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1. CONTEXT AND BACKGROUND

In connection with current and anticipated developments in intelligent transportation systems,
studies of problems of short-term traffic flow forecasting and management on urban road net-
works raise questions about patterns of variability of link flows and travel times, and dependencies

amongst such quantities across collections of links. These kinds of issues are being studied as part
of the collaborative project run by the National Institute of Statistical Sciences (NISS). As pre-
lude to wider statistical modelling and exploration of variability and dependence issues, a part of
the initial stage of this project focuses on exploration of the degrees of uncertainties about, and
relationships between, equilibrium link travel times arising from static network equilibrium mod-
els. The network structure and flow models of the Advance project (Boyce et al, 1992; Berka and
Boyce, 1994), based on a geographic zone structure in northeastern Ilinois, provides relevant con-
text, and associated zone-to-zone flow survey information from the Chicago Area Transportation
Survey (CATS—-Ghislandi, 1994) provides some relevant data. In connection with this exploratory
study, variations on traditional gravity models for zone-to-zone flows are examined, with a view
to a further stage of the project that may address questions of uncertainty about equilibrium link
flows and travel times by repeatedly simulating average zone-to-zone flows and then running such
replicates through existing network flow models, such as the Advance model. This way, replicated
runs produce sampled equilibrium flows and times that incorporate and represent the uncertainties
about average zone-to-zone flow rates captured in the statistical measures of uncertainties about the
gravity model parameters. Patterns of dependency among equilibrium characteristics are similarly
represented.

This program requires initial work on statistical inference for gravity models, and that is the
subject of this article. In particular, the development here presents approaches to Bayesian inference
in variations of traditional gravity models, and demonstrates how the Bayesian approach naturally
delivers simulated values of the model parameters that can lead into the kinds of sensitivity studies
in equilibrium flow models just described.

It should be noted that, in addition to thé immediate goal of sensitivity analysis in static
equilibrium flow models, the kinds of statistical developments here provide a formal basis for inte-
grating Bayesian inference in gravity models (or other models for predicting traffic flow patterns)
into micro-simulations of networks, whether viewed as static or, more generally and ultimately re-
alistically, dynamic and stochastic. Simulated realisations of actual zone-to-zone flows are trivially
generated within this framework, and represent parameter uncertainty as well as natural stochastic
variation in flows about average values. It is expected that such developments with be forthcoming
in future studies. ’
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Some discussion of gravity model forms is given in the next section. Section 3 develops the
framework for Bayesian inference and simulation of posterior (or post-data) distributions for gravity
model parameters in the context of actual zone-to-zone flow data observed on a specified geograph-
ical zone structure. Covariate information about anticipated average travel times between zones is
assumed available to provide impedances in the models. Section 4 exhibits some summaries from
analysis of a small section of a survey data set from the Chicago area, on a small sub-network. The
section concludes with further discussion, including questions of scaling up from survey sample to
population levels.

In addition to the specific focuses in the gra{fity model context, it is expected that the con-
ceptual and methodological aspects of the Bayesian approach will have wider utility in the trans-
portation research community, so this paper serves, in part, to introduce and exemplify Bayesian
inference in an accessible disciplinary context. ‘

2. MODELS FOR ZONE FLOWS

The cornerstone of gravity modelling is the class of Poisson log-linear models for zone-to-zone traffic
flows (Sen, 1986; Smith, 1987) Label the geographic zones of the area under study as 1,...,n,
and consider a specified period of the day during which zone-to-zone trips arise at an assumedly
constant rate. Write y;; for the number of trips from origin zone 7 to destination zone j in the
period; assume, initially, that these flows are to be observed precisely at some future time. The
basic Poisson model assumes these quantities to be conditionally independently Poisson distributed
with means t;;, these means depending on characteristics of the origin and destination zones and
the transportation network. The particular variant of gravity model discussed here adopts the
form and notation t;; = a;b;f;; where characteristics of the zones as origins and destinations
are incorporated via zone-specific parameters a; and b; respectively, and the interaction term f;;
represents additional factors arising primarily from network characteristics. .

For the technical reason of parameter identification, we assume and constrain the model so
that f;; = 1 for all zones ¢, and must also constrain one of the a; or b; parameters to a specified
value; one simple way of doing this is to rewrite as

tij = masb; fij,

where a,, = b, = 1 so that the single parameter m = t,,. (This is known as aliasing the parameters
a, and b,, and can be effected in other ways; an equivalent alternative, but one that here leads
to more technical complications, is to constrain, say, the geometric mean in this of the a; to be
unity, and the same for that of the b;. The ahasmg used here is similar to that in the GLIM system
(Baker and Nelder, 1985).)

All quantities m,a;,b; and f;; are positive, hence the log linear representation log(t;;) =
log(m) + log(a;) + log(b;) + log(fij). Further assume that the interactions depend on available
covariates, a vector of covariate values z;; being available for each zone pair. The simplest form
of dependence is a regression log(f;;) = ¢'z;; for some uncertain regression parameter vector g.
Coupled with the Poisson assumption, this specifies a log-linear model in the class of generalised
linear models that is central to modern statistical regression analysis (McCullagh and Nelder, 1989;
West, 1985). Often, a single covariate standing proxy for anticipated or estimated average travel
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time between zone pairs is used, and this is the case in the study reported below. In such a case,
assume the scalar z;; represents expected travel time, so then g is a single parameter and the
Poisson means become

ti; = ma;bjexp(gz;j).

Assuming the common sense expectation that ¢ < 0, the z;; are sometimes termed traffic flow
impedances as larger values reduce the expected flows. This, then, is the basic model studied here.
The following development introduces some variants, and other variations that, for example, add
further covariates, might similarly be studied and analysed using the methods of this paper.

The most interesting variant is introduced as a mechanism for relaxing the strict assumption
of linear regression for the zone-by-zone interactions f;;, and also provides a neat approach to
inducing stochastic variations on the basic model that can be viewed as a means of relaxing the
strict Poisson /log-linear structure for robustness reasons. That is, extend the above form to include
positive random interaction effects h;; so that

ti; = ma;b;hi; exp(gzi;) = ma;bjexp(gz;j + log(hij)).

This model is identified through the imposition of distributional assumptions for the ;. For exam-
ple, suppose the h;; are randomly generated from a log-normal or gamma distribution with mean
unity, and this independently of the other model parameters m,a;,b; and g; then, conditionally
on the remaining model parameters, E(t;;) = ma;b;exp(gz;;), reducing to the original interaction
form. This can be seen as an elaborated model that allows for extra-Poisson variation: indeed,
with a gamma model for the h;;, the Poisson is effectively replaced by the more diffuse negative
binomial. Otherwise, and more pragmatically, introducing these random effects parameters allows
for sensitivity and robustness studies relative to the basic Poisson model; estimation of the h;; will
indicate which zone-to-zone pairs are mostly consistent, and which are less consistent, with the
gravity model simply by inferences on which of the h;; are reasonably close to unity, and which are
* significantly larger than unity, respectively.

Previous works on inference in gravity models have developed maximum likelihood, and re-
lated, approaches to estimation of the a;,b; and g parameters (Sen, 1986; Smith, 1987). Here, in the
context of the elaborated model, Bayesian inference is developed, to both extend and complement
other approaches. In particular, Bayesian analysis as developed here delivers not only point esti-
mates of all parameters, but accessible posterior distributions for these parameters that sufficiently
summarise and describe the uncertainties about such parameters and the patterns of dependencies
between parameters. Further, and especially of relevance in connection with uses of these models
to impute or forecast zone-to-zone flows, the Bayesian approach centrally features the evaluation
of predictive distributions for future forecasting purposes. The terminology here will be explained
and elaborated below. For readers not fully conversant with the basic concepts and methods of
Bayesian statistics, useful background reading can be found in Bernardo and Smith (1994).
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3. BAYESIAN ANALYSIS AND COMPUTATION

3.1. Bayesian framework and likelihood

Consider now the prospect of observing actual OD flows y = {y;;; 7,7 = 1,...,n}. Interest lies in
estimating all gravity model parameters z = {m,a;, b;, hij,g; t,7 = 1,...,n}, and in describing
and representing resulting uncertainties about these parameters. From a Bayesian viewpoint, this
is achieved by computing and summarising the posterior (or post-data) distribution based on a
specific prior (or pre-data) distribution, and typically exploring the sensitivity of characteristics of
the posterior to various changes in the prior and in the model (Bernardo and Smith, 1994).
Formally, this is performed via Bayes’ theorem in terms of probability density functions, namely

p(zly) = ep(2)p(yl2)

where c is simply a normalising constant, p(z) represents the prior density for parameters and p(y|z)
represents the sampling model for the data conditional on the parameters; since y is here viewed
as fixed once observed, p(y|z) is the likelihood function for z. Under the gravity model specified,
this is, as a function of z,

n n
p(ylz) < [T JT #%5 exp(—tivi5)
i=1j=1
n n

n n n n
— e Y n 98 Yix Yui Yij _ h.h..edTii
=mY~e Hai Hbj HHhU exp mE E azbjhue J
=1 i=1

i=1j=1 i=1j=1

where

® UYin = Z?:l Yij fori = 1,...,7’L,

® Yuj = E?zlyij fOI‘j = 1,...,n,
Yux = Dimy 2jey Yij» and

o 8 =3001 2 =1 Bijlij
are some summary statistics. At this point, maximum likelihood based analysis would proceed by
finding the parameter estimates that maximise this function, typically using some form of iterative
mode search (eg. McCullagh and Nelder, 1989; Sen, 1986; Smith, 1987). Some more commentary
on this appears below. The Bayesian approach requires a prior distribution p(z), and the form

currently used, and used in the data analyses reported below, is structured as follows.

3.2 Prior distributional structure

The prior is structured as

n—1 n o n
p(z) = p(m)p(g) (H p(ai)p(bi)) TTT1I»k:),
1=1 1=11i=1

with implicit independence structure. Notice that, as a, = b, = 1, fixed, only the first n — 1 of the
origin and destination parameters a; and b; appear here. The components of this full joint prior
density are described below. Throughout, gamma distributions are featured; here w ~ Ga(w|r, q)
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denotes the gamma distribution with shape parameter 7 and scale parameter ¢; the density function
is p(w) = cw” ! exp(—qw) for w > 0, where ¢ is simply the normalising constant ¢ = ¢"/T(r). This
distribution therefore has mean E(w) =r/q, mode max{0,(r — 1)/¢} and variance r/¢>.

e For the critical impedance parameter, a uniform prior is assumed; that is, p(g) = 1/G for
—G < g < 0, being zero otherwise, for some large and positive G.

e Fore,j =1,...,n—1,each of the zone origin and destination parameters a; and b; has a gamma
prior, namely Ga(a;|cqaio, cq) and Ga(bj|cybjo, cy). Here-cq > 0 and ¢, > 0 are specified scale
parameters, and the specified prior means are E(a;) = aj and E(bj) = bjo. An important
special case is the reference or uninformative prior that arises by letting ¢, and ¢, tend to zero,
producing p(a;) « 1/a; and p(b;) « 1/b;.

e The quantity m is similarly gamma distributed, Ga(m|c,,mo, ¢rn), with specified prior mean
E(m) = mgy and shape parameter ¢,, > 0.

e The random effects h;; are assumed gamma distributed with common prior Ga(:|cy,cy) for
some specified constant shape parameter ¢, > 0. This implies E(h;;) = 1 and V(h;;) = 1/cp
for all 7, j. Note that setting h;; = 1 delivers the traditional gravity model, so that the prior on
these random effects is therefore ‘centred’ about that traditional model. If ¢j is very large, the
gamma prior concentrates about the unit mean; otherwise, the prior is more diffuse, allowing
for random deviations away from the traditional, or baseline, model.

It should be reaffirmed that our analysis is not specific to these priors, and other forms may be
assumed and studied. Two comments are noteworthy, however. First, the assumed gamma forms
lead to nice conditionally conjugate structure that is simplifying technically, and are traditional
- forms in Bayesian analysis for this reason, among others. Second, we use relatively diffuse, unin-
formative versions of these priors by taking small or zero values for the shape parameters; the prior
for g is already uninformative in the uniform sense.

3.3 Conditional Posterior distributions

To begin, the combination of prior densities with the likelihood function to produce posterior
densities is elaborated technically, followed by discussion of connections with point estimation
methods based on maximum likelihood.

Directly from the mathematics of Bayes’s theorem with the above priors, it is easy to see
the structure of conditional posteriors for individual subsets of the parameter vector z, where the
remaining parameters are assumed known (conditioned upon). This is a typical aspect of multi-
paraineter Bayesian analysis, and one that critically underpins analysis based on iterative methods
of posterior simulation (Smifh and Roberts, 1993; Miiller, 1991).

To exemplify and develop the first such conditional distribution, focus on the parameter m, just
the expected flow from zone n into itself under the specified model. It is clear that the posterior
density for m conditional on y and all other parameters in z but m (written simply as z\m) is
simply proportional, as a function of m alone, to the full product p(z)p(y|z). Ignoring all positive
multiplicative factors not involving m, this simply reduces to

p(mly, 2\m) o p(m)m¥* exp(~mh(z\m)) o m*n ™0+~ exp(=m(cy, + K(z\m)))
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where

k(z\m) = ZZazb fij»

=1 j=1

with fi; = hi;j exp(gzi;). Hence,
o were z\m known, the posterior for m is simply a gamma distribution (updated from the gamma
prior), namely Ga(m|cnmo + Yux, Cm + k(2\m)).
Similar ideas lead to the following conditional posteriors for all other parameters.
e Foreachi=1,...,n— 1, a; has distribution Ga(a;|caio + Yix,Ca + mz;;l b;fij)-
o Foreach j =1,...,n— 1, b; has distribution Ga(bj|csbjo + Yuj 6 + M > 1) aifij).
e For every pair 1,7 = 1,...,n, the individual random effects parameter h;; has the conditional
distribution Ga(hijlch + ¥ij, ch + masbjexp(gzi;))-
e For the impedance parameter g, p(g|y, 2\g) x exp(gy.x — mk(z\m)), (=G < g < 0); note that
this function involves the argument g in through k(z\m).
Before proceeding, in the next subsection, to describe iterative simulation from these conditional
distributions, it is illuminating to connect with maximum likelihood estimation by elaborating
an iterative algorithm for computation of posterior modes. The mode of the full joint posterior
p(z]y) may be iteratively solved by sequencing through the above conditional distributions and,
at each step, computing the mode of the individual conditionals. To tie explicitly with the MLE
calculations, specialise to the reference prior case in which the prior scale parameters ¢,, = ¢, =
cy = 0, and set h;; = 1. Then each of the conditional distributions above (now excepting those for
the h;;) has mode, as a function of the other parameters, given below; the conditional means are
noted too, for further use below:
~ m has conditional mode max(0, (y.«« — 1)/k(z\m)), and conditional mean y../k(z\m);
each a; has conditional mode max(0, (yix— 1)/ Z;;l b;fij), and mean yi./ 3°5_, b fiji
each b; has conditional mode max(0, (yx; — 1)/ > i, @i fij), and mean yu;/ > iy aifij;
the conditional mode of ¢ is not available in closed form, but may be solved by numerically

maximising the log posterior, i.e. solving the equation

n n
—_ T
Yux = M E E aibjhijzije™"

i=1 j=1

over —G < g < 0. This is easily solved via the Newton-Raphson gradient algorithm.

Sequencing through these equations, replacing each parameter by its current conditional mode at
each. step, leads iteratively to the approximate posterior mode. In cases where a y;. or y.; is zero,
the corresponding a; or b; has a conditional posterior unimodal at zero and, in terms of solving for
reasonable estimates of the parameters, the conditional means might be used instead; this happens
in cases of zero zone-to-zone flows between some zones due to small samples or simply low flow
rates. Note that this corresponds exactly to iteratively solving for the maximum likelihood values
using standard methods (McCullagh and Nelder, 1989; Sen, 1986; Smith, 1987). In establishing
useful starting values for Bayesian posterior simulations below, iterating between conditional means
rather than modes is used to avoid the zero problem. From this Bayesian perspective, this method of
evaluating point estimates is of interest only for initialising simulations, as fuﬂ'posterior descriptions
are obtained from the simulations.
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In cases of non-reference priors, exactly the same ideas apply. Further, incorporating the
random effects parameters h;; simply adds the computation of their modes or means, and they
are directly available from the relevant conditional gamma distributions above, requires no further
comment.

Note than, as n is typically fairly large, the posterior will be typically quite concentrated around
the region corresponding to the mode for the single parameter g. Hence the standard Bayesian
asymptotic normal approximation can be expected to provide a useful approximation to the true
conditional posterior for ¢g. This is important in simulation analysis, as a modified version of this
normal approximation may be used as a Metropolis proposal or importance sampling distribution
for generating g values. More on this below.

These iterative computations have been performed in models for various subsets of a real OD
flow problem mentioned and used for illustration below. Custom software has been compared with
the standard GLIM package (in the case of small n, i.e. n = 50, and random effects h;; = 1), to
verify correctedness. ' :

3.4 Posterior simulations

Fully Bayesian inference requires more global descriptions of posterior uncertainties and rela-
tionships not easily available through traditional analytic methods in these models. Hence, con-
sistent with the current revolution in applied statistics generally, simulation methods are used to
effectively draw sets of sampled parameters from the true posterior p(z]y), and then base posterior
inferences on summaries of the samples (Smith and Robert, 1993). Calculation of posterior samples
is feasible here via Markov Chain Monte Carlo methods, combining simple Gibbs sampling for most
of the parameters with a Metropolis/rejection sampling step for the impedance parameter g. The
techniques are quite standard in applied Bayesian work (Smith and Roberts, 1993; Miiller, 1991)
and there is a large applied literature describing such simulation methods in in many application
areas.

The analysis parallels the MLE/posterior mode computation, repeatedly iterating through the
individual conditional posteriors. Now, however, instead of computing a simple mean or mode at
each step, a random draw is made from each conditional distribution (of course, if the posterior
is very concentrated, such samples will lie close to the mode). Also, instead of simply iterating to
convergence to a single modal value for z, successive sampled parameters are saved, and ultimately
represent a (possibly very large) sample of z vectors from p(z|y). There are issues of convergence and
sensitivity to starting values. In these models, as many others, convergence is easily theoretically
assured (using standard results in the above references). Starting values are taken as approximate
posterior modes or means, as mentioned above, and it is usual to run such iterative simulations for
some initial ‘burn-in’ steps before subsequent samples are saved, assuming convergence to sampling
the true posterior is by then approximately achieved so that the dependence on starting values has
dissipated. Analyses reported below burn-in for at least 1000 iterations, and repeat simulations for
sensitivity analysis support assumed convergence.

In detail, the iterations proceed as follows. At a general iteration indexed by r, current values
of all parameters are represented by the current value of z = z("); thus

2N = {m(r)aagr)vb‘(ir)ahﬁ;)ag(r)Q ,j=1,.. '>n}
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is (after burn-in) approximately distributed according to p(z|y). Move to another sampled vector

z(r*+1) via the following sequence.

(1) Draw a new value of m, namely m("*!) by simulating from the conditional gamma posterior
p(mly, z\m) with z = 2("); modify the parameter z simply by replacing m(”) by this new value.

(2) For each =1,...,n—1, draw a new, conditionally independent values of the a; by simulating
separately from the conditional gamma posteriors p(a;|y, z\a;) with z at the current value; call

(r+1) "and modify z by replacing each aﬁr) by !tV

i i

the resulting draws a

(3) Asin (2), but now independently simulating b,,...,b,_1; update z with the new values.
(4) Asin (2) and (3), but now independently simulating each of the h;;. update z with the new
values.

(5) Sample a value of ¢ from p(g|y, z\g) with z set at the value so updated in steps (1)-(3); update

z to include this sampled value ¢("tV), and call the result z("+1),

(6) Save z("t1) as the latest sampled vector from p(z|y). Update the index r by one, and return
to step (1) to continue.

Only step (5) requires further comment, as sampling in all other steps simply involves (trivial)

simulation from known gamma distributions. Current software uses routine from Numerical Recipes

(Press et al, 1992) ’

At step (5), the univariate density for g is not of a standard form. It may be sampled many
ways, the method of preference here being a standard Metropolis/independence chain method
(Miller, 1991), for two reasons. First, a simple and excellent normal approximation is available,
as described above, to provide ‘candidate’ samples, detailed further below; second, the method is
computationally trivial to implement and embed in this iterative chain.

The basis of this step is to draw a ‘candidate’ value of g from a specified density ¢(g) chosen
as an approximation to the exact density p(g|y,z\g). Call this candidate value g*. Then, save and
record this candidate value as the new value for g, namely ¢g("*1) = ¢*, or reject it and revert to the
previous value g("*1) = ¢(r) The candidate value is saved with Metropolis acceptance probability
computed simply as v

p(g”]y, 2\g)a(g"")

P9y, 2\g)a(g”)
(for more details, see Smith and Roberts, 1993, or Miiller, 1991). Thus the sampled values of
g mayor may not change between successive iterations, though convergence of the resulting z(”)
vectors to samples from the true posterior is assured so long as the candidate density ¢ is bounded
and has the same support as the true posterior. In the context here, the true posterior is easily

evaluated, up to a constant of proportionality, as described earlier, simply through log p(g|y, z\g) =
¢+ gYux — mk(z\m) over —G < g < 0. One of the key features of the Metropolis step is that
the above acceptance probability involves the ratio of the posterior density at two points, so the
proportionality constant is not required as it cancels.

As earlier mentioned, the recommended candidate density is based on a modified asymptotic
normal approximation to the true posterior. The standard asymptotic normal approximation to
p(g]y) has mean § and variance v?(2), where # is the posterior mode and

1/v*(z) =m Z Z aibjhijx?jeg”‘f

=1 j=1
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for all z. The recommended candidate density ¢ is based on this normal approximation, but with
a slightly inflated variance, i.e. a normal with mean § and variance k?v?(%) where k£ > 1 a scale
factor chosen to spread out this basic normal approximation. This recognises that the asymptotic
normal posterior approximation, as the usual MLE approximation, will typically underestimate the
uncertainty about g; in analyses reported below, the value &k =5 is used. One further detail arises
in defining ¢, due to the fact that the true conditional posterior is truncated to the finite interval
—G < g < 0; thus the above normal distribution is replaced by the same distribution truncated to
this region, though this does not unduly effect computations as sampling normals truncated over an
interval is trivial. This completes the speciﬁcation. of structure of the iterative posterior simulation
algorithm.

4. CHICAGO AREA STUDY

The Household Travel Survey of the 1990 Chicago Area Transportation Study (Ghislandi et al,
1994) covers a six county region of northeastern Illinois and provides socio-demographic and travel
information that forms part of the database used in traffic forecasting and network studies in
connection with the Advance project (Boyce et al, 1992). Travel data from this survey are available
over a collection of n = 783 zones during various daytime periods, and the example chosen here here
is the late afternoon, two hour peak travel period. The useable returns from households surveyed
across these zones total 19,314 households (Ghislandi et al, 1994, exhibit 4) out of the total census
population of 2,760,200. The corresponding total sample number of trips during this period is
Yux = 22,759.

Some illustration is provided initially on the basis of a selection of 50 zones, those labelled
651-700 inclusive in the CATS zone identification scheme. Figure 1 gives a perspective plot of the
observed flows; note, in particular, that most OD pairs have no sampled trips and the non-zero
flows are mainly within zones. The impedance factors z;; are here taken as estimated average
zone-to-zone travel time based on the Advance network equilibrium model outputs using old CATS
OD flow data from earlier work as inputs (Boyce et al, 1992). Figure 2 provides a perspective plot
of the values —z;; over these selected 50 zones.

Figures 3 through 9 provide some summaries of posterior simulations based on the above de-
velopment. The analysis uses reference priors for the parameters m, a;, b;, thatis ¢, = ¢ = ¢, = 0.
For the random interactions h;;, the shape parameter is ¢, = 2, indicating the expectation that
there will be some fair degrees of variation in the OD flow data away from the baseline Poisson
model with h;; = 1, simply allowing for such variation though not anticipating its nature. After
running the mode/mean iterations for (a very generous and conservative) 5000 runs to convergence,
the parameter values are approximately = 0.3150,§ = —0.6393, and the asymptotic normal pos-
terior for g has approximate standard deviation ¥(%) = 0.0109. (For comparison, the corresponding
maximum likelihood values are m = 0.2980, g = —0.6232, and v = 0.0190.) Figure 3 provides a
perspective plot of the values exp(gz;;) over the 50 zones. '

Starting at the posterior mode/mean mean values for z, the iterative simulations are burnt-in
for 1000 runs and then a further 25,000 runs performed. Every 250 runs, the current parameter
draws are saved resulting in a sample of 100 z vectors, approximately distributed according to
p(z]y). Each z vector is used to compute corresponding values of the Poisson means t;;, thus
generating a sample of size 100 from the posterior for these means. Figure 4 displays a plot of one

9 -
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such sample, a representative from the posterior distribution of expected number of trips for the
selected 50 zones. Figure 5 is a similar plot, but now representing predictions of future trips; for
each zone pair, independent Poisson variates are simulated with the means displayed in Figure 4,
resulting in a sample of actual flows from the posterior predictive distribution of such flows. Most
of the flows occur within zones; to more clearly see the model implications within zones, Figure 6
plots actual within-zone flows, and adds the estimated flows based on the approximate posterior
mean/modal values of the t;; simply computed directly from 2. The agreement seems excellent.
Figure 8 provides a similar plot, but now of all 100 posterior samples of within-zone expected flows.
This gives some indication of posterior uncertainties about the t;; for each zone i. Figure 9 displays
a similar picture, but now of predicted flows, with the additional, purely random Poisson variation
about the simulated t¢;; added. Finally, Figure 7 provides an histogram display of the 25,000 draws
from the posterior for the impedance factor g, representing the true posterior density. For contrast,
the asymptotic normal approximation mentioned and used in the analysis is superimposed as a
density curve; note that (as is typical) this asymptotic approximation is offset in location and,
more importantly, underdispersed relative to the true posterior. A critical factor in the analysis is
that the Metropolis candidate distribution ¢(g) is rather more spread out and so the simulations
capture regions of g values supported under the true posterior.

Repeat analysis constraining the interaction parameters h;; to unity, or with priors very con-
centrated near unity, produce results that are broadly similar, although the more robust analysis
with less constrained h;; factors does protect against outlying counts and impedances, and other
irregular or peculiar features in the data; this kind of modification of a baseline model is similar in
concept and general terms to those in West (1995), though the technical structure differs. Further
similarities exist with the random effects structures introduced in biased sampling models in West
(1995) in an entirely different application context and with different models.

Turn now to analysis of the full 783 zone network of the CATS area study. Repeat analyses
have been performed with the full data set on this very much larger network. It is found that the
reasonable fit of the baseline model to the small 50 zone region does not scale up to the entire
network. The critical limiting factor is the very limited and highly sparse data set of flows; there
are only 8,941 7 — j pairs between which there are non-zero flows in the sample, of the total 613,089
zone pairs. Also, the extent to which the historical estimates of zone-to-zone expected travel times
vary across zone pairs is rather small; in fact, many origin zones ¢ have estimated times that are
constant across ranges of destination zones j. Most of the larger flow rates are within zones, and
most origin zones have very low average flows rates even though they may have one or two quite
large observed flows. As a result, the baseline gravity model fit results in low values of the a;
and b; parameters, and quite radically under-estimates the few much higher flows, notably those
within-zones. This is to be expected from such extremely sparse data, and could only be improved
if significantly larger surveys were mounted, producing many more zone-zone pairs with non-zero
observed flows.

From a purely predictive viewpoint, however, the incorporation of the individual random effects
hi; provides a mechanism for improving the model fit by allowing for the larger flow rates through
larger values of the h;; for the zones in question. To do this automatically and objectively, the
prior gamma distribution for these factors must be diffuse enough so that the posteriors adapt to
much higher values. Exploratory analyses reveal that, in the context of the CATS data analysis,
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the scale factor ¢j, of 2 above overly constrains the analysis, and a much lower value is needed. The
remaining figures summarise results of analysis using ¢, = 0.01, a very low value and one allowing
for adequate adaptation.

In this analysis, § = 0.0098 (with approximate standard deviation of 0.0007), a very much
reduced value indicating the far lower explanatory power of the impedance factors in the full
network. Figure 10 provides a perspective plot of the values exp(gz;;) over just the 50 zones earlier
selected; the reduced regression effect is clear here. Figure 11 displays a representative perspective
plot of predictions from the full model, again restricted for display to the selected 50 zones. This
is obviously quite good, though most of the agreement between predictions and actuals now comes
through the individual random effects, especially along the ‘diagonal’ in this picture, i.e. for the
within-zone flows. This can be seen in the final Figure 12 where, for these 50 selected zones, the
actual h;; values sampled from the posterior to produce the predictions exhibited are themselves
displayed.

The above example analyses are based on recorded survey data. For eventual forecasting of
expected or actual OD flows at the population level, analysis needs extension to scale-up from the
survey to population levels. These kinds of scale-up problems can be approached in various ways,
formally and informally, and using various additional sources of census and demographic informa-
tion. Full discussion is not in order here, though the kinds of external modelling and imputation
of sample-to-population level flows developed by Kim et al (1992) are suggestive of the kinds of
more formal models that could be developed. In terms of the rather specific goals of the NISS
project in connection with studies of uncertainties about, and dependencies amongst, flows, much
simpler and cruder approaches should suffice. At a basic level, origin zone-specific scale up factors
may be used, and the kinds of information sets needed for this are indeed available in the CATS
area study. Suppose that the network region has census population counts of households, say N;
total households for zone :. Suppose also that the survey returns provide N,; useable returns for
zone ¢. Two further assumptions lead to simple scale-up: first, that non-responses to survey ques-
tionnaires are effectively random/non-informative, and second, that households within zones are
sampled proportionately. Under such assumptions, the model scales-up simply, extrapolating the
conditional Poisson model to the population level by increasing the expected flows t;; to t;;/p;
where p; = Ny;/N,; for each zone ¢ (and noting that zones with no households are excluded, having
zero outward flows). These methods may be quite reasonable in the context of preliminary studies
of OD flow uncertainties and dependencies. They will not, however, necessarily adequately capture
zone-to-zone variations in flow intensities that depend critically on socio-demographic character-
istics of the zones; then more direct study of the relationships between such zone characteristics
and trip flow rates, perhaps with Kim et al (1992) as a starting point, is in order. It should be
remarked that, with such additional models in hand, their incorporation into the above analysis
framework will be direct; at a general level, this will just extend the framework to include addi-
tional, uncertain scale-up factors as parameters, and add external information about those factors
through appropriate prior distributions. Such extensions are anticipated in future.
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Figure 1. Observed trips fdr the selected 50 zones from CATS 1990 survey.
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Figure 4. A sample from the posterior distribution of expected number of trips for the
selected 50 zones from CATS 1990 survey.
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Figure 5. A sample from the posterior predictive distribution of actual trips for the selected
50 zones from CATS 1990 survey.
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Figure 6. Actual (in full line) and expected (in broken line) within-zone flows over 50 zone
region.
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Figure 7. Histogram representing posterior density for the impedance parameter ¢ in anal-
ysis of 50 zone data set. The more peaked density curve superimposed in the asymptotic
normal approximation, and the more diffuse density curve that with a standard deviation
inflated by a factor of 5 and used in the Metropolis sampling steps of analysis.
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Figure 8. 100 posterior samples for the expected within-zone flows over 50 zone region.
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Figure 9. 100 posterior predictive samples for actual within-zone flows over 50 zone region.
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Figure 10. Estimated exponential impedances exp(§z;;) over all zone pairs for the 50
selected zones but now based on the full network analysis using data across all n = 783
zones.
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Figure 11. A sample from the posterior predictive distribution of actual trips for the selected
50 zones, but now based on the full network analysis using data across all n = 783 zones.
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Figure 12. A sample from the posterior distribution of the random effects/interaction
parameters h;; for the selected 50 zones, based on the full network analysis using data
across all n = 783 zones. In this analysis, the prior gamma distribution for these quantities
is so diffuse as to permit a high degree of adaptation of the posteriors to the data, as is

evident particularly along the diagonal of this figure where zone flows are higher and the
baseline gravity model inadequate.
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