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Abstract

We study Bayesian models and methods for analysing network traffic counts in problems of inference
about the traffic intensity between directed pairs of origins and destinations in networks. This is a
class of problems very recently discussed by Vardi in a.1996 JASA article, and of interest in both
communication and transportation network studies. The current paper develops the theoretical
framework of variants of the origin-destination flow problem, and introduces Bayesian approaches
to analysis and inference. In the first, the so-called fixed routing problem, traffic or messages pass
between nodes in a network, with each message originating at a specific source node, and ultimately
moving through the network to a predetermined destination node. All nodes are candidate origin
and destination points. The framework assumes no travel time complications, considering only
the number of messages passing between pairs of nodes in a specified time interval. The route
count, or route flow, problem is to infer the set of actual number of messages passed between each
directed origin-destination pair in the time interval, based on the observed counts flowing between
all directed pairs of adjacent nodes. Based on some development of the theoretical structure of
the problem and assumptions about prior distributional forms, we develop posterior distributions
for inference on actual origin-destination counts and associated flow rates. This involves iterative
simulation methods, or Markov chain Monte Carlo (MCMC), that combine Metropolis-Hastings
steps within an overall Gibbs sampling framework. We discuss issues of convergence and related
practical matters, and illustrate the approach in a network previously studied in Vardi’s 1996 article.
We explore both methodological and applied aspects much further in a concrete problem of a road
network in North Carolina, studied in transportation flow assessment contexts by civil engineers.
This investigation generates critical ihsight into limitations of statistical analysis, and particularly
of non-Bayesian approaches, due to inherent structural features of the problem. A truly Bayesian
approach, imposing partial stochastic constraints through informed prior distributions, offers a way
of resolving these problems, and is consistent with prevailing trends in updating traffic flow intensities
in this field. Following this, we explore a second version of the problem that introduces elements of
uncertainty about routes taken by individual messages in terms of Markov selection of outgoing links
for messages at any given node. For specified route choice probabilities, we introduce the concept of a
super-network, namely a fixed routing problem in which the stochastic problem may be embedded.
This leads to solution of the stochastic version of the problem using the methods developed for
the original formulation of the fixed routing problem. This is also illustrated. Finally, we discuss

. various related issues and model extensions, including inference on stochastic route choice selection
probabilities, questions of missing data and partially observed link counts, and relationships with
current research on road traffic network problems in which travel times within links are non-negligible
and may be estimated from additional data.
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1. INTRODUCTION

In a recent article, Vardi (1996) addressed problems of inference in traffic intensity counts in networks
based on observed traffic counts on directed network links between pairs of nodes. The archetype application
context is a’communication network. Here traffic counts on an individual directed link represent numbers of
messages transmitted across that link. Interest lies, at least in part, in estimating the source, or origin, to
destination counts; that is, for each pair of communicating nodes 7 and j in the network, estimate the number
of packets transmitted from i to j based on the observed link counts. This is one of a collection of problems of
interest in various areas, including, with extensions to incorporate non-negligible and stochastic link transit
times, studies of transportation networks. In this area, there is long-standing interest in estimation of so-
called “OD matrices” that represent the actual or expected flows or counts of traffic between all possible pairs
of origin (“0”) and destination (“D”) nodes or zones in urban road networks during a specific time interval
These matrices are used as inputs to network equilibrium models that are central tools in transportation
modelling and policy studies (Berka and Boyce 1994, Sheffi 1995, West 1994). Our work directly connects
with specific road transportation network problems, and we develop an applied study in the area in Section
4 below.

The current article addresses the network count inference problem from a Bayesian perspective. We
elaborate on the theoretical structure of the basic network count problem, and develop analysis for the so-
called fixed routing problem; that is, inferring flows of traffic between all directed origin-destination pairs
based on observed counts on all links in the network. This underlies the development of posterior analysis
based on iterative simulation methods, and is presented in Section 2 of the paper following introduction of the
network specification, notation, terminology and basic structure. Various difficulties of analysis encountered
in non-Bayesian approaches are alleviated by approaching the problem this way. Throughout Section 2 and
in Section 3, we illustrate the ideas and present some computational results in an example network studied
by Vardi, as cited. Section 2 focusses on the algebraic and statistical structure of the basic network flow
problem, and discusses prior modelling and aspects of resulting posterior distributions. Here we discuss
and exemplify a general structural feature of the network problem that raises issues and challenges for
any statistical analysis. This relates to unavoidable ambiguities in inferences based solely on likelihood or
other non-Bayesian methods, and whose solution requires imposition of additional constraints. We discuss
and demonstrate how this is naturally achieved by imposition of partial stochastic constraints through
informed prior distributions. Section 3 is concerned with issues of implementation and computation. Section
4 discusses an informative real application. This is followed by discussion of extensions to incorporate
stochastic route selection, also discussed by Vardi (1996), using Markov models for sequential selection of
links to be traversed in moving between a specific origin-destination pair. We develop a simple and natural
embedding of such a problem in a larger, artificial network introduced to map the stochastic route choice
problem onto the fixed route framework. This implies that a solution to the stochastic version of the problem
lies in the fixed route problem already developed. This neat solution is attractive in its conceptual simplicity
and rather interestingly reverses the roles of fixed and stochastic networks; whereas the fixed network problem
is a special case of stochastic routing, the solution to the latter is achieved by reversing the roles and defining
it as a special fixed routing problem. We conclude with discussions about extensions to include inference on
stochastic route choice selection probabilities, questions of missing data and partially observed link counts,
and relationships with current research on road traffic network problems.
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2. THE BASIC NETWORK INFERENCE PROBLEM

2.1 Notation and Structure ‘

We adopt the basic structure and notation of Vardi (1996). Consider a fixed network of n nodes,
arbitrarily labelled A, B,---. The basic problem considers a fixed period of communication or passage of
traffic during which a collection of messages moves through the network; each message originates at one
node in the network, its origin or source node, and travels to another, its destination node, along a unique
path as long as we deal with a “fixed routing problem”. We are concerned with actual numbers, or counts,
of messages travelling between pairs of nodes in the network. For any ordered pair of nodes a = (i, j), write
Xo for the number of messages originating at node i and terminating at its destination node j. X, is the
origin-destination count between these two nodes. Given n nodes in the network, there are ¢ = n(n — 1)
origin-destination pairs. Interest lies in estimating the full set of such counts based on observations of traffic
counts on all individual directed links in the network, i.e. of traffic counts between pairs of nodes that
communicate directly, without intervening nodes. Let r be the total number of directed links in the network.
Let s = (7,7) represent the directed link from node i to node j, and write Y; for the traffic count on this
link. Then, based on observed link counts Y (Y1,...,Y:), we are interested in inferring origin-destination
counts X % (X1,...,X.)." Note that the number of observed link counts r is typically smaller than the
number of origin-destination pairs ¢, especially in very large networks. Throughout the paper, we implicitly
assume r < c.

Following Vardi (1996), Y and X are related through the r x ¢ routing matrix A = {A; ,} where 4, , =1
if the directed link s belongs to the directed route through the network between origin-destination pair a,
Ao = 0 otherwise. Note that A is typically singular, with a number of columns larger than the number of
rows. With this definition, and with the links implicitly ordered 1,---,r, we have the defining identity

Y = AX. (1)

This simply expresses each link count Y; as the sums of the origin-destination counts for all routes that
include directed link s. From an algebraic perspective, Y imposes a set of linear constraints on X The
routing matrix summarises the network traffic structure in useful ways. For example, (AA'), , counts the
number of origin-destination routes passing through link a, and (A A’),  counts the number of routes that
pass through both links a and b. Similarly, (A’A), , is the number of links in route s, and (A’A),; the
number of links that routes s and ¢ share in common.

A realistic problem will have a routing matrix that has no duplicate columns and in which each column
has at least one non-zero entry. This relates to an identification issue in the estimation approach of Vardi
(1996, Section 2), though is a practically relevant constraint independent of issues of estimation. A duplicate
column means a redundancy in origin-destination pair specification. A zero column is disallowed, as it would
imply a non-communicating origin-destination pair. Similarly, a zero row would imply a link lying outside
the network, so is also disallowed.

Vardi (1996) gives several example networks. One such is the n = 4 node network in Figure 1. This
network, analysed further below, has r = 7 directed links and ¢ = 12 origin-destination pairs; the ordered
sequence of nodes comprising these links and origin-destination routes appears in Figure 2. The corresponding

7 x 12 routing matrix is
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Figure 1. An example four node network.

YI:
Yy
Y;:
Y, :
Ys :
Yg:
Y7I

A— B
B— A
A->C
B—-C
C -+ B
C—-D
D—-C

O H OO OO

OO O OO O

00
01
01
10
0 0
01
00

()

Claudia Tebaldi & Mike West

SO OO ~O
OO = OO OO
O-H O OO OO
—_ O = OO~ O
= O = OO OO
_ O O OO OO

®

: A—>B

: A= C

: A->C—>D

: B> A

: B>C

: B—-A—->C—>D

:C—>B— A

: C—->B

: C—=D
:D->C—-B—-A
: D->C—B
: D= C

Figure 2. The link and route structure for the network in Figure 1.
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2.2 Prior Models for X

Our problem is that of computing and summarising the joint posterior distribution p(X|Y) for all route
counts X given the observed link counts Y. This requires a model for the prior distribution p(X) to be tied
together with the deterministic expression (1) that implies Y given X. Consider first the kinds of models
we might assume for p(X). '

The statistical framework of Vardi (1996) involves an assumption that the origin-destination traffic X
is generated from a collection of independent Poisson distributions for the elements X,. Assuming X, ~
Po(],), independently over routes a, Vardi proceeds to explore likelihood and method of moments estimation
approaches to inference on the Poisson rates A def {A1,...,Ac}. Both Poisson and independence assumptions
have been common in transportation network flow applications, though both are questionable in many
contexts. In developing prior estimates of origin-destination matrices in connection with network equilibrium
models, for example (Berka and Boyce 1994, Sheffi 1995) conditional Poisson models are typical although
dependencies between flows are often strong and may be modelled through hierarchical models for the rates
A (e.g. Sen 1987, West 1994). Thus, for example, West (1994) develops Bayesian analyses under the
Poisson assumption but with random effects regression models relating the Poisson rates \,. His models,
estimated based on survey data, incorporate origin and, separately, destination specific effects, together
with interaction terms that modify the Poisson rates as a function of distance (in terms of estimated travel
times) between origin and destination, and with additional route specific random effects to model residual
patterns of interactions and unexplained, extra-Poisson variability. Thus more complex prior models than
the independent Poisson forms are available by introducing structure among the Poisson rates through more
or less standard hierarchical components. These kinds of models can be incorporated in our development
below. For the current study, however, we restrict attention to the independent Poisson structure to simplify
presentation of the key developments and to tie in directly with the previous work of Vardi.

Thus we assume, following Vardi (1996), that X, ~ Po(}),), independently over a. Prior specification is
completed by a a prior for A, determining a joint model

p(X,A) = p(&) [T X2 exp(=Xa)/Xal, 2)
a=1
as the starting point for analysis. Though we are primarily interested in estimating X, estimation of A will
be an enabling activity and we will jointly infer X and A from (2) as a result. Begin with the assumption
that the Poisson rates are independently drawn from specified marginal prior distributions p(\,) for each a.
As mentioned above, this is consistent with more realistic models, for some applied contexts, in which the
priors p(A,) will themselves be further structured hierarchically in terms of hyperparameters.

2.3 Conditional Posteriors for MCMC Posterior Simulation

Given the prior (2), we now observe the link counts Y and will condition to deliver the required posterior
p(X, AY). Naturally, posterior computations are difficult analytically in any other than trivial and quite
unrealistic networks, so that our approach develops iterative MCMC simulation methods. Consider, in
particular, Gibbs sampling, in which we iteratively resample from conditional posteriors for elements of the
X and A variables. .

First consider A. We note that

p(AIX,Y) = p(A|X) = [] p(AalXa),
a=1

4
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whose components have the form of the prior density p(A,) multiplied by the gamma form arising in the
Poisson-based likelihood function. Thus, conditional on X, we can easily simulate new A values as a set
of independent draws from the implied univariate posteriors. If p(\,) is gamma, or a mixture of gammas,
these draws are trivially made from the corresponding gamma or mixture of gamma posteriors. Otherwise,
we may use a rejection method or embed Metropolis-Hasting steps in the MCMC scheme in the by now
standard “Metropolis-within-Gibbs” framework (e.g. see the many examples in Gilks et al 1996).

Now turn to the conditional posterior p(X|A,Y), viewing A as fixed. Our data Y are in the form of a
set of linear constraints (1) on the route count vector X, so that conditioning must be performed directly,
algebraically, rather than via the usual application of Bayes’s theorem. In the following sub-section we
develop a completely general, and automatic approach to analysis of this conditional posterior. Here, to
motivate that development and generate additional insights, we detail the structure of the posterior in a

D00

Figure 3. A simple three node network with just two directed links.

very simple example.

Take the network in Figure 3, just two directed links between nodes A,B and C, and with routing matrix

1 01
A=(o 3 1)

This has three routes A + B, B — C and A — C, with unobserved counts X1, X, and X3 respectively, and
links counts Y7 on A — B and Y; on B — C. Trivially, we see that knowledge of X3 in addition to Y implies
that both X, and X, are known, i.e. X; =Y — X3 and X3 = Y5 — X3. Furthermore, under the independent
Poisson priors for the X, it easily follows that the marginal posterior density of X3 is

P(X3]A,Y) o< p(X3lAs) T P(XalXa)Tv,—x,(Xa)

a=1,2
where I, (z) is the indicator of z = y for fixed y. This reduces to

Ae
p(X3]A,Y) X a£[2

AYQ—X:;
(Ya - X3)'

over the support X3 = 0,1,...,min(Y7,Y3). Hence the full joint posterior p(X|A,Y) can be simulated by
drawing X3 from the above distribution, then directly evaluating X; and X,.

This example, though trivial almost to the point of degeneracy, illuminates the general structure of the
problem of conditioning on Y to deduce p(X|A,Y). In general, the r vector Y and defining equation (1)
implies a set of r linear constraints on X. As a result, the posterior for X may be reduced to set of r linear
equations that deliver precise values of r elements of X given specified values of the remaining ¢ — r; the
marginal posterior for this remaining ¢ — r elements may be directly evaluated and used as the centerpiece
for posterior simulation in the MCMC framework. We move on with such developments below, but first

5
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describe and exemplify some further aspects of the model, and of resulting issues of ambiguity of inferences
in the absence of additional constraints or truly informed priors.

2.4 Structural Ambiguity and the Need for Informative Priors

In raw algebraic form the data Y simply provides a set of linear constraints on the unobserved flows X.
Under the assumed independent Poisson priors for the X;, and conditional on the values of the Poisson means
Ai, the data simply constrains the conditional prior p(X|)) to the support defined by Y = AX, so defining
“ridges” in the resulting likelihood function for A. This is best seen through simple examples, so we continue
with the example of Figure 3 above. Here we have constraints ¥; = X; + X3 and Y3 = X, + X5. Assume
that the underlying mean OD flows on links one and two are the same, A\; = Ay = )\, and are distinct from
A3 = p. Clearly, there is an identification problem in that we can write ¥ = X; + X3 = (X; +a) + (X3 — a)
and Ys = X + X3 = (X3 + a) + (X3 — a) for any integer a less than or equal to min(Y;,Y5). This impacts
the resulting likelihood function for (A, 4) by inducing a diagonal ridge running North-West to South-East,
reflecting the strong negative dependence induced by the constraints. Variation in the likelihood along this
diagonal ridge depends on the actual data values Y observed, and can lean towards either extreme or more
highly support central values. Particularly critical are cases in which X; and X are rather large and happen
to have close values, but X3 is small. The likelihood function based on large and similar values of (¥7,Y3)
then tends to favour the central part of the ridge, so apparently over-estimating u and under-estimating
A. This is partly induced by the relatively higher dispersion of the Poisson densities at higher levels, which
leads to higher likelihood values for small means when “close” values of the Poisson counts are observed. As
a result, analysis with uniform priors on px and A will lead to posteriors that tend to over-estimate low rates,
and the corresponding OD flows, and under-estimate high rates and flows, though the extent of these biases
is much more marked in the over-estimation of low flows. Thus purely likelihood-based analyses are subject
to such biases without additional constraints.

This phenomenon occurs quite generally and is responsible for gross over-estimation of low OD flows and
their means in some analyses, such as discussed in our application in Section 4. That application concerns
a much more complex network that the simple example above, and several links with rather low OD flows
are tied together in collections of OD routes which experience very high flow rates, leading to the gross
over-estimation of the low flow rates. This argues against the use of uniform priors and suggests that the
standard practice in transportation studies, i.e., that of updating initial or prior estimates of OD flows based
on previous data and experience (McNeil and Hendrickson 1985, Maher 1983), is partly helping to constrain
the problem to overcome these kinds of identification difficulties. We note further that alternative estimation
methods, such as that of Vardi (1996), that do not recognise this problem are immediately subject to the
same kinds of biases in resulting inferences.

2.5 Algebraic Structure of General Network

We follow the above example and discussion of Section 2.3 with further exploration of the theoretical
structure of a general network. This leads to a theoretical result that underlies a generally applicable
method of computing samples from conditional posteriors for route counts in an iterative Gibbs sampling
framework. In addition to directly enabling simulation based analysis, the discussion is of independent
interest in elaborating further on the structure of the network problem. '

Consider A fixed and known, and focus attention on the conditional posterior p(X|A,Y). The following
result, that is simply an algebraic deduction from the network structure and defining relation (1) among the
traffic counts, is key and critical to the ensuing inferential development.

6
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Theorem 1. In the network model (1), assume that A is of full rank r. Then we can reorder the columns
of A so that the revised routing matrix has the form

A =[A1, A] ®3)

where A is a non-singular r x r matrix. Also, similarly reordering the elements of X vector and conformably
1]

partitioning as X' = (X, X}), it follows that

Xl = Al_l(Y - A2X2). (4)

Proof: The partitioning of A in (3) is an essentially trivial consequence of the full rank assumption. Matrix
A is r x ¢ with r < ¢, and so has at least r linearly independent columns; simply reordering so that the
first r columns are among the linearly independent subset produces (3). Then reorder the elements of X to
correspond to the new ordering of the columns of A. This gives Y = AX = A;X; + A,X,, which, noting
the invertibility of A, leads easily to (4).

The full rank assumption is satisfied by all practical networks. Otherwise, there is a redundancy in
specification and one or more rows of A that can be deleted to reduce to linear independence of the rows,
hence full rank of the reduced matrix. Given the partitioned form (3), and with the implicit reordering of
elements of X, the result (4) implies that, given Y and assumed values of the (c — r) route counts in X,
we can directly compute the remaining r route flows, simply based on the algebraic structure of the defining
routing matrix. In some cases, we may be able to directly identify A; by inspection. More often, especially
in larger networks, we need an algorithm to appropriately reorder routes and deduce the resulting routing
matrix in the form (3) automatically. This may be done as follows.

Recall the QR decomposition of arbitrary, full-rank, matrices (e.g. Golub and Van Loan 1983, Section
6.2). Applied to the r x ¢ routing matrix A, this delivers the QR decomposition in terms of an r x r orthogonal
~ matrix Q and an r X ¢ upper triangular matrix R such that A = QR. The first r columns of R correspond
to r linearly independent columns of A; they are identified by a permutation of column indices that are
typically delivered by iterative procedures for developing the QR decomposition. For example, the efficient
Householder successive reflection procedure, as implemented in the qr () routine in S-Plus (1993), delivers a
list of indices of columns of A in permutation such that the first r elements identify the linearly independent
columns of A. As a result, we can very simply, routinely and automatically, identify a reordering of the
columns of A to achieve the form (3) with A; of full rank: simply apply the QR decomposition and extract
the column permutation vector, then reorder the columns of A according to this vector. In passing, note
that A, is simply the first r columns of the matrix R.

In our example network of Section 2.1, the qr (4) call in S-Plus produces, among other things, the vector
pivot of the permuted column indices, in this case 1,2,3,4,5,7,10,11,12,9, 8, 6. Reordering columns 1 — 12
accordingly leads to the revised routing matrix

100 00O0OO0OO0OOTG OO
0 00101100O0O001
01 1000O0O0O0CO0OTGO0OT1
A=|10 00 0100O0O0OTO0OT OO
000001110010
00100O0O0O0OO0OT1O01
0000O0O0OT1T11000

EN|
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It is easily seen that the first 7 x 7 block is non-singular with inverse

1000 0 0 O
0010 0 -1 0
0000 0 1 0

AT'=10 100 -1 0 0
0001 0 0 0
0000 1 0 -1
0000 0O 0 1

With this general Theorem 1 and the resulting constructive method of applying it, we are now in a position
to develop the conditional posteriors for route counts in a Gibbs sampling framework.

2.6 Conditional Posteriors for Route Counts

From the results of the previous section, we see that, for any A and fixed link counts Y, the conditional
distribution p(X|A,Y) is concentrated in a sub-space of dimension ¢ — r defined by the partition (3) of the
routing matrix. Having reordered the columns of A to the form (3), this posterior has the form

p(Xl |X2) A7 Y)p(x2 IA7 Y)

where p(X;|X2,A,Y) is degenerate at X; = Al_l(Y — AsXy), and with Xy = (X,41,...,X.)" defining
X: = (X1,...,X,) as above,

c /\Xa
P8, Y) o IT 52 )
a=1 as

over the support defined by X, > 0 for all @ = 1,...,c. This is simply the expression of the product of
independent Poisson priors for the X; constrained by the identity (1) rewritten in the form (4). The utility
of this expression is in delivering the set of complete conditional posteriors for elements of the X, vector
to form part of the iterative simulation approach to posterior analysis. Consider each elements X; of Xo,
(i=r+1,...,¢), and write X5 _; for the remaining elements. Then, simply by inspection of equation (5),
we see that the conditional distribution p(X;|X_;,A,Y) is given by

X; r X
/\i' Aaa

' p(XilXZ—hA?Y) X X! X,!
a=1

(6)

over the support defined by X; > 0 and X, > 0 for eacha=r+1,...,c; this holds foreachi =r+1,...,c.

Identifying the support of (6) requires study of the (at most r) linear constraints on X; defined by X, > 0
for all elements X, of X; = Al‘l(Y — A2X5). Given ¢ in 7+ 1,...,¢, that is given a single component of
the X5 vector, this implies a set of linear constraints as functions of the conditioning values of Xg,—; and
Y. The resulting constraints are the form X; > d; or X; < e;, where the values d;, e; are functions of the
conditioning values of X, _; and Y. Hence, together with X; > 0, we obtain a set of at most 7+ 1 constraints
on X;. By directly evaluating these constraints and identifying their intersection, we may deduce the range
of X; over which (6) is non-zero, and hence we identify the unnormalised conditional posterior distribution.
In networks of even moderate size, this process can become computationally very burdensome, however, a
point that is relevant in developing efficient computation in the following section. Finally, it can be shown
that the support is a bounded and connected subset of non-negative integers; details are given in appendix.
This is important as it enables rather direct simulation analysis, as part of the overall posterior simulation
analysis to which we now turn.
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3. IMPLEMENTATION AND POSTERIOR SIMULATION

3.1 Gibbs and Metropolis-Hastings Algorithms
Iterative simulation of the full posterior p(X,A|Y) is now enabled. Fix starting values of the route

counts X and proceed as follows.

(a) Draw sampled values of the rates A from the ¢ conditionally independent posteriors p(A\,|X,) detailed
in Section 2.3.

(b) Conditioning on these values of A, simulate a new X vector by sequencing through i =7 +1,...,¢, and
at each step sampling a new X; from (6), with conditioning elements X, _; set at their most recent
sampled values; at each step X; is explicitly re-evaluated via (4) as a function of the most recently
sampled elements of Xs.

(c) Return to (a) and iterate.

This is a standard Gibbs sampling set-up in which the scalar elements of both A and X are resampled
from the relevant distribution conditional on most recently simulated values of all other uncertain quantities.
Sampling steps in (a) are easy. In the illustration in the following section, the )\, are assigned independent
priors uniform over a fixed, specified and finite range, so that the posteriors are simply truncated gamma
distributions, that for A, having shape parameter X; + 1 and scale parameter 1; these are trivially sampled.
Sampling steps in (b) appears to require evaluation of the support of (6), as previously discussed, and
subsequent evaluation of the unnormalised posterior (6) at each step. Sampling may be performed directly,
treating (6) as a simple multinomial distribution on this relevant range. This is easy to implement and has
been explored in some example networks. In larger, more realistic networks, however, the implied evaluation
of (6) across what may be a very large support, at each iteration and for each element Xj;, leads to a
computational burden that may be excessive when compared to alternative approaches. Moreover, to do
this requires that we identify the support of (6) which, as mentioned earlier, can become computationally
very burdensome in networks of even moderate size. Hence indirect but very much more efficient simulation
methods become of interest.

In particular, more efficient algorithms are based on embedding Metropolis-Hastings steps within the
Gibbs sampling framework. Here candidate values of the X; are generated, at each stage, from suitable pro-
posal distributions, and accepted or rejected according to the usual Metropolis-Hastings acceptance probabil-
ities. Specifically, suppose a specified and fixed proposal distribution with probability mass function g;(X;)
for each element X; in step (b). A candidate value X} is drawn from g¢;(-) and accepted with probability

Pi(X?)qz'(Xi)]

min [1’ P (05 (X7)

where X; is the current, most recently sampled value, and p;(-) is the unnormalised conditional postérior in
equation (6). Note that the unnormalised density p;(-) will be evaluated only at candidate draws, so that,
for a given proposal distribution g¢;(-), it is not necessary to either identify the actual support of p;(-) nor
to evaluate it completely across the support, in contrast to the approach via direct Gibbs sampling. If we
use a proposal distribution ¢;(-) whose support includes values of X; lying outside the support of p;(-), then
candidate draws of such values will automatically be rejected as they lead to zero acceptance probabilities.

From the structure of the network equations in (1), it is possible to identify bounds on each X; so that a
suitable range for the proposal distribution can be computed. For element X, given X2 _,, X, of X5, X, =0
is a gross lower bound whatever the values in X, _,. For an upper bound, X, '5 min;{¥; — > ia A, X5}
where the index 7 runs over the set of links whose counts include X,, i.e. those links ¢ for which A4, ; = 1.

9
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Our algorithm is an iterative, trial and error search to identify upper and lower bounds for X, given D, O
using these two values to start. Then, based on the specified bounds, the implied vector X; is recomputed
and checked for feasibility, i.e. non-negative values. If any element of X, is negative, the trial value of X, is
either incremented, in searching for the lower bound on its range, or decremented, in searching for the upper
bound. This process terminates and delivers the resulting bounds once the X; vector has r non-negative
entries.

This approach represents a standard application of “Metropolis-within-Gibbs” and, subject to verifica-
tion of irreducibility of the resulting Markov chain on the space inhabited by (X, A), leads to an overall
simulation scheme that will ultimately generate samples from the required joint posterior (Tierney 1994).
We have experimented with various such approaches, concentrating on efficient independence chain methods.
One such method uses a proposal distribution for ¢;(-) that is uniform over the identified support of (6); an
alternative takes ¢;(-) as the conditional Poisson prior X; ~ Po()\;). In each case, both generation of candi-
date values and evaluation of the acceptance probability are essentially trivial. In our examples to date, each
of these approaches has been satisfactory in terms of reasonable acceptance rates and convergence, with the
two being essentially undistinguished in most cases. Illustration in the next section is based on the Poisson
proposal version.

Theoretical assurance that the MCMC algorithm so defined converges, i.e. ultimately generates samples
from the true joint posterior p(X, A|Y), follows if we can determine that the Markov chain is irreducible.
This reduces to the question of whether or not a current value (X, A) can “move” to any other point in the
joint parameter space following a finite number of iterations of the scheme (a) and (b). For the elements
of A there is no problem, assuming continuous priors with fixed support. For the X, however, the support
of the key conditional posteriors (6) is dependent on resampled values of elements of X5, and so changes
with iterations; this complicates this issue somewhat. It can be shown, however, that in fact Xj is free to
move arbitrarily around its parameter space in consecutive iterations, in spite of the support constraints and
complications (details are omitted here). Thus the resulting chain is irreducible and convergence assured.

3.2. Illustration

In simple networks, such as that of Figure 3, exact posterior distributions may be computed and this has
been used to validate software implementing the MCMC analysis. We display here some summary inferences
for the larger example network of Figure 1 and 2.

Taking A = {1,...,12}, we simulated route counts X from the resulting independent Poisson dis-
tributions, producing X = (2,2,0,8,5,7,6,4,9,7, 17,11)’; these lead to the data values of link counts
Y = (2,28,9,5,34,16,35)". The MCMC scheme is initialised with values of X, chosen by inspection of
the observed link flows, an easy task in this small network but one that will take more work in larger and
more complex cases. Generally, identifying suitable initial values will involve coming up with a non-negative
solution to an underdetermined system of equations, which can be easily set-up to automatically generate
ranges of possible solutions and hence possible starting values. For example by using Mathematica we can
automatically find a (possibly negative) solution to the underdetermined system Y = AX, and the basis
for the null space associated to the matrix A. Playing with different linear combinations of the first with
the last we were able to easily determine starting values for our vector X, actually a number of them, so
that we could start our simulation from a widely ranging set of points. It should be remarked that integer
programming methods could provide an approach to assigning initial values too, although we have not, as
yet, pursued this formally. Notice that we are assuming observations without error for the link counts, so
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Figure 4. Posterior distributions for the 12 components of A, as full lines. The dashed lines are the
conditional posteriors were the actual route counts X known.
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we rely on the existence of at list one non negative solution. This ensures, in casé other than trivial ones the
existence of other possible non negative solutions.

In our analysis, we re-initialised and re-ran the MCMC simulation from these several starting values for
X2 to assess and validate the rapid convergence, whatever the starting values, experienced. Our reported
analysis uses finite uniform priors for the A, with common range (0, L) for an appropriately large upper bound
L whose value need not be specified.  The analysis summarised is based on the Metropolis-Hastings variant
with Poisson proposals for the X,, based on the current values of the respective A,. The reported results,
and questions of convergence and efficiency, have been explored in various ways. In particular, and most
convincing, we have repeated the analysis using several variants of the MCMC scheme; one uses proposal
distributions that are uniform on the earlier mentioned ‘large support’, another has uniform proposals on the
current support for each X, conditional on the remaining values Xs _,, and a third reanalysis uses “exact”
Gibbs sampling in which the full conditional multinomial distributions of each X, are evaluated exactly and
sampled at each stage. These analyses are in consistent agreement and validate the summary inferences
reported using the Poisson proposal. Across all Metropolis-Hastings variant, the rates of acceptance were
satisfactorily between 23 and 40 per cent for the different components of vector Xy, the differences primarily
reflecting the varying degrees of latitude arising in identifying appropriate bounds on the support of proposal
distributions.

The above assurances on convergence of the MCMC algorithms are complemented by positive results
from various standard convergence investigations as implemented in CODA (Best et al 1995). Following
this, we summarise analysis by running the MCMC algorithm for a total 50,000 iterations and computing
posterior estimates based on only 5,000 values. The full 50,000 iterations are performed rapidly on this
small network, running in a real-time of between 2 and 2.5 minutes on an otherwise idle, standard desk-top
workstation (DEC AlphaStation 200). How computing time, as well as convergence characteristics, scales up
to larger networks is the subject of current investigations. Figures 4 and 5 displays approximate posteriors
for A and X respectively. For each A,, we compute the posterior density approximation via the Monte Carlo
average of known conditional distributions. Since p(A.|X,Y) = p(A.|X,) is simply Ga(X, + 1,1) truncated
to (0, L), we have ‘

POalY) = p(halXa)p(XalY) & m ™t exp(=Aa) 3 A /X1
Xa

=1

where m = 5,000, the Monte Carlo sample size, and {Xl(f),i =1,...,m} is the set of sampled values of X,.
These densities appear as full lines in Figure 4. As we are dealing with a simulated data set and know the
true underlying values of each X,, we can compute the truncated gammas p(\,|X,) for comparison; these
appear as the dashed lines in Figure 4, the differences between these and the full posteriors indicative of the
uncertainties about the A, due to lack of precise knowledge of the X,. In the cases of a = 1 and a = 5, the
structure of the network implies X; = ¥; = 2 and X5 = Y; = 5; hence there is no uncertainty about these
two X, values so the posteriors coincide, p(Aa|Xa) = p(Aa|Y). Figure 5 displays histograms of the 5,000
posterior samples of the X,, representing the marginal posterior p(X,|Y). Note the degenerate posteriors
for X, and X5 as these two values are known. Otherwise, full marginal uncertainties about the route flows
are reflected in these histogram approximations to posterior densities; the underlying X, values from the
simulated data are marked as triangles on the lower axis, for comparison.
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4. THE MONROE NC TRANSPORTATION NETWORK

Estimation, and prediction, of origin-destination flows in real road networks is a problem central to
policy-oriented studies of a range of traffic engineering problems, ranging from real-time traffic management
to implementation of congestion-pricing mandates (Sheffi 1985). The archetype context is one of updating
estimates of OD flows: based on “today’s” initial OD flow estimates and link traffic since observed, make
forecasts of “tomorrow’s” OD flows to feed into traffic management and decision systems, including network
equilibrium models that are central tools in transportation modelling and policy studies (Berka and Boyce
1994, Sheffi 1995, Smith 1987, West 1994). This problem has an inherent Bayesian flavour and, though most
approaches have been quite ad-hoc, some have adopted basic Bayesian methods (Maher 1983). One interest
here is to assess the efficacy of the full Bayesian solution in the context assumed above on a real network.
From transportation engineers at North Carolina State University working with the National Institute of
Statistical Sciences, we have a section of a road network from the township of Monroe in North Carolina.
This network is structured so that all OD pairs have just one route between them, so falls under the fixed
routing assumptions of our model. The network is schematically represented in Figure 6. This network
has been adapted into the operating “real-time” simulation system Integration (Van Aerde et al 1996); this
system is extensively used in studying effects on traffic networks of potential network and road traffic policy
changes. Based on previous studies of the Monroe road system, OD flows are generated to “load” the network
which the runs through a specified time period of the day, and are subject to the usual delays due to traffic
congestion, traffic lights, left and right turns, merging of lanes and so on. All aspects of road traffic are
continuously monitored and recorded. In particular, observed link counts are recorded on all links in the
network. Here we report on some aspects of analyses of observed link counts over a two-hour morning period;
this analysis illuminates application of our models, and generates additional insights into the structure and
difficulties of the OD estimation problem in a real context but one in which we have the true OD flows to
compare with model-based inferences.

In this network, most pairs of the nodes at the boundaries constitute OD pairs; the exceptions are pairs
M,G), (M,L), (G,M), (G,L), (N,L), (L,M), (L,G), (L,N). Observed link counts in the two-hour period appear
in Figure 7. After deleting four of the original twenty-four link count observations to eliminate observed
linear dependencies, the resulting matrix A is 20 by 64. The problem thus involves the 44—dimensional
vector X5 and the 20—dimensional vector X; in the earlier notation.

Our first analysis is exactly as detailed in Sections 2 and 3, using independent uniform priors for the
OD rates A;. Note that, in a real “on-line” application, observation and analysis from previous days would
generate information on which to base more informative priors. This turns out to be absolutely critical in
resolving the inherent tendencies towards biased inferences discussed in Section 2.4. As discussed there, this
problem is ever-present, but is exacerbated in cases of “disbalanced” flows; notice the wide variability in
observed link counts here, indicative of comparable diversity among the underlying OD flows of interest. In
such cases, analysis may be subject to significant biases in inferences unless it is appropriately constrained
via informed prior distributions.
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Figure 6. Physical node-link structure of the Monroe network.

Y1 : A—B: 1980
Y, : B—>C: 1966
Y;: C—D: 1788
Y, : D-—E: 2600
Ys : E—=F: 2100
Ys : F—>E: 1816
Y : E—D: 2880
Ys : D—->C: 2052
Yo: C—-B: 1954
Yio: B—A: 1772
Yin: I—-B: 338
Yi2: L— B: 284
Yis: H->C: 306
Yigy: M—-C: 176
Yis: G- D: 68
Yi¢: N — D: 1000
Yi: O—=FE: 1104
Yis: B—1: 488
Yio: C—-o>M: 274
Yoo: D—-N: 926

Figure 7. Link flows for the Monroe network of Figure 6.
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We summarise some basic results of this first analysis using uniform priors for the );. The MCMC
analysis is run from starting values computed as described in Section 3, and for a large number of iterations
in view of the unavoidably high dependencies among OD flows and rates link. After a number of experiments,
we ran a final chain for one million iterations, and summarise for posterior inferences here a “dependence-
breaking” sub-sample of size 10,000. Across repeat experiments and with different sub-samples the results
are consistent. We summarise here marginal posteriors for 16 of the full 64 OD flows, in Figure 8. As, in
this case, we actually know the realised OD values, we can assess the accuracy of posterior inferences by
comparing the true values, denoted by X for OD pair i, against the margins; the X are indicated in the
figures. The key point to note here is just how poorly several of the smaller X} values are estimated; they
lie way down in the lower tail of their marginal posterior distributions, and so are grossly over-estimated.
The higher flows, by comparison, are consistently adequately estimated. This is an example of the general
phenomenon discussed in Section 2.4 and is exhibited across repeat analyses of other data from the Monroe
network, taken from differing time periods, and also of simulated data. The biased inferences are due to the
inherent structural ambiguity in the likelihood function for the Poisson rates.

Now consider re-analysis using more informed priors for the );. We now take independent gamma priors;
note that the analysis of Sections 2 and 3 can be developed with minor modification under (conditionally
conjugate) gamma priors, and so the easy details are omitted. To mirror an on-line, OD flow “updating”
context, we base the priors for “today’s” X; on the known values X;; the idea here is that the numbers
X represent estimate based on previous days analyses and observations. Specifically, we choose the prior
gamma distribution for A; to have shape parameter a X} and scale parameter a for some a > 0. Small values
of a discount the prior estimate X and lead to a relatively diffuse prior. One analysis summarised here is
based on a = 0.02. For each of the 16 OD pairs chosen in the above analysis, we graph the corresponding
gamma prior densities (as dashed lines) in Figure 9. Following MCMC-based analysis with these priors,
the estimates of corresponding posteriors are computed and also graphed in Figure 9. Figure 10 displays
the corresponding marginal posteriors for the OD flows X;, again with true values X} marked. Evidently,
even very weak prior information, roughly “correctly” located based on previous OD estimates, is sufficient
to overcome the distortions and biases inherent in “disbalanced” networks. In Figure 11 we summarise
all marginal posterior distributions for all 64 OD flows in terms of box plots. We graph box plots for
the two analyses: uniform priors and gamma priors on the A;, respectively. Superimposing the true X}
values, we note uniform consistency of the data with the priors in the latter analysis, and the corresponding
uniform correction of the over-estimation bias for smaller flows. We also indicate (with the symbol “V”)
the point estimates delivered using the algorithm of Vardi (1996) on this network. As is clear from the
figure, this algorithm, though not a direct likelihood-based algorithm, suffers precisely the same problem of
over-estimating low flows in the context of dominating high flow rates on subsets of the network, and should
be be used with caution unless explicitly adjusted to overcome this problem.
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Figure 8. Posterior distributions for 16 components of X under uniform priors on the ;. The true values
X, appear on the x axis.

17



Bayesian Inference on Network Traffic

0.030

0.015

0.0

0.015

0.0

0.04

0.0

0.02

0.0

Claudia Tebaldi & Mike West

Atol Ato G AtoF FtoM
0
s g g
H ° o
" e
] 8 g
<] o
Q
3 g 3 A
0 50 100 150 200 250 0 20 40 60 8 0 500 1000 1500 0 200 400 600 800 1000
ItoH ItoG ItoF LtoF
I 1
g } 3 @
j :
--------- 8 <
........ : : :
A . 3 3 3
0 20 40 60 8 100 120 0 50 100 150 0 20 40 60 80
HtoM MtoA MtoF GtoO
i i v 8 i
H H H ° |t
: ! 3 i i
s | 3
o
o )
=] o
0 20 40 80 80 0 20 40 60 80 100 120 0 20 40 60 80 100 120
NtoH Nto A OtoF OtoA
i <
3 ]
o o
[ o
o o

20 4 60 8 100 120 140

Figure 9. Marginal prior (dashed lines) and posterior (solid lines) densities for 16 components of A. The
true values X; appear on the x axis.

18




Bayesian Inference on Network Traffic ) Claudia Tebaldi & Mike West

Atol Ato G AtoF FtoM
E g
o S Q ]
g $ N
Q Q 3
g § g
o . o =] o
0 50 100 150 200 250 0 20 40 60 8 1000 1100 1200 1300 1400 600 700 800 900 1000 1200
ItoH ItoG ItoF LtoF
Q
¢ g
Q -
Q
g g g
8 e
[
o o o o
0 20 40 60 80 100 0 50 100 150 0 20 40 60 8 100 0 20 40 60 80
HtoM Mto A Mto F GtoO
Q
2 2 3 3
g . ’
Q
Q
§ g ] g
[=] =] o o
0 20 40 60 80 0 20 4 60 80 100 120
NtoH NtoA OtoF OtoA
o Q
Q
g § g
N
3
: : :
[=] [=} o
0 20 40 60 80 0 20 40 60 80 100 120 0 20 40 60 400 450 500 550 600 650

Figure 10. Posterior distributions for 16 components of X under informed gamma priors on the ;. The
true values X; appear on the x axis.

19



Bayesian Inference on Network Traffic Claudia Tebaldi & Mike West

Uniform Prior Gamma Prior
60 -
50 -+
'
40 -
V .m.
30 -~
Vv
-0V
20 A
10 -
...Q ........ ....
0 .
T I T T T T I T T I T
0 500 1000 1500 0 200 400 600 800 1000

Figure 11. Boxplots of marginal posteriors for all 64 elements of X in the Monroe network. Separate displays
are given for analysis based on uniform priors on the \;, and based on informed but very diffuse gamma
priors. The X are marked as “e”, and the point estimates of Vardi’s algorithm as “V”.
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5. RANDOM (MARKOVIAN) ROUTING

One important model extension relaxes the assumption that all messages or trips between a specified
origin-destination pair take the single route specified in the 0/1 routing matrix A. Vardi (1996) discusses
this and develops the case of Markovian routing, in which, a message travelling between a specified origin-
destination pair exits its “current” node in the network on one of possibly several links consistent with a
route to the specified destination. In communications networks, such random routing may arise as a result
of control procedures to avoid or redress queuing questions. In urban road transportation networks, there
typically exist one or a small number of primary routes between specified origin-destination pairs, such routes
being used by much of the traffic, but with several additional, secondary routes used less frequently either as
alternatives in times of congestion on primary routes or as occasional alternatives for other reasons. Primary
and secondary routes between a specified origin-destination pair will typically share a common subset of
links, with a few additional links being specific to one or a few routes.

A neat extension of the development in Section 2 and 3 provides for analysis using the Bayesian approach
developed for the fixed routing network. This is discussed below, following a precise definition and discussion
of the random routing model.

Given a specific origin-destination pair a = (4, j), messages leaving node i may now take differing routes
to node j. The Markovian routing model simply assumes that, at any node on the way to the destination,
each message exits on a link determined by a set of link choice probabilities, independently of the path
taken to the current node and independently across messages. In some cases there will be just one exit link
possible, in other cases there may be several. As in Vardi (1996), the set-up can be summarised through a
modified routing matrix that summaries the link choice probabilities for all possible origin-destination pairs.
As in the fixed routing case, the matrix has rows indexing links in the network and columns indexing origin-
destination pairs; now, however, the entries are probabilities determining the selection of links (rows) on
trips between specified origin-destination pairs (columns). An example matrix from Vardi (1996) is studied
further below; with rows and columns labelled by links and origin-destination pairs, this has the probability
matrix A given in Figure 6.

Here we have 4 nodes, r = 9 directed links and ¢ = 12 origin-destination pairs. Consider, for example, the
origin-destination pair AB. Each trip from A to B has an 80% chance of moving directly along link A — B,
and terminating there; with the complementary 20% chance it travels from A — C. Assuming it follows this
latter path, it then travels along C — B directly, and terminates, with an 80% chance; otherwise, it moves
along the two consecutive links C — D — B and terminates. By elementary probability computations we
can deduce various interesting marginal and conditional probabilities, such as the probability that a message
between a specified origin-destination pair j passes through any given link 4, or through a specified pair or
subset of links.

Now consider the questions of inference about origin-destination counts X based on observed link counts
Y, as earlier. Retain the same modelling assumptions, so that the X, are conditionally independent X, ~
Po(),) with specified independent priors on the rates A,. Our approach is based on the idea of embedding
the random routing problem in a fixed routing problem on an artificial “super-network” and then applying
the theory and methods of Sections 2 and 3 to the latter. To motivate this, consider the matrix of Figure 6
and focus on the single origin-destination pair AB. As above, trips from A to B travel one of three routes:
A—B,A— C— B,or A= C = D — D, with corresponding marginal probabilities 0.8, 0.16 and 0.04. So

we can view the pair AB as comprising three artificial origin-destination pairs corresponding to these three
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1 2 3 4 5 6 7 8 9 10 11 12
AB AC AD BA BC BD CA CB CD DA DB DC
1A-B| & 2 2 0 0 0 0 0 0 0 0 0
2A->C| 2 8 8 0 1 1 0 0 0 0 0 0
3B—-A| 0 0 0 1 2 1 1 0 0 1 0 0
4B-C| 0 .8 0 0 81 0 0 0 0 0 1
5B—-D| 0 2 1 0 0 .8 0 0 1 0 0 0
6C—+B| .8 0 2 0 0 0 8 8 2 1 1 0
7TC—-D| 2 0 .8 0 0 1 2 2 .8 0 0 0
8D—-B| 1 0 0 0 0 0 1 1 0 .8 .8 2
9D-C| O 1 0 0 0 0 0 0 0 2 2 8

Figure 12. An example of a probability routing matrix. As in the fixed routing case, rows and columns
correspond to directed links and origin-destination pairs, respectively. The entries are now conditional
probabilities of traversing the link (row) during a trip between the origin-destination pair (column).

distinct routes. The X trips originating at A and travelling to B can be viewed as initially assigned to one
of these three routes according to the marginal route selection probabilities 0.8, 0.16 and 0.04, respectively.
Once all assignments are made, the subsets of the X7 trips travel their allocated routes, and we have have
a framework of fixed routing.

This leads to the general approach to constructing a super-network with fixed routing. For each column of
the probabilistic routing matrix, we identify all possible routes between the corresponding origin-destination
pair, and simply list these as a subset of possible fixed routes; the corresponding probabilities assigned to
these routes are easily computed. Then we create a new 0/1 fixed routing matrix that has a column for
each of these new fixed routes. This can be easily automated (a simple S-Plus function is available from
the first author). In the earlier example, the 9 x 12 probabilistic routing matrix in Figure 2 generates the
extended fixed routing matrix in Figure 7. There, in addition to labelling groups of columns with their
common origin-destination pair, we add the probabilities of assignment to the columns (i.e. fixed routes)
within such subsets. In this case, the original 12 origin-destination pairs generates 27 in the super-network.

Now turn to the issue of modelling and inferring route counts. Consider any origin-destination pair
a = (i,5) in the original network, with corresponding counts X,. The process of creating a corresponding set
of fixed routes between ¢ and j generates some number, say k, of such routes. Given the original probability
routing matrix, we can trivially compute the resulting probabilities p, Lef (Pa,1,---»Pa,k,)" Of selecting each
of these fixed routes; note that these k, probabilities sum to unity. Write X, ; for the number of trips that
take fixed route t from i to j. Then, given X,, the disaggregated counts X, 1,..., X, , are conditionally
multinomially distributed among the k, fixed routes, out of the total X, and with route selection probabilities
Po- Under the earlier assumption that X, ~ Po(),), this trivially implies that the disaggregated, fixed
route counts are themselves marginally independent and Poisson distributed, with X, : ~ Po(pa,:A,) for

t=1,...,k,. Hence, independently across origin-destination pairs a, we have
k
i o)Xt exp(—pa e g
P(Xase s Ko Aoy po) = [] Z2ttel OB Patd), ™

o
Il

1
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1 2 3 4 5

AB AC AD BA| BC
8 16 04|.16 04 8|.2 .16 64| 1 |.2 8
1A-B|1 0 0|1 1 0|1 0 0] 0|0 O
2A-C|0 1 10 0 1]0 1 1 0|1 0
3B—-A|0 0 OO0 0 O(O0O O O 111 0
4B-C|{0 0 0|1 0 0|0 0 O 0 |0 1
sB-»Dj{0 0O OO0 1 0;1 1 O 0 {0 O
6C—+B|0 1 00 O OO0 1 O 0|0 O
7TC-+D|0 0 1|0 0 0|0 0 1 0 |0 O
8D-B|0O 0 110 0 0|0 O O 0 |0 O
9D-C|0 0 00 1 010 0 O 0 1|0 O

Figure 13. Super-network fixed routing matrix for the stochastic network problem of Figure 6. Here we
display just the first 12 columns corresponding to the first 5 origin-destination pairs.
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Figure 13 (continued). The final 15 columns, corresponding to the final 7 origin-destination pairs, of the
fixed routing matrix for the super-network representation of the stochastic network problem of Figure 6.
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which reduces to

a

P(Xa1 - Xak.Aa, Pa) o AX= exp(=Aa) [ P23 (8)
=1

~+

as a function of (A4, pa), noting that X, = Zf;l Xt

The immediate consequence of (7) and (8) is that the original approach to inference about route counts
in the fixed routing problem in Sections 2 and 3 applies directly to the super-network. Conditional on
the parameters A and each of the p, vectors, we simply have an expanded network with implied route
counts for each of the > _, k, fixed routes. The compatibility of the independent Poisson models for the
priors on route counts implies that the construction of conditional posterior distributions for route counts
is structurally unchanged. Hence the components of the MCMC analysis for simulating route counts apply
and will produce samples of the full set of route counts,

X={Xot,t=1,...,ke5a=1,...,c}. (9)

From these we can trivially deduce the totals X, for each origin-destination pair a.

Now turn to inference on the Poisson rates. It is clear that, conditional on all route counts X in (9),
the likelihood function for the underlying rates A is just the function (8). This is, again, of exactly the form
arising in the original fixed routing problem, and so the construction of posterior samples for A follows that
development,.

This discussion is all conditional on known and fixed routing probabilities, hence known and fixed vectors
P. for each origin-destination pair a. We note that extensions to incorporate inference on these probabilities
are essentially direct. Note that, from (8), we obtain a conditional likelihood function for each of the p,
- vectors given imputed route counts in the super-network and the A,. On this basis, the likelihood function
factorises into a set of ¢ components of the form in (8), and so the iterative simulation analysis is trivially
generalised by linking in a component to sample each p, from the corresponding posterior distributions.
Assumptions about prior distributions will depend on context, but no essential difficulties arise. Further
details will be expldred and reported elsewhere.

6. SUMMARY COMMENTS

We have elaborated on the structure of both fixed and random (Markovian) routing problems introduced
and analysed by Vardi (1996). In the fixed routing context, our theoretical development has elaborated on
aspects of the structure of the network count inference problem that underpin the approach to Bayesian
analysis based on MCMC simulation. Our contributions include the isolation of deficiencies in likelihood
and other non-Bayesian approaches to inference in these problems due to structural indeterminacies that
may lead to systematic and significant biases in inferences in some applications. We demonstrate how this
may be remedied through the use of informed prior distributions that provide appropriate “constraints” and
note that this strategy is perfectly consistent with current practices in “updating” OD flow estimates in
transportation networks (McNeil and Hendrickson 1985, Maher 1983). Other existing algorithms, including
that of Vardi, run the unavoidable risk of over-estimating low flows on OD routes that share links with OD
routes experiencing high flows. The Bayesian approach here naturally, and satisfactorily, deals with this
problem and forms a natural extension of some of the traditional, ad-hoc methods used in traffic engineering
solutions.
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The embedding of the Markovian routing problem in an elaborated fixed routing context enables similar
analyses to be performed there, with evident potential to extend to problems of inference on route choice
probabilities. This latter context is very relevant in urban transportation networks, and some developments
for application in that area are envisaged. It is clear from the development that the Bayesian view clarifies the
structure of these specific network inference problems, and enable relatively direct and easily implementable
solutions. Several variations of the specific model assumptions, including the questions of prior models for
the underlying Poisson rates A, have been mentioned and will represent no substantial additional technical
nor computational complications.

The development assumes fully observed link counts in the fixed time period. This is trivially relaxed.
Note that, were we to observe counts on only a subset of links, the problem remains essentially the same but
with the corresponding rows of the routing matrix A deleted. In transportation networks, automated traffic
detectors, including in-road loop detectors and video cameras, typically monitor traffic on very sparse subsets
of key links in large road networks, so this kind of issues is relevant. In large networks, it will be important
to focus attention on a subset of likely key routes, i.e. a subset of origin-destination pairs, in addition to a
subset of links. Model modifications to partition large scale networks hierarchically into subsets of smaller,
manageable networks, and develop inference on route counts and flows based on partial network structure,
are then of interest. No such developments exist, currently, to our knowledge.

Additional extensions include questions of monitoring link traffic in several time periods in sequence, and
taking into consideration non-negligible transit time over links. We are currently studying link count data
from a Seattle highway network as part of a current study of network structure underway at the National
Institute of Statistical Sciences (NISS), and will report results of that study elsewhere.
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APPENDIX

We prove convexity of the support of the uni-dimensional conditional posteriors distributions, and con-
nectedness of the support of the joint posterior, of the vector X, in the fixed routing analysis of Sections 2
and 3.

First, consider the conditional distribution p(X3 4|X3,—4) for any a = 1,...,n—k. That the corresponding
support is convex is proved as follows.

Suppose that two (n — k)—dimensional vectors x,y differ in just one of their components, i.e., x =
(T1,%2,...,%i,...,Tnk) and y = (z1,Z2,...,Yi,---,Tn-k). Suppose also that, for any vector Y, the in-
equalities AT (Y — Ayx) > 0 and A7(Y — Ayy) > 0 hold. For any number a € [0, 1] define the vector

z=0ox+(1-a)y = (z1,22,...,az;+ (1 — @)Yi,-- ., Tn_p)".
Then z also satisfies A7 (Y — Ayz) > 0. In fact,
ATHY — Azz) = ATHY - As(ax + (1 - a)y))
= AT (@Y + (1 - a)(Y) — Az(ax + (1 — a)y))
= AT'a(Y — Aox) + ATY(1 - a)(Y — Agy).
This is the mean of two non-negative quantities by assumption, and so is itself a non-negative quantity. This
ends the proof.

We now show that the support of the n — k dimensional vector X is fully connected, by ruling out the
possibility that two or more of its subsets, even if marginally convex, can be separated. The result implies
that the MCMC analysis can “smoothly” move around the support, and the chain is irreducible. Begin with
the simplified case of a two-dimensional vector X, = (X1, X»)'. The proof is by contradiction, showing that
a configuration such as displayed in Figure 14 is not consistent with our fundamental assumptions: that is,

if we assume that both X, and X + (1,1)’ are feasible, either X5 + (1,0) is feasible as well, or X5 + (0,1)
is, if not both.

10

x2

X1

Figﬁre 14. An example of bi-dimensional support, fully connected in its two marginal components, but not
Jjointly so. In such a case, a Markov chain sampler starting in the bottom-left corner will not visit the region
top-right.
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In fact, the two pairs of assumptions
{ATH(Y - A2X5) 20, ATH(Y - Ax(X: +(1,1)) 2 0}
{ATHY — Ax(X2 +(1,0) <0,  ATHY — Ax(X2 +(0,1)) < 0}
are incompatible. To begin, note that A7(Y — A2(X2 + (1,1)") > 0 reduces to
ATHY — AxXs — (431, A7) — (43%,45%)) > 0
where the matrix elements are denoted by double superscript. Now add AT!(Y — A;X,) > 0 by assumption,

to lead to :
ATHY — AXo) + ATHY — ApXo — (AL, A2Y) — (482, A2%)) > 0.

This reduces to
ATHY — A2Xs + Y — AsX, — (431, 43Y) — (432, 43%)) > 0

or
ATHY — AsXy — (431, A3 +Y — ApX, — (432, 422)) > 0.

This last term cannot then be the sum of two negative quantities, and this establishes the contradiction
between the two pairs of inequalities.

The same sequence of steps proves the result for cases when X, and X, — (1,1)’ are feasible, implying
then that at least one of X3 — (1,0) or X, — (0, 1) is feasible, (or analogously, X2 and X» + (—1,1)" or X,
and X + (1, —1)" are feasible). As a result, the support is fully connected and irreducibility of the Markov
chain sampler is ensured.

In the general multidimensional case we proceed in a similar fashion. By assumption,

ATYH(Y - AsX5) >0

and ,
ATHY — As(Xa +(1,1,...,1)") >0

where now the vectors Xs, and (1,1,...,1)" are n—dimensional. Then
ATHY — Ay(X2 + (1,1...,1))) >0
can be rewritten as
ATHY — ApXy — (AR, A2 L AT — . — (AR A2, AT >0
and adding nAT' (Y — A,X3) > 0 (by assumption) leads to
n(ATH(Y = AxXo)) + ATHY — AoX,y — (AR, A2 ARYY — . — (AL A, LAY >0

As before, we redistribute the terms to obtain a sum of negative quantities, and hence reach a contra-
diction: i.e.,
ATHY —AsXo +...+ Y — AoXo + Y — AgXy — (A3 AR ARl —

—(A3% A2 A — = (ADM AR A =
ATHY — ApXy — (A31, AZY, L ADY) + ATHY — ApX, — (AR?, 422, A2+
+oH ATHY — AoXy — (AP A2 AZMY

must be non-negative.
This proves irreducibility in the general n—dimensional case.
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