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SUMMARY

In electrical engineering, circuit designs are now often optimized via circuit simula-
tion computer models. Typically, there are many response variables characterizing the
circuit’s performance. Each response is a function of many input variables, including
factors that can be set in the engineering design and noise factors representing manu-
facturing conditions. We describe a modelling approach appropriate for the simulator’s
deterministic input-output relationships. Nonlinearities and interactions are identified
without explicit assumptions about the functional form. These models lead to pre-
dictors to guide the reduction of the ranges of the designable factors in a sequence of
experiments. Ultimately, the predictors are used to optimize the engineering design.
We also show how visualization of the fitted relationships facilitates understanding
of the engineering trade-offs between responses. The example used to demonstrate
these methods, the design of a buffer circuit, has multiple targets for the responses,

representing different trade-offs between the key performance measures.

Keywords: Circuit simulator; Computer code; Computer model; Engineering design;

Parameter design; Stochastic process; Visualization. .



1 Introduction

Design of electronic circuits using computer models has been widespread since the
1970’s. The inputs to these models include values of adjustable engineering variables
(or parameters) for the sizes of the electrically active devices (typically transistors)
and values of factors representing variability due to manufacturing noise. The outputs
characterize the circuit performance, e.g., time delays for propagation of signals through
the circuit.

The engineering problem is to choose values of the sizes of the designable devices
such that the circuit performs consistently well in the presence of variability from
manufacturing noise. This is known as robust engineering design (Taguchi, 1986).
Taking account of manufacturing variability is known as “statistical” design in electrical
engineering.

The output from a circuit simulator is deterministic. Given the same input values,
replicate runs will produce the same output values. One specified manufacturing con-
dition is represented by one set of values for the noise factors. The noise factors would
have to be varied over several runs to generate variability in the outputs.

Circuit design has typically involved manual optimization, where the engineer iter-
ates three steps: speculation about how the parameters of the circuit might be changed
in order to improve performance, implementing the changes, and verifying the impact
of the changes through circuit simulation. Ad hoc exploration of design options can
consume a significant portion of the available engineering resources in a design project.

Linking simulators to optimization algorithms has obvious appeal. Development
time and engineering effort can be reduced, and it is easier to handle a large number
‘of designable engineering parameters. Furthermore, systematic exploration of design
options is more likely to deal adequately with trade-offs among circuit performances
and variation from noise factors.

Early methods taking account of manufacturing-noise factors (see Brayton et al.,

1981 for a survey) operated directly on circuit simulators. These methods were gener-



ally too inefficient for routine solution of real, large-scale circuit optimization problems,
typically requiring large numbers of simulations, for example to obtain Monte Carlo es-
timates of yield. More recent efforts have focused on indirect methods of optimization,
with optimizers operating on empirical models fitted to outputs from circuit simulation
(e.g., Alvarez et al., 1988; Welch et al., 1990; Yu et al., 1991). Originally, these methods
relied upon classical methods for the design and analysis of experiments. Polynomial
regression models may give poor approximations to the highly nonlinear input-output
relationships that are often present, however.

Deterministic simulators are also widespread in other engineering disciplines. For
instance, Su et al. (1996) used generalized linear regression models to design a lamp
filament via a deterministic finite-element computer code. With a three-level experi-
mental design and dummy variables they were able to deal with moderate nonlinearities
and interactions. They also noted that different assumed error distributions produced
little change in goodness of fit with data from a deterministic simulator.

The lack of random error makes experiments involving deterministic computer codes
quite distiﬁct from physical experimentation. Methods for the design and analysis of
computer experiments were described by Currin et al. (1991), Sacks, Schiller, and
Welch (1989), Sacks, Welch, Mitchell, and Wynn (1989), and Welch et al. (1992).
Bernardo et al. (1992) applied these methods to the design of a voltage-shifter circuit.
Their problem involved a total of 14 input variables and four output variables.

The example presented here, the design of output buffer circuits, is a larger problem.
It has 36 inputs, consisting of 20 designable device sizes and 16 noise factors. The eight
performance outputs of major interest are various time delays and voltage “spikes,”
outputs whose values tend to trade-off against each other. A major complication of the
example is that a generic buffer can be used in many different applications by adjusting
device sizes. Subject to a maximum delay defined by the specific application, we want
to minimize the voltage spikes. Thus, the aim is to find several good subregions in the

20-dimensional space of device sizes, each covering a range of maximum delays and



with its own set of approximations to the simulator’s input-output relationships. For a
specific application and hence a particular constraint on the delay, an engineer would
take the appropriate subregion and its approximating functions and quickly optimize
the circuit. This takes considerably less computer time than optimizing via the circuit-
simulation code itself. Earlier attempts at this problem using factorial experiments
and polynomial models had failed to locate good engineering designs.

In Section 2 we describe the output-buffer engineering requirements, including the
criteria for optimization. Section 3 outlines the overall sequential strategy. In Section 4
we describe the experimental designs used at each stage. Development of accurate
predictors for the input-output relationships is crucial to guide the sequence of exper-
iments. Thus, Section 5 is concerned with modelling, prediction, assessing prediction
accuracy and visualization of the predictors. In Section 6 we apply these methods to
the buffer circuit and describe the six stages of the experiment. Some confirmation
results show that the final approximating models are sufficiently accurate to produce
circuits that meet or exceed the performance of buffers produced by experienced design-
ers using manual methods. We conclude in Section 7 with some discussion, including

further methods under investigation.

2 The Output-Buffer Problem

2.1  Output buffers

An output buffer forms the interface between an integrated circuit chip and the envi-
ronment in which the chip operates. Buffer circuits similar to that in the example are
used in several generations of microprocessors as well as numerous other chips at Intel.
The time between the low to high transition of the input and the high to low
transition of the output is called the “high-low” delay of the buffer. There is a similarly
defined “low-high” delay. These delays are key measures of buffer performance.
Due to changing currents in the package wires, voltage spikes will be induced on

two power supply lines. For each supply line, there are high-low and low-high voltage
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Variable Min Max

T1, T2 100 2400
P1 2 200
N1, P2 2 400
N2 2 200
P3, N3, PJ, NJ 2 100
P5, N5, P6, N6, TP1, TNI 2 50
ENP1, ENN1 2 20
DP1, DN1 2 40

Table 1: Designable variables and their initial ranges (microns).

spikes. If large enough, they could be interpreted as changes in logic state by the
external environment, and so must be controlled. Thus, the maximum voltage spike
is also an important measure of buffer performance. (A voltage spike is often called
“output noise”, but we avoid this term here to avoid confusion with manufacturing

noise.)

2.2  Inputs

A total of 36 input variables were considered: 20 controllable device sizes and 16
uncontrollable factors to represent processing conditions. The device variables and
their initial ranges are given in Table 1. The names refer to the roles of the designable
transistor gates in the circuit. Very wide initial ranges were chosen in order to cover a
substantial range of maximum delays.

The 16 uncontrollable noise factors, Uy, ..., Uss, have an approximately Gaussian
joint distribution, rescaled here to have standard normal margins. The first eight of
these factors are correlated; the other eight vary independently. Estimated moments
of the joint distribution, including the correlations, were available from data gathered
from the manufacturing process. The noise factors are independent of the designable

parameters, thus the same estimated moments apply to all regions of the design space.



2.3 Outputs and Engineering Objectives

The output performances of major interest and the initial engineering objectives were

as follows.

e Primary time delays, TL and TH, measured in nanoseconds (ns). These time
delays, for the high-low and low-high transitions respectively, should be no more

than a given application-specific maximum, ¢y, i.e.,
TL < tmax and TH < tpax.
In the applications anticipated, tyax would range from about 5 to 12 ns.

e Secondary-path time delays, TLO and THO (ns). There are two “output enable”
time delays, again for the high-low and low-high transitions respectively. Each

should be no more than 10% of the corresponding primary delay, i.e.,
TLO<0.1TL and THO<O0.1TH.

To deal with these constraints, we introduced two constraint slacks which have

to be nonnegative,

TLC=01TL—- TLO>0 and THC=0.1TH- THO>O0. (1)

o Voltage spikes, VSL, VCL, VSH, and VCH, measured in volts (V). These corre-
spond to the two supply lines (called VSSP and VCCP) and the two transitions.
Subject to the above constraints, we want to minimize over the device sizes the

maximum of the four voltage spikes.

The above names for the output variables are shortened from the némes more
typically used by electrical engineers; e.g., TL, TLO, and VSL would often be called
TDLEN, TDLOENN, and VSSPTDL, respectively.

All of the above output variables depend on the designable inputs, T1,..., DNI in

Table 1, and the 16 noise factors, Uy,...,Us. We needed to take account of the noise
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factors in defining the engineering objectives. For given values of the device sizes, i.e.,
for a specific circuit design, the joint distribution of Uj,. .., Us induces a distribution
of, say, TL values. To penalize variability from the noise factors, define TL* to be the
mean plus three standard deviations of the TL distribution, with similarly defined terms
for the other outputs. These quantitites depend only on the device sizes, T1, ..., DN1.

The above objectives and constraints then become: minimize over the device sizes
max(VSL*, VCL*, VSHY, VCH') (2)
subject to
TL* < tmax, THY <tmax, TLCY >0, and THCt >0, (3)

for a given tmax. Because of the trade-off between the primary time delays and the
voltage spikes, a larger value for ty,, in (3) allows a better minimum to be found
for (2).

There were several other outputs of interest, which added further constraints to the
problem. For example, impedances ZUP and ZDOWN had to be each less than 509.
It turned out these further outputs are simple functions of inputs TI or T2 and hence
merely revised the T and T2ranges (see Section 6.1). Although these responses raised
no interesting modelling issues, their impact on the T and T2 ranges turned out to

be important, as described in Section 6.3.

3 The Sequential Strategy

The ultimate aim was to build approximations for the responses as functions of all
simulator inputs, allowing an engineer to optimize quickly the objective function (2)
subject to the constraints (3) for a specific primary-delay goal. It was recognized
early in the project that accurate predictions are practically impossible with high-
dimensional input unless the region of interest is reduced to a manageable size. Thus,

in order to construct approximations that are accurate for a range of delay goals,



multiple models were constructed. Each provided accurate predictions for a subrange

of delays and was fitted from simulator runs in a specific subregion of device sizes.
The sequential optimization methodology described in Bernardo et al. (1992) was

extended to handle the range of performance goals. The investigation proceeded in

stages, with each stage consisting of the following steps:

1. Experimental design. Choose combinations of values for the inputs (device sizes

and noise factors) in the current input region and run the simulator.

2. Predictor construction. Fit a model and obtain a predictdr for each simulated

response.
3. Evaluation. Assess the accuracy of prediction.

4. Visualization. Use graphical methods to visualize the effects of individual in-
put variables on the predictors. Where estimated interactions are judged to be

important, also consider joint effects of pairs of variables, etc.

5. Optimization. If there is sufficient predictor accuracy, perform tentative opti-

mizations.

6. From the visualization and, possibly, from the optimizations, identify promising
new subregions in the device-size space. Each subregion will be appropriate for

a limited range of primary delay goals.

The subregion(s) identified at Step 6 define the experimental region(s) for Step 1 of
the next stage. The joint normal distribution for the noise factors, Uy, ..., U;s cannot
be reduced in spread. The device-size variables, with very wide initial ranges, dominate
the input-output relationships at the early stages. Thus, accuracy of prediction will

tend to improve as the device-size space is reduced.



4 Experimental design

At each stage, Latin hypercube experimental designs (McKay et al., 1979) were gen-
erated. These designs were proposed specifically for analysing the output from deter-
ministic computer simulation codes. |

For the initial, Stage 1 experiment, for example, we constructed a Latin hypercube
with 120 simulator runs. The range for each device-size variable was represented by
the midpoints of 120 equal intervals covering the range. Each of the 120 values occurs
once in the experiment. For each noise factor, the values in the design were given
by @‘1_(%) for ¢ =1,...,120, where ® is the standard normal cumulative density
function. Thus the range for each input was fully explored, with uniform interest across
the ranges of the device sizes, and marginal normal distributions reflecting operating
conditions for the noise factors.

For a completely random Latin hypercube, the 120 values for each variable would
have been in random order when combining the factors in the experimental design.
This would have produced correlations randomly varying about zero between pairs of
variables. For the noise factors, however, we would like to reflect the correlation struc-
ture in manufacturing. The remaining correlations, between two designable variables
or between a designable variable and a noise factor, are ideally zero to avoid partial
confounding. Iman and Conover (1982) described how to transform a starting, random
Latin hypercube into one with a desired correlation structure using the Cholesky de-
composition of the correlation matrix. By iterating their procedure, correlations very
close to the target correlation structure were achieved. |

" Figure 1 shows two-dimensional projections of the Stage 1 design for the first two
device sizes, T'1 and T2, and for the first two noise factors, U; and U,. The T1-T2
space is fairly uniformly covered, and the correlation between U; and U, is apparent.
There are no replications, which would be uninformative in the absence of random

error, in these low-dimensional projections of a Latin-hypercube design. Thus, if only

a few input factors dominate an input-output relationship, all runs will still be useful.



Such a “space-filling” design is well suited to the model and predictor in Section 5.
The predictor gives larger weight to design runs close to the point where we want to
predict. Even in the context of polynomial regression models fitted by least squares,
work going back to Box and Draper (1959) has established the desirability of spreading
runs throughout the experimental region for prediction when variability from random

error is unimportant.

5 Modelling

5.1 Gaussian Stochastic Process Models

At each stage, approximating functions were constructed for each output as a function
of all 36 inputs. We applied the methodology described by Sacks, Welch, Mitchell, and
Wynn (1989). We now outline the main ideas. |

iLet X = z1,...,%36 denote the vector of device-size and noise inputs, and let y
denote one of the outputs (e.g., TL). We treat y(x) as a realization of a stochastic

process,
Y(x) = fo + Z(x), (4)

where 3, is an unknown constant, and Z(x) is a random function with mean zero,
-variance 0%, and correlation R(x,x') between the two Z values at input vectors x
and x’. If the simulator input-output function acts like the realization of a stochastic
process, then this mathematical artifice may provide very good approximations in
practicé. Moreover, the stochastic model gives a basis for estimating uncertainty of
prediction. An alternative Bayesian interpretation, described by Currin et al. (1991),
is that properties of the correlation function can be chosen to represent prior knowledge
about the behaviour of y(x).

Central to this model is the correlation function, R(x, x’). We take
R(x,x) = T2, exp(=bi|z; — zi|>~*), (5)

where 6; > 0 and 0 < oy < 2 are parameters to be estimated. (These ranges give
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positive definite correlation matrices.) Qualitatively, this correlation structure implies
that two vectors x and x’ close together in the input space give rise to two values of
the output function that are highly correlated (i.e., similar), as would be expected if
the function is smooth. Conversely, x and x’ vectors remote from each other lead to
two output values with near-zero correlation (i.e., they are unrelated).

If we assume further that the stochastic process in (4) is Gaussian, the estimation
of the model parameters, By and ¢% in (4) and 6y,...,03 and oy,...,ass in (5), is

straightforward using maximum likelihood.

5.2 Prediction

From the fitted model, a best linear unbiased predictor, Y(x), can be constructed.
It interpolates the responses from the n runs in the experiment, as it should for a
deterministic relationship. Let x(), ... x(™ be the n points in the experimental design,
and let y = (y1,...,y,)T denote the corresponding simulated output values. The

predicted response at an untried x is computed from
Y (x) = fo + r(x)"R3'(y — Bol), (6)
where r(x) is an n x 1 vector of correlations with element ¢ given by R(x,x®) in (5), Rp
is an n X n matrix of correlations for the responses at the design points with element i, j
given by R(x®),x@) in (5), 1 denotes an n x 1 vector of 1’s, and G, = 1"R;'y/1TR;'1
is the generalized least squares estimator of f3,. |
In numerous applications, including the circuit-simulator example of Bernardo et

al. (1992), accurate prediction has followed from this modelling strategy without the

need to make assumptions about the forms of nonlinearities and interactions.

5.3 Assessing prediction accuracy

A mean squared error of prediction,

0 1”7 1 |
s'(x)=0% [1-(1 r(x)T) : (7)
1 Rp r(x)

10



also follows from the model (4).

We use mainly cross validation, however, to assess prediction accuracy. Let Y_;(x)
denote the leave-one-out cross-validation prediction of y; using the other n —1 cases. It
can be computed from ¥ (x() in (6) when element i is removed from the vectors Y, r(x),
and 1, and row ¢ and column j are removed from Rp. Comparison of Y_i(x(i)) with y;
fori: =1,...,n gives a visual indication of prediction accuracy. As a summary measure,

we can also compute the cross-validation root mean squared error of prediction,

\J Z[yt Y_i( x(z ] (8)

Similarly, let s_;(x(*)) denote the root mean squared error when case 7 is removed in (7).

We can compute standardized cross-validation residuals,

o Vi Y_i(x)
T = 5_; (X(l)) )

for i =1,...,n. If the model (4) holds, then e,...,e, should behave approximately
like a sample from the standard normal distribution. In particular, they should lie

within about [—3,3]. This provides a model diagnostic.

5.4 Visualization

Visualization of the predictor plays an important role in revising the experimental
ranges from one stage to the next, especially in early stages of the sequential strategy.

The estimated main effect of an input is defined by averaging or integrating out
all the other inputs from Y/(x). It is convenient here to write the vector of all 36
inputs, x, as (¢, u), where ¢ denotes the 20 controllable device sizes and u is the
vector of 16 uncontrollable (in actual manufacturing) noise factors. Thus, we write
the predictor ¥'(x) as Y(c,u). This division of the inputs is useful as u has a joint
Gaussian distribution in manufacturing and hence in the integration. The estimated

main effect of the jth device size, a function of its value c;, is computed from

fii(cj) = /Y(C,u)ﬂk;e_jbkd_ akf(u) du (9)
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where a; and b are the respective lower and upper limits of ¢, and f(u) is the
noise distribution. Thus, we integrate out all noise factors with respect to their joint
distribution and all device sizes except the jth with respect to uniform distributions.
The estimated main effect is computed for a set of ¢; values covering the range and is
plotted against c;.

The correlation function (5) and hence r(x) = r(c, u) in the predictor (6) are prod-
ucts of terms involving a single input variable. Thus, in (9), the integration with respect
to the rectangular space of ¢ becomes a product of one-dimensional integrals and is nu-
merically straightforward. Integration with respect to the Gaussian distribution, f(u),
in (9) is approximated numerically by a Monte Carlo average. The u combinations in
the Latin hypercube experimental design are convenient for this purpose as they have
approximately correct first and second moments.

A numerical summary of the importance of the estimated main effect for device
size j is obtained by comparing the variability of /i;(c;) over the set of ¢; values with
the total variability of Y(c,u) over the entire input space. The calculation of the
36-dimensional integral for the total variability is again facilitated by the product
correlation function. |

To compute a similar main effect for a noise factor u; that is correlated with the
other noise factors would require integration with respect to an appropriate conditional
distribution. This is not undertaken, however, as we are interested in visualization for
the purpose of reducing the ranges of the device sizes; the noise factor ranges cannot
be changed from stage to stage.

The estimated joint effect, i;;:(c;, c;jr), for device sizes j and j’, as functions of their
values ¢; and c;r, can be similarly computed. We integrate out all inputs except these

two from Y(c, u). The estimated interaction,
Rigr(csye) = fi(c;) — fije(ejr) + fio, (10)

where [ is the integral of Y(c, u) over all inputs, measures the nonadditivity of device

sizes j and 7’ in the estimated joint effect. If the variability in the interaction over the
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c; and c; ranges is a trivial proportion of the total variability in the predictor, it is
sufficient to consider the corresponding estimated main effects. Otherwise, we need to
make a contour plot of the estimated joint effect, fi(c;,cj), as a function of both ¢; and.

le.

6 The Output-Buffer Experiment

The experiment consisted of six stages. The first two stages narrowed the space of
device sizes down to a manageable size. At later stages, greater accuracy of predic-
tion was possible, allowing optimization of the engineering objectives via the fitted
predictors.

We describe Stage 1 in some depth to illustrate the modelling and visualization
methodology. Stage 2 proceeded similarly, and we give a briefer account. At Stage 3,
visualization of the engineering trade-offs led to relaxing some constraints. Stage 4
discovered a subregion of the device-size space appropriate for small time delays. Pre-
diction accuracy became satisfactory for all responses, enabling optimization of the
voltage spikes subject to small upper bounds on the primary delays. Stages 5 and 6
identified further subregions for higher primary delays.

6.1 Stage 1

An initial Latin hypercube of 120 runs was generated in the 36-dimensional input
space. The choice of 120 runs was somewhat arbitrary. Earlier experience with the
stochastic-process model in various applications had indicated that 10 times the antici-
pated number of active variables is often adequate even in the presence of nonlinearities
and interaction. Thus 120 runs would be enough for up to 12 active variables per re-
sponse.

The simulator failed to give output for some responses at two (extreme) settings.
In addition, we discarded six runs with at least one primary delay greater than 20ns.

This cut-off was chosen to remove outlying observations of little engineering interest

13



when we impose much smaller values for the primary-delay constraint. They would
have degraded the accuracy of fitted models in regions where the response is lower and
hence of concern. In our experience, such data editing decisions often have to be made
at early stages of experimentation when input ranges are very wide. Thus, 112 runs
were left for analysis.

Simple plotting revealed that the impedances ZUP and ZDOWN menfioned in Sec-
tion 2.3 are trivially related to device size T or to T2. The requirement that both
ZUP and ZDOWN be less than 50 Q led to a lower bound of 330 microns for T and
a lower bound of 560 microns for T2.

The primary delays, TL and TH, the secondary-delay constraint slacks, TLC and
THC, and the voltage spikes, VSL, VCL, VSH, and VCH, were modelled as in Section 5.

Examining the cross-validation predictions described in Section 5.3 indicated that
prediction accuracy was fairly good for some responses, but less so for others. Fig-
ure 2(a), for example, shows the actual VSL values versus their cross-validation pre-
dictions. This voltage spike and VCH tend to be larger than the others and hence the
most important in the objective function (2). The figure shows fairly good prediction
for this response. Moreover, as shown in Figure 2(b), the standardized cross-validation
residuals lie within [—3,3], giving some credibility to the model (4). Figure 3 shows -
analogous plots for TH, an output with poorer prediction accuracy, though the mag-
nitude of the prediction error is again well modelled.

For comparison, second-order regression models were also fitted by least squares.
Because there are only 112 data points and potentially 703 terms in the model, a
first-order regression in the 36 input variables was initially fitted. After deleting terms
insignificant at the 0.05 level, a second-order model was fitted with the remaining input
variables. Fina.liy, insignificant terms from this model were deleted. Table 2 includes
the cross-validation root mean squared error given in (8) for the Stage 1 stochastic-
process models and for the regression models. The regression models are clearly much

less accurate.
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Stage

Response 1

VSL (V) 0.13 (0.21) 0.07 (0 12) 0.002 (O 005)
VCL (V) 0.18 (0.24) 0.13 (0.25) 0.011 (0.020)
VSH (V) 0.20 (0.39) 0.11 (0.22) 0.033 (0.058)
VCH (V) 0.08 (0.12) 0.02 (0.05) 0.007 (0.009)
TL (ns)  0.93 (1.74) 0.14 (0.41) 0.032 (0.090)
TH (ns) 1.05(1.80) 0.22(0.51) 0.030 (0.112)
TLC (ns) 0.12 (0.25) 0.03 (0.07) 0.009 (0.019)
THC (ns) 0.21 (0.56) 0.05 (- (-)

) 0.011

Table 2: Cross-validation root mean squared error for the stochastic-process predictor
at various stages. Figures in parentheses are for a second-order, least-squares regression
model (there were insufficient runs to fit the regression models for THC at Stages 2

and 4). TLC and THC were redefined after Stage 1.

Prediction accuracy, even from the stochastic-process model, was judged to be
insufficient for formal optimization. This is not surprising given the very wide initial
ranges for the designable device sizes. Thus we relied on visualization of the predictor
to guide the choice of narrower ranges for the next stage.

For instance, Figure 4 shows the estimated main effect, computed from (9), of
input PI on the voltage spike VSL. The estimated main effect of PI accounts for
53.0% of the variability in the VSL predictor across the 36-variable input space and is
therefore judged to be the dominant factor for VSL at this stage. The plot indicates
that PI should take a low value to minimize VSL. The other responses also had to
be considered, however, in choosing a new range for P1, as summarized in Figure 5.
Recall that small voltage spikes, small primary time delays, and positive values of the
secondary time-delay constraint slacks in (1) are desirable. The estimated effects for
VSL and for the secondary time-delay slacks suggest small values of P! (Figures 5(a)
and 5(c)). At very small PI values, TL rises sharply (Figure 5(b)). As a compromise
between these somewhat conflicting considerations, the lower 10% and the upper 40%

of the original P! range was removed for Stage 2. Analogous plots were produced and
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examined for all 20 designable inputs.

Some important interactions were also identified. The interaction, computed
from (10), between P3 and N3 accounts for 16.2% of the variability in the VSH pre-
dictor, for example. Figure 6 shows the estimated joint effect, i.e., the predictor with
‘all other factors integrated out, of these two factors on VSH. Their estimated main
effects account for 10.7% and 6.5% of the VSH predictor variability; together with
the interaction effect, they account for a total of 33.5%. The plot suggests that small
values of P3 in combination with large values of N3 are undesirable. The only other
estimated interactions accounting for at least 5% of predictor variability are two more
relating to VSH and one relating to VCL.

The noise factors, Uy, . .., Usg, are largely ignored in these plots of estimated effects,
as they are simply being averaged out. At Stage 1, however, this was not a major
concern, because we found small estimated effects relative to those for the designable
inputs. The 16 noise factors together account for modest percentages of predictor
variability: the largest percentage is 14% for VCL. Similarly, the estimated interactions
between the designable inputs and the noise factors were small. As the ranges of
the designable inputs were narrowed in subsequent stages, the noise factors became
relatively more important.

A new range was chosen for each designable input using main-effect plots like Fig-
ure 5 and checking the decisions against joint-effect plots like Figure 6 where necessary.
The new ranges for Stage 2 (and subsequent stages), relative to those for Stage 1, are

summarized in Figure 7.

6.2 Stage 2

A 90-point Latin hypercube design was generated for the Stage 2 region. Model fitting
proceeded as for Stage 1.
Making positive the secondary time-delay constraint slacks in (1) proved to be

very difficult, with the danger that these secondary considerations would dominate
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the problem. An engineering decision was made to relax the constraints so that each
secondary time delay is no more than 20% (rather than 10%) of the corresponding

primary delay. Thus, we redefined the constraint slacks to be
TLC=02TL-TLO>0 and THC=02TH- THO > 0.

Table 2 shows the cross-validation root mean squared errors of prediction at Stage 2.
The stochastic-process predictors again perform well relative to second-order regression
models. There was much improvement in accuracy compared with Stage 1, because
we were predicting over a smaller region. Further improvement was still required,
however. For practical purposes, it was felt that a root mean square error of 0.05 ns
for the primary delays and 0.02 V for the voltage spikes would be adequate.

Inspection of estimated main-effect and, where necessary, joint-effect plots indicated
that some variables apparently important at Stage 1 were less important at Stage 2,
while others emerged as relevant for one response or another. The main patterns carried
over, however, from Stage 1. The noise factors and their interactions with the device
sizes still appeared to be relatively unimportant.

In addition to the visualization of estimated effects, some tentative optimizations
were performed. For given maximum primary delay time, #p,.y, the minimization of the
voltage spikes in the objective function (2) subject to the primary and secondary delay
constraints in (3) was carried out using the fitted predictors. For given values of the
device sizes, T1,..., DN1, we predicted TL, for example, using the values of Uy, . .., Uss
in the experimental design as a Monte Carlo sample. Taking the sample mean plus
three times the sample standard deviation of TL over these 90 noise combinations
gave an estimate of TL*. Optimization was carried out using the NPSOL algorithm
(Gill et al., 1986). Trial and error with various values of #p,, gave two points in the
T1,...,DN1 space for tmax as low as 5.4 ns and another point for lower values of #mpay.

Regions around these points were constructed.
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6.3 Stage &

Ninety runs were made for each of the three regions labelled Stages 3.1, 3.2, and 3.3 in
Figure 7. The results were clearly disappointing in terms of the engineering criteria.
For example, the 90 runs in the first experimental design gave VCH values all above
0.30 V with TL and TH primary delays mainly in the range 5.0-7.0 ns. Far smaller
voltage spikes were expectéd and later found. In Section 6.5 we report confirmation
runs where the primary time delayé are in similar ranges but the worst-case voltage
spike (mean plus three standard deviations) is less than 0.31 V for all four voltage
spikes.

In a review of the project to date, two problems were uncovered. First, re-
examination of the earlier estimated-effect plots showed some inappropriate ranges
for Stage 3. Consider, for example, N1. Figure 8 shows the estimated main effects for
Stage 2. We see that small values of N1 reduce TL substantially, with little effect on
TH. The voltage spike effects appear to be small. The indication is that the N1 range
should have been lower for Stage 3 than at Stage 2. Similar comments apply to the P2
range.

Secondly, the project review indicated a need to reconsider again the engineering
trade-offs. Figure 9 shows the estimated main effects of T1 at Stage 2. Small values of
T1 reduce V.S'L and TH but increase TL. Analogous plots of the estimated T2 effects
show a similiar pattern: small values of T2 reduce VCH and TL but increase TH. To
obtain smaller values of VSL and VCH, which tend to be the largest voltage spikes,
T1 and T2 should be reduced. The Stage 2 lower limits for T1 and T2 were set to
accommodate the ZUP and ZDOWN constraints (see Section 2.3). These constraints

were relaxed, allowing smaller values for T7 and T2 for subsequent stages.

6.4 Stages 4, 5, and 6

A 90-point Latin hypercube design was used to generate the Stage 4 experiment. As

shown in Table 2, we found considerable improvement in accuracy relative to earlier
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Maximum VSL VCL VSH VCH TL TH
delay (ns) V) (V) (V) (V) (ns) (ms)
5.9 Predicted 0.356 0.090 0.187 0.261 4.854 4.893
Actual 0.353 0.096 0.171 0.254 4.932 4.861

6.4 Predicted 0.292 0.063 0.088 0.234 5.287 5.174
Actual 0.295 0.072 0.057 0.245 5.353 5.211

Table 3: Predicted and actual outputs at two sets of device sizes found by optimization

subject to different maximum delays, #pay.

stages. The much-reduced ranges for the device-size variables limited their effects,
making modelling easier. With smaller effects from the device-size variables, the noise
factors and their interactions with the device sizes were estimated to be relatively much
more important than at Stages 1 or 2.

Encouraged by these results, we optimized the objective (2) subject to the con-
straints (3) via the predictors for primary-delay constraints of 5.9 and 6.4 ns. These
optimizations considered variation in the noise factors via Monte Carlo sampling, as
described in Section 6.2. Table 3 compares the predicted outputs with the actual values
from confirmation runs at the two sets of device sizes identified; there» is fairly good
agreement. Here, the predicted values were means over the Monte Carlo sampling of
the noise factors, Uy, ..., Us, while the confirmation runs had Uy, ..., Uss set to zZero,
i.e., nominal conditions. More extensive confirmations are reported in Section 6.5.

We also tried optimizing for a primary-delay constraint of 6.9 ns. The solution had
P1, N2, and P4 constrained by their Stage 4 lower bounds. Thus, we collected new
data for Stage 5, with lower ranges for these device sizes; the other ranges remained
unchanged (see Figure 7). Using predictors fitted from another 90-point Latin hy-
percube sample, we repeated the optimization with primary-delay constraints of 6.4,
6.9, 7.4, 7.9, 8.4, and 8.9 ns, giving six corresponding combinations of the device-size
variables. Six confirmation runs showed disappointing accuracy for TH and fof VSH.

We added them to the Stage 5 Latin hypercube to improve prediction accuracy near
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the six apparent optima. (The correlation parameters in (5) were not refitted by maxi-
mum likelihood). New confirmation runs for the reoptimized device-size configurations
showed improved accuracy and were deemed satisfactory for a primary-delay constraint
of up to 8.4 ns.

To find good solutions for higher values of the time-delay constraint we repeated the
steps in Stage 5. A Stage 6 experimental design of 90 points, with revised ranges for T,
T2, P1, N2, and P/ (see Figure 7), was constructed. After optimizing for various values
of the constraint, the confirmation runs were added to the design. Further confirmation
runs for the re-optimized device sizes indicated that accuracy was satisfactory for delay

constraints up to 13.4 ns.

6.5 Confirmation

The confirmation runs carried out at Stages 4, 5, and 6 were at nominal conditions for
the noise factors. Before use in a specific application, more careful confirmations were
necessary.

For example, one application had a time-delay constraint of 7.0 ns. The appropriate
fitted predictors, those from Stage 5, were used to optimize the device sizes. The circuit
simulator was run with the suggested device sizes and Monte-Carlo sampling of the
noise factors. The means and standard deviations for the various outputs agreed well
enough for practical purposes with the predicted means and standard deviations shown
in Table 4.

For at least one application, a hand-optimized circuit produced by an experienced
engineer was available. Comparison showed that the method proposed here produced

means and standard deviations for the time delays and for the voltage spikes that were

~ 5-10% smaller.
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Mean Standard deviation
Ouptut Simulator Predicted Simulator Predicted
VSL (V) 0.229 0.233 0.0286 0.0246

VCL (V) 0.0506  0.0537  0.00618  0.0088
VSH (V) 0.152 0.122 0.0357  0.0054
VCH (V) 0.236 0.230 0.0244  0.0218
TL (ns) 5.84 5.72 0.431 0.414
TH (ns) 542 535 0.417 0.523

Table 4: Means and standard deviations from simulator runs compared with predictions

from the fitted models.

7 Discussion

This example demonstrates the usefulness of using statistical techniques in conjuntion
with engineering simulation models. Indeed, attempting to optimize many performance
characteristics over a very high dimensional space, while minimizing variability from
processing noise, makes a systematic approach essential. We believe the stochastic-
process model is well suited to large-scale problems with many inputs and outputs.
The data-adaptive nature of the model ébviates the need to specify nonlinearities and
interactions, a daunting task when repeatedly modelling eight responses as functions
of 36 explanatory variables.

There are, of course, other data-adaptive methods, e.g., generalized additive models
(Hastie and Tibshirani 1990). The stochastic-process model was motivated specifically
to deal with deterministic input-output relationships, however, and has proved in many
applications to give relatively good accuracy when there are many inputs and few runs.

Some lessons were learnt during this example about the sequential strategy. Stage 3,
with hindsight, could have been better planned. The Stage 3 regions were identified
by optimizations using the Stage 2 predictors, but at Stage 2 accuracy was known to
be unsatisfactory. An optimizer will tend to favour predictions that are in error by
being too optimistic, i.e., searching introduces bias. This is more of a problem when

errors are large. Another problem is that optimization locates a point. If accuracy is

21



insufficient, we want reduced ranges for the next stage.

When accuracy is inadequate, visualization of the predictors appears to be more
useful for choosing ranges for the next stage. Another advantage of visualization is that
the engineering trade-offs between conflicting performance measures can be seen. The
engineering criteria had to be changed several times during the output-buffer project;
this is not unusual, we suspect.

The overall strategy was sequential in stages. Within Stages 5 and 6 we also op-
timized sequentially. Confirmation runs at points predicted to be optimal were incor-
porated into the predictor, and the constrained optimizations were re-run. This raises
the possibility of a fully sequential strategy, after an initial experimental design, which
would be more automated. Such methods have worked well in much simpler contexts
(Schonlau, Welch, and Jones, 1997). Extensions to deal with noise factors and multiple
engineering targets are required to deal with systems like the output-buffer problem
presented here. To deal with more device sizes, Bates et al. (1996) described a method

for decomposing circuits prior to statistical modelling.
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Figure 1: Two-dimensional projections of the Stage 1 experimental design for the first

two device sizes, T1 and T2, and for the first two noise factors, U; and U,.
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dictions.
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Figure 3: Modelling of TH at Stage 1: (a) Actual values versus their cross-validation

predictions and (b) Standardized cross-validation residuals versus cross-validation pre-

dictions.

27



VSL (V)
10 15

0.5

50 100 150
P1 (microns)

Figure 4: Estimated main effect of PI on VSL at Stage 1. The bounds are pointwise
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(a) Voltage-Spike Main Effects
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Figure 5: Estimated main effects of PI at Stage 1 on (a) the voltage spikes, (b) the

primary time delays, and (c) the secondary time-delay constraint slacks. The bounds

are pointwise approximate 95% confidence intervals.
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Figure 6: Joint effect at Stage 1 of P3 and N3 on VSH: (a) Estimated effect and (b)
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Figure 7: Ranges for the designable device sizes at each stage of the experiment.
The Stage 1 ranges in Table 1 are normalized to have the same length; the bars for

subsequent stages are relative to Stage 1.
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(a) Voltage-Spike Main Effects (b) Time-Delay Main Effects
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Figure 8: Estimated main effects of NI at Stage 2 on (a) the voltage spikes and (b) the

primary time delays. The bounds are pointwise approximate 95% confidence intervals.
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(a) Voltage-Spike Main Effects
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Figure 9: Estimated main effects of T'I at Stage 2 on (a) the voltage spikes and (b) the

primary time delays. The bounds are pointwise approximate 95% confidence intervals.
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