(X;|X;-;); here the variables may be discrete or continuous, the
density referring to a transition probability in the discrete case or a conditional p.d.f. in
the continuous case. We also assume that the process is stationary and that its stationary
distribution is represented by a density fi say. Then the joint distribution of X,...,X, is

A1) [T F(XilXia) (5.5)

=2

and this may be used to define a likelihood for the data.

A more convenient way to write (5.5) is in the form

_ i fo(Xim, Xi) (5.6)
1) f(X) ’

where f3(-,-) denotes the joint density of two consecutive values of the series. We write out
equations (5.5) and (5.6) merely to make explicit an obvious point: that for a stationary
first-order Markov chain, to define the joint likelihood of the data, it is necessary to specify
the first- and second-order marginal densities of the process.
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The conclusion at this point is that the dependent analysis does appear to deal with the
extrapolation to higher thresholds, in the sense that any discrepancies between predictions
and data are consistent with normal statistical variability. To extend the comparison, for
example, at level 159.9, the calibration by year yields Y z% = 10.97, not significant as X34,
or if we group the years in the same way as in Table 5.16, Y- 22 = 8.03, still nowhere near
significant against xZ. On the other hand, the individual values for 1988 in this case are
r =7, e=3.187, w = 2.58 for z = 2.37. So the 1988 value is significant when taken on its
own, but not when viewed as just one year amongst 11 years’ data.

A similar analysis has also been carried out for station P, based on threshold 99.9,
with linear trends (the YEAR covariate) in both the exceedance probabilities and excess
values. In this case we found & = 0.94, standard error 0.048, for a log likelihood difference
of 0.832 compared with the independent (a = 1) case. In this case we do not believe the
difference in the model fits to be significant, but again the predictive diagnostics do point
to some improvement. For example, at level 139.9, we find Y 2% = 10.29 for the calibration
by year, with 1988 values r = 10, e = 5.093, z = 2.635, and a Brier score for this level
of 17.72. The results for the corresponding model with no dependence are ) 22 = 23.17,
e = 3.421 and 2z = 4.252 for 1988, and Brier score 18.54.

Plots of the year-by-year comparisons of observed with expected exceedances, based
on the dependent models for station P and the network maxima, are shown in Figures 5.9
and 5.10. In each case the agreement is better than for the corresponding plots in Figures
5.5 and 5.8. (For station P, the value for 1988 in the dependent linear trend model of
Figure 5.9 is similar to that for the independent quadratic trend model of Figure 5.5, but
the overall fit is much better in the case of Figure 5.9.)

As a final evaluation of the dependent models, Figures 5.11 and 5.12 show plots of
the actual data on exceedances over 120, for station P and the network maxima, together
with five simulations from our final dependent model. The purpose of this is to allow us to
judge by eye how well the simulations are producing data sets that look like the real thing,.
The plot here is of day within the period (day 1=1/1/81) on the z axis, ozone in ppb on
the y axis. For station P, the simulations generally producesimilar 1988 values to those
observed, and higher ones for 1983. In the case of network maxima (Figure 5.12), none
of the simulations produces values as high as those actually observed for 1988, though the
agreement elsewhere is reasonably good.

The overall conclusion from this section is that the independent models, or those that
merely incorporate dependence through the inclusion of the PDAY variable in the model
of Section 3, seem to fit the data when judged by probability plots of the excesses, but
do not do an entirely satisfactory job of reproducing the higher levels as judged by the
predictive diagnostics. The Markovian model introduced in this last part of the section
does seem to get around that difficulty as well: although the models still underpredict the
1988 values, they are consistent with the data as judged by overall goodness of fit criteria.
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In the present context we are, in effect, working not with the original process {X;} of
daily ozone maxima, but with a censored process {6;,Y;} where

5 = 1 ifX;>u
T10 fXi<u

and Y; = X; — u if §; = 1 and is undefined otherwise. To model this within the framework
of (5.6), we therefore have to think of the observed process as a mixed discrete-continuous
process. Suppose, on day i, the probability of exceeding the threshold u is p;, and the
conditional distribution of the excess, given the threshold is exceeded, is represented by a
GPD G(y; 04, &) from (5.2), with density g = 0G/0y. Then the relevant density component

f1is
1 —Pi if (5,’ = 0,
pig(Yi;0:,6) if & =1.

To complete the specification of the problem, then, we need to define a joint density f;.
To do this, we need to find a suitable form of the joint distribution function Fy(zy,z2) =
Pr{X; < z1, X2 < 2}, which will be well-defined for z; > u,z; > u, that ideally
will have the properties (a) the marginal distributions of the excesses have the GPD, (b)
the distribution will contain independence as a special case, (c) the model should also
incorporate some meaningful dependence among the extreme values. One model that has
all these properties, given as equation (3.5) in Smith’s (1993) review paper, is defined by

— -1/& /e
Fy(z1,29) =exp [—{ (- log (1 . (1 +6 z1 u) ))
01 +
—1/§2 /oy a
o))
(o)) +

valid in z; > u, z, > u. Here « is a parameter representing the strength of dependence
between the two components. The permissible range is 0 < a < 1, where a = 1 represents
independence and the limit a | 0 the total-dependence case in which the two components
are equal with probability 1. The justification of the parametric form of (5.8) is that it
represents a threshold version of the “logistic” dependence structure which has proved to

be a valuable contribution to the literature on bivariate extreme value theory (see e.g.
Tawn, 1988).

(5.7)

(5.8)

With F, defined by (5.8), the appropriate form of f, for insertion in (5.6) is

Fg(u,u) if 51 = 0, (52 = 0,
an('U, + Yl,u)/aYl if 51 = 1, 62 = 0, (5 9)
6F2(u,u +Y2)/6Y2 if 61 = 0, 62 = 1, ’

32F2(u + Y, u+ Yz)/aylaYz if 6 =1, 6 =1.

We thus have a model whose components are
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Table 5.15: Calibration of probability forecasts by year
Network maxima, level 139.9, dependent model

Year n r e w z

1981 214 4 4.039 3.268 —0.021
1982 214 4 4.365 3.736 —0.189
1983 214 13 12.284 8.009 0.253
1984 214 8 4.520 3.778 1.790
1985 214 3 2.613 2.301 0.255
1986 214 1 2.580 2.349 -1.031
1987 214 7 6.548 4.982 0.203
1988 214 13 8.930 6.217 1.632
1989 214 0 2.463 2.053 -1.719
1990 214 0 0.561 0.540 —0.763
1991 214 2 2.306 1.809 —0.227

The z values do appear to be better than those in the earlier Table 5.8. In this case
3= 2% =10.728, clearly not significant against £2,, though the interpretation of this is still
a little dubious as several years have small e values. Regrouping in the same way as in
Table 5.9, we have:

Table 5.16: Calibration of forecasts by year (regrouped)
Network maxima, level 139.9, dependent model

Year n r e w z
1981-2 428 8 8.404 7.004 —0.153
1983 214 13 12.284 8.009 0.253
1984-6 642 12 9.713 8.428 , 0.788
1987 214 7 6.548 4.982 0.203
1988 214 13 8.930 6.217 1.632
1989-91 642 2 5.330 4.402 —1.587

for 5722 = 5.93, not significant against x3. Note that the e values here are computed
sequentially as we go through the data, i.e. the predicted value for day n does depend
on the observed value for day n — 1. However, this does appear to be a valid method of
comparison, since this kind of sequential analysis is precisely the situation that the theory
of Seillier-Moiseiwitsch and Dawid (1993) is designed for. As in our earlier analyses, we
have dealt with the problem of parameter estimation by dropping one year at a time, each
year’s predictions being calculated using the model fitted to the other ten years’ data.
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o the probability of exceedance p;, of the form (3.2) (with no PDAY, PDAY2 covariates
in this case),

o the GPD G(:;0;,¢) for the daily excesses, defined by (5.2) and (5.3),

e a first-order dependence parameter «, defined by (5.8), that captures the strength
of dependence from day to day.

This model was then fitted to the network maxima data using the models of Tables
3.11 (without PDAY) and 5.5 to define starting values for, respectively, the exceedance
probability parameters and the excess parameters. The final values from the fitted models
are given in Tables 5.12 and 5.13. The estimated value of « is .940 with a standard error
of .032, and the value of NLLH is 859.564, compared with an initial value of 862.729 with
o = 1. For technical reasons (J. Tawn, private communication) the likelihood ratio test
statistic of the null hypothesis @« = 1 against the alternative @ < 1 does not follow the
usual asymptotic x? distribution, but the drop in NLLH would seem big enough to indicate
a significant result. On the other hand, there is no evidence of a very strong dependence.

Table 5.12: Exceedance probability parameters under dependence model
Network maxima: threshold 119.9

Parameter Estimate Stand. error t Ratio
CONST -21.85 1.575 -13.87
YEAR —0.1545 0.03762 —-4.11
CDAY —1.047 0.7126 —1.47
SDAY 0.472 0.2954 1.60

T 0.2894 0.02157 13.42
RH —-0.01627 0.00967 -1.68
WIND.U —0.0297 0.03868 -0.77
WIND.V —0.1851 0.04311 —-4.29
VIS —0.06701 0.01955 —-3.43
T.WSPD —0.01795 0.002721 —6.60
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Parameter

CONST
YEAR

T

WSPD
T.WSPD

£

Table 5.13: Excess parameters under dependence model
Network maxima: threshold 119.9

Estimate

0.04538
—0.04698
0.047
—0.1312
—0.002606
—0.2367

Stand. error

1.556

0.02982
0.01877
0.1283
0.005078
0.07145

t Ratio

0.03
—1.57
2.50
—1.02
-0.51
-3.31

Once again, we believe that the predictive diagnostics form the best guide as to how
well this model is doing. Corresponding to the overall calibration in Table 5.7, we have
the following:

Pmin

0.000
0.050
0.100
0.300
0.500

0.000

Table 5.14: Calibration of probability forecasts
Network maxima, level 139.9, dependent model

pmaz

0.050
0.100
0.300
0.500
1.000

1.000

n

2107
93
116
30
g

2354

r

55

e

7.902
6.477
20.410
11.618
4.803

51.210

w z

7.722 —0.325
6.009 —0.602
16.422 0.639
7.002 0.900
1.887 0.871

39.042 0.607

Here Y 2% = 2.45 based on the first five rows, and the Brier score is 38.70 (Y;2 =
—0.08) compared with the earlier value of 40.42 for the model without dependence. The
calibration by year leads to:
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