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ABSTRACT

Microsimulation approaches to travel demand forecasting are gaining increasing attention due to
their ability to replicate the multitude of factors underlying individual travel behavior. The
implementation of microsimulation approaches usually entéils the generation of synthetic
households and their associated activity-travel patterns to achieve forecasts with desired levels of
accuracy. This paper develops a sequential‘ approach to generate synthetic daily individual
activity-travel patterns. The sequential approach decomposes the entire daily activity-travel
pattern into various components, namely, activity type, activity duration, activity location, work
location, and mode choice and transition. The sequential modeling approach offers practicality,
provides a sound behavioral basis, and accurately represents individual’s activity-travel patterns.
In the proposed system, each component may be estimated as a multinomial logit model. Models
are specified to reflect potential associations between individual activity-travel choices and such
factors as time-of-day, socio-economic characteristics, and history dependence. As an example,
the paper furnishes results for activity type choice models estimated and validated using the 1990
Soﬁthern California Association of Governments travel diary data set. Validation results show
that the predicted pattern of activity choices conforms with observed choices by time of day.
Thus the paper shows that realistic daily activity-travel patterns, which are requisites for

microsimulation approaches, can be generated for synthetic households in a practical manner.
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INTRODUCTION

Microsimulation of the behavior of a household or an individual is drawing attention as a new
approach to travel demand forecasting (/). Microsimulation can replicate the behavior of
complex systems or processes, and is therefore suited for the representation of travel behavior,
which is a complex behavior. The factors that make travel behavior complex include: the
multitude of contributing factors and decision rules involved; constraints that govern the behavior;
inter-personal interactions; multiple planning horizons; and complexity of activity-travel decision
making as a scheduling problem (2). Microsimulation is an effective approach to such a complex
phenomenon which facilitates its practical, yet realistic, representation.

Achieving desired levels of accuracy in the outcome of travel demand forecasts produced
by microsimulation of household behavior may require a large sample of households. This may
vhappen when: high levels of spatial or temporal resolution are required of the outcome; sample
households do not have a desirable geographical distribution, demand by sméll population
segments is desired; or a high level of accuracy is desired. In such instances, the number of
households available in the data set at hand may not be sufficiently large. As a result, the
generation of synthetic households may be required. When the microsimulation expects daily
travel patterns of household members as input data, the generation of synthetic daily travel
patterns will be required.

An approach to the problem of synthetic travel pattern generation is presented in this

paper. The proposed synthetic travel pattern generator has a sequential structure and can be
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decomposed into components to which certain aspects of observed activity-travel behavior
correspond, thus establishing a link between mathematical models and observational data. The
model components are each relatively simple and are estimated using commonly adopted
estimation methods and existing data sets.

The problem of synthetic travel pattern generation is presented formally in the second
section. Accumulated knowledge on the characteristics of daily travel patterns is reviewed in the
third section. Following this, a discussion of several modeling issues is presented in the fourth
section. The fifth section presents aspects of travel behavior incorporated into the model system.
The formulation of the model components constitutes the sixth section, while estimation and

validation results are furnished in the seventh section. Conclusions are drawn in the final section.

PROBLEM DESCRIPTION
Consider a household member, i, whose daily activity-travel pattern can be characterized as
(X, Ti, i) = (Xio, Xit, -, Xin; Tio, Tit, ..., Tin; Lio, Lis, ..., Lin) (1)
where
X;; = the type of the j-th activity pursued by individual i,
Tjj = the duration of the j-th activity pursued by individual i,
Lij = the location of the j-th activity pursued by individual i (if the activity is travel, then
L;; refers to the destination of trip j; in this case L;; = L;j.1),
n=the number of activities involved in individual i's daily activity-travel pattern,
and (Xio,Tio,Lio) is the initial condition. Note that travel is included here as one of the activity

types. For simplicity, travel mode, which may be stored in another vector, say M, is not included
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in the discussion here. The mode choice component is discussed in a subsequent section of this
paper.

The development of a synthetic daily activity-travel pattern implies generating vectors X;,
T;, and L; given:

e attributes of individual i

o | attributes of the household to which i belongs

e residence and work location of i

¢ demographic and socio-economic characteristics of the region

¢ land use characteristics of the region, and

e transportation network and travel time characteristics of the region.

Since it is most likely that synthetic activity-travel patterns will be generated for synthetic
individuals and households, the first three items will comprise synthetic data. Generating
synthetic individuals and households is, however, beyond the scope of this paper (for discussions
on the generation of synthetic households, see 3); it is assumed here that all personal and
household attributes, as well as work location, are known for i. The latter three items will consist

of projected values in cases where synthetic activity-travel patterns are generated for forecasting.

ACCUMULATED KNOWLEDGE

The following discussions offer a brief summary of what is known about n, which is also a
variable to be determined, and each of the three vectors, X;, T; and L; It is possible that
additional information is available from the literature on time use. This literature is not well

known in the transportation field, and needs to be explored further in the future.
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Number of Activities Per Day: n

The total number of activity episodes captured in time use surveys tends to be 20 to 25 per person
per day, including trips. In the transportation field, the average number of trips is between 3 to 5
per person per day. It is known that the number of trips captured varies greatly depending on the
survey methodology. It is well established that total trip generation is associated with

demographic and socio-economic attributes of the traveler.

Activity Type: X;

There are certain regularities in the sequence with which individuals engage in different types of
activities. For example, one may anticipate that the sequence of activities performed before
leaving home for work or after coming back home from work, is fairly uniform across individuals.
The literature in time use analysis needs to be explored to determine tendencies for activity
sequences involving both in-home and out-of-home activities (4).

Kitamura (5) examined the sequence of trip purposes using standard trip diary data from
Detroit. The trip purpose was used to identify the primary out-of-home activity type at each
destination location. The analysis examined how out-of-home activities were sequenced in a
home-based trip chain, i.e., the home-to-home series of trips which involves one or more stops.
The results indicated that activities of more mandatory nature tend to be pursued first in a trip
chain. The sequencing tendencies indicated the following hierarchy:

e work and school, work-related

e chauffeuring

e personal business (e.g., banking, dental and medical)
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e shopping, and
e social and recreational
The presence of the same sequencing hierarchy was later found for activities throughout the day

(6, 7). Another important tendency is that activities pursued in the same trip chain tend to be

similar (5).

Activity Duration: T;

Several studies have investigated the duration of activity engagement. In a semi-markov process
model of trip chaining, Lerman (8) used gamma distributions to represent the duration of sojourns
at destination locations. Survival models have recently been applied to the time dimension in
activity-travel patterns (9, 10, 11). These studies are typically based on the simplifying
assumption that the durations of successive activities are independent.

Activity duration has been examined from the viewpoint of resource allocation. A
theoretical model can be found in Kitamura, et al. (/2) where the duration of an activity episode
was analyﬁcally derived while assuming that the total daily activity pattern is optimized and that
each activity episode has a logarithmic utility function. The model was estimated using a time use
data set from the United States. Although the model is based on the assumption that daily time
use is optimized as a whole, the resulting model applies to individual activity episodes. Golob and
McNally (/3) examined the allocation of time to different activity types using a structural
equations rﬁodel system. This approach facilitates the inference of causal relationships among
activities of different types.

Critical in the analysis of activity duration is the correlation across the duration of

respective activity episodes. As the total amount of time available is fixed at 24 hours a day,
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negative associations can be expected. In addition, the duration of each episode is also a function
of n, the total number of episodes. The inter-relationships among duration of different types of

activities and the number of activities, n, merit further exploration.

Activity Location: L,

Non-home activity locations have traditionally been estimated using the gravity model of spatial
interaction. The multinomial logit model of destination choice can be viewed as a special case of
the gravity model family. In principle, thesé models depict that, ceferis paribus, more intense
interaction exists between a pair of locations that are closer to each other, and the intensity of the
interaction is positively related to the attraction level of the destination and the number of trips
initiated at the origin.

One important issue is the characterization of location/destination choice for
non-home-based trips, ie., trips whose origin and destination are both non-home. For
home-based destination choice underlying a simple trip chain involving only one stop (i.e.,
home-activity-home), the only spatial element to be considered is the separation between the
destination and the home base. This does not hold true in the case of non-home-based choice.
For example consider the choice of a shopping location on the way home from work; in this case,
both the home location and the deviation from the regular commute route would be important
considerations. Kitamura and Kermanshah (7) constructed a non-home-based destination choice
model which included both the usual origin-to-destination travel time, tj, and the
destination-to-home travel time, ty, in a multinomial logit choice model. Their estimation results
clearly indicated that t;; and t;, are equally important for non-home-based destination choice. This

finding is readily applicable to the generation of synthetic activity-travel patterns.
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Travel Mode: M;

There are numerous studies on travel mode choice. Most studies, however, are seriously limited
because they are trip-based, i.e., they analyze each trip separately in isolation from other trips.
Consider the choice of commuting by car because a car is needed for work. Then this mode
choice behavior cannot be explained by solely examining the home-to-work commute trip and
comparing the attributes of the travel modes available for that trip.

One of the critical requirements in synthetic pattern generation is to observe the |
constraints imposed on the transition between travel modes. For example, transition from public
transit to driving alone is usually not possible unless the transition takes place at the home or
work base where a private car is placed or at a special facility such as a park-and-ride lot. For a
trip chain that originates and terminates at the home base, the sequence of travel modes tends to
be governed by the boundary condition that the mode of the first trip from home is identical to
that of the last trip to home. These regularities and tendencies serve as a set of constraints in the

generation of activity-travel patterns.

MODELING CONSIDERATIONS

There are two broad classes of approaches to the generation of synthetic activity-travel patterns:
sequential (incremental) approaches vs. simultaneous (holistic) approaches. The former adopt
rules in order to generate, one by one, the activity that will immediately follow, given the history
of activity generation so far. The latter approaches, on the other hand, deploy behavioral

paradigms that are each concerned with the entire daily activity-travel pattern.
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One paradigm for the simultaneous approaches is that an individual with given attributes
has a probability vector that depicts the likelihoods with which he or she will exhibit respective
activity-travel patterns. A study by Pas (/4) is readily applicable to operationalize this paradigm.
Another paradigm is utility maximization where an individual chooses that activity-travel pattern,
from among a set of all feasible patterns, which offers the maximum utility. Studies based on this
assu'mptioh include Adler and Ben-Akiva (/5), Recker, et al. (16), and Recker (/7). The two
paradigms can be integrated to produce probabilities for alternative daily activity-travel patterns.

The simultaneous approaches have theoretical elegance. They can be expected to be more
sensitive to parameters describing the travel environment than sequential approaches. In addition,
simultaneous approaches can better reflect individuals' travel planning effort. Despite the
advantages offered by simultaneous modeling approaches, a sequential approach is proposed in
this study. There are three major reasons.

e Practicality: One important advantage of sequential approaches is the ease of implementation
they offer. When viewed as an optimization problem, daily activity-travel behavior is very
complex (2). Exact formulation of this behavior produces an overwhelmingly complex
mathematical problem. The size of the problem at each step is much smaller in sequential
approaches because a daily pattern is synthesized incrementally.

® Behavioral Basis: Sequential approaches do not lack a behavioral basis. For example, when
proposing the paradigm of satisficing, Simon (/8) noted that a person is not capable of
enumerating all possible alternatives or discerning minute differences among them.
Furthermore, a person often will not have complete information associated with all

alternatives. As such, even though certain travel choices may be considered simultaneous, it
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may be argued that people sequentially process “information elements” in order to reduce the
size and dimensionality of the problem.

o Contexts of Synthetic Activity-Travel Pattern Generation: Synthetic activity-travel patterns
are usually generated to represent baseline travel characteristics of the population under
prevailing conditions. In this context, sequential model systems offer policy sensitivities that
are consistent with the objectives of synthetic pattern generation.

The sequential approach adopted in this paper is based on the identity that, given n, the X-

T-L triple can be expressed as:

Pr[X;, T;, Li] = Pr{Xi1, X, ..., Xinj Tis, Tia, ..., Tin; Lis, Liz, ..., Lin]
= Pr[Xin, Tin, Lin| Xi1, X, ..., Xiat; Tit, Tiz, -, Tiswr; Lit, Lig, .., Li]
X Pr{Xin1, Tin1, Lint] Xit, Xi2, ---s Xin2; Tit, Ti2, ..., Tin2; Lis, Liz, ..., Lin2]
X ...
x Pr[Xi1, Ti1, L] 2

Each probability on the right-hand side can be formulated as a model for activity type, location

and duration, given the past history of activity and travel. In adopting the sequential approach, the

joint probability of an X-T-L triple needs to be decomposed into sequential elements. The
following decompositions are possible:

Pr{X,,T

ij> Lijs

Lij I Xi.j-l s Ti.j-l > Li,j-l ]

=P r[Lij|Xip Tij: 5(1,}1 ’Ti,j-l ’Li,j-l ]Pr[TijIXij’ii,j-l’ Ti,j-l aim ]Pr[xij IXi,j-l > Ti,j-l ’i‘i.j-l ]
o Lo L]

= Pr[Tij |Xij’Lij> Xi,j-l :Ti,j.p ii,}l ]Pr[Xileij’ Xi,,'.x s Ti,j-l ’i‘i,j-l ]Pr[Li,' |)~( T

=.. 3)

etc., where XLH = (Xip» X, - X0 ), etc.
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Since all permutations of X, Tj; and L lead to the same joint probability, the model's

replication capability should not depend on which permutation is adopted. Therefore that

permutation which can be theoretically supported and/or which offers most modeling flexibility

and sensitivity can be selected.

EXPLORATION OF POTENTIAL ASSOCIATIONS

As noted previously, knowledge has been accumulated on characteristics of activity-travel

behavior. A few salient aspects of activity-travel behavior that merit inclusion in a synthetic

generator are outlined in this section.

History Dependence: History dependence has been found to be prevalent in studies of activity
type choice (5, 19) and location choice (20, 21, 22, 23, 24). While it is also likely that history
dependence is prevalent for activity duration choice, the knowledge of the history dependence
in activity duration appears to be extremely limited.

Time-of-Day Dependence: Activity engagement is strongly dependent on the time of day.
Tabulations of time use data (e.g., 25) show surprising homogeneity in activity engagement
across individuals. This is partly institutional (e.g., work and school) and partly physiological
(e.g., meals, sleeping). The time-of-day dependence of activity engagement can be
represented by formulating engagement probabilities as time-dependent functions (6).

Spatial and Temporal Constraints: Different activities have different levels of constraints in
terms of (i) engagement, (ii) duration, (iii) location, and (iv) timing. Higher levels of
engagement and duration constraints are typically associated with work and school
(mandatory) activities. It may be assumed that more flexible activities are organized around

these constrained activities. Some types of activities may have tight constraints when they are



Kitamura, Chen, and Pendyala ‘ 13

pursued with prior commitment, e.g., a medical appointment. In general, constraints
associated with activity engagement vary significantly depending on institutional and
situational factors (e.g., store hours), prior arrangement and commitment, as well as the type
of activity. An issue in this effort is whether constraints associated with each activity should be
explicitly considered and modeled, or treated as random elements. Considering data
availability, only the latter approach is feasible. However, constraints on regular events such
as work and school merit explicit consideration.

Planned vs. Unplanned Activities: Some activities are routine, some are planned ahead, yet
some are unplanned and are pursued in response to unanticipated events. It is desirable that
the degree of planning be represented when synthesizing travel patterns as it allows the
analysis of transportation policy impacts on an individual’s travel plans. In the context of
synthetic pattern generation, however, representing the level of planning in activity
engagement is of lesser importance, given the constraints associated with activities are well
understood. Also, data availability is an issue. Based on these considerations, the model
system in this study does not explicitly incorpbrate the degree of planning.

Travel Time Budget. History dependence in L; as well as in T; would arise if a traveler
allocates a certain amount of time for traveling. This leads to the notion of travel time budgets
(e.g., 26). There have been disputes on whether individuals have a fixed time budget that is
invariant across individuals. However, more recent results offer evidence that when the
duration of a trip is reduced, then a portion of the time saving tends to be used to travel more
(13, 27).

Prism Constraints: The spatial expanse that is accessible to an individual for activity

engagement is determined by the speed of movement and the amount of time available.
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Hagerstrand (28) defined this expanse in the time-space dimension as the time-space "prism."
The prism contains all possible locations where activities can be engaged, and defines the
amount of time available for activities at each location within it. Kondo and Kitamura (29)
adopted the prism concept in the analysis of trip chaining behavior. Beckmann, et al. (26)
used the concept to define accessibility measures. The prism concept is important because it
defines the stafe space for the evolution of location choice.

Trade-off between Activity Duration and Travel Time: The trade-off between the duration of
activity and the time spent to reach the activity location is also important. One may choose to
visit a nearby opportunity and spend more time on the activity there, or visit a farther, but
better opportunity and spend less time there. This consideration is adopted by Kitamura, et al.
(12) in the formulation of time-utility functions. The model- in this study accounts for this by
making the probability of L;; conditional on Tj;.

Modal Continuity, Permissible YT ransitions and Time-of-Day Dependence:. Despite the
voluminous studies on travel mode choice, little is known on history dependence and time-of-
day dependence of travel mode choice. Modal continuity and modal transition have rarely
been addressed in the literature (a rare example can be found in 23). In general, the travel
modes used by an individual in a series of trips tend to be governed by the constraints
surrounding modal transitions. In addition, as both transit and highway levels of service vary
along the time of day, it is likely that mode choice is time-of-day dependent.

Relationships among Travel Choices: 1t is now widely recognized that various dimensions of
travel behavior are related to one another. For example, activity type choice influences
destination choice as a traveler would choose a destination that fulfills the specific activity

need. Similarly, inter-relationships exist between destination choice and mode choice, activity
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type choice and departure time choice, and departure time choice and activity duration. The
sequential model system developed in this study explicitly incorporates inter-dependencies

among travel choice dimensions in synthesizing activity-travel patterns.

MODEL FORMULATION
For X;; which is not travel, the following decomposition of the X-T-L triple may be adopted:
Pr[Xij: TijaLijp.(i,j-l > i,j-l ’i'i.j-I]

X T ]:'j-l]Pr[Xijlii,j-l,Ti,j-l’i‘i,j-l] “4)

12 M1 H i,

= PrlLy| X, T;, X0, T, Loy PTG X
In this formulation, an activity type is selected first; given the type, its duration is determined; and
finally, a.location is chosen given the type and duration. Each of these decision elements is
assumed to be dependent on the past history of behavior. This formulation is based on the view
that activity engagement is the most fundamental decision that drives duration and location
choice. While this may not hold true under all conditions, it may be regarded a typical activity
engagement decision process.

When Xj; is travel, the following decomposition would be more appropriate:

PrX.,T,

2 >

LijIXi,j-l > Ti,j-l ’Li,j-l]

=PrT;|X;,L;, X0, T, Ly IPHL X, X

TR TRk B S Rl S E g § ij ij? I,j-l’Ti,j-l,Li,j-l ]Pr[XijIXi,j-l’Ti,j-hLi,j-l] (4,)
Namely, the destination, L;, is determined before travel time, T;;. This reflects the view that travel

time can not be determined before destination and mode are determined.

Overview of the Synthetic Travel Pattern Generator

The components of the synthetic travel pattern generator are:
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e activity-type choice models
- home-based and non-home-based
- workers and non-workers
e activity duration models
- workers and non-workers
- by activity type
e activity location choice models
- home-based vs. non-home-based
- workers and non-workers
- by activity type
e mode choice and mode transition models
- home-based and non-home-based
e initial departure timing models
- workers and non-workers
e initial location models
- workers and non-workers
where “worker” refers to an individual who is employed, either full-time or part-time, or a
student. It is possible for a part-time workers’ daily activity-travel pattern to not include a
commute trip. At this stage, model components have been developed for weekdays only. The
activity types used in the models are: work, work-related, school, return to work,
social/recreation, shopping, personal business, eat out, home (transient), and home (absorbing).

The remainder of this section describes each model component.
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Activity-Type Choice Models

Activity-type choice models are concerned with Pr[X;|X; ,,T,,,,L;;;]. These models
probabilistically determine the next activity typé to be engaged. Two types of models, home-
based models and nen-home-based models, are developed. The former is for an out-of-home
activity that follows an in-home sojourn, while the latter is for an activity, whether in-home or
out-of-home, that follows an out-of-home sojourn. While the latter includes “in-home activity” as
an alternative in the choice set, the former excludes it. It is to be noted that the home-based vs.
non-home-based distinction does not refer to the location where the choice is made. Both types
of models are developed for workers and non-workers separately. The history dependence of
activity type transition is represented by formulating the probability of an activity type as a
function of the series of activities so far engaged, )-(i,j_l, the time that has been allocated to them,
Ti,j_l, and the current location, L;j.

Activity Duration Models

Consider an activity type, a. Given X;; = a, T;; will have a probability distribution function whose

parameters are functions of t, X, ., T, .|, Li;1, and Z, as follows:

L1 Lyl

PrT, <q/X;=2,X,;,, T, 001, Z1= G, (@ X0, T 0000, Z), 920,2=12, .,k (5)
where

t = time of day when the (j-1)th activity ended

Zi = vector of person attributes and other explanatory variables.

G, is a distribution function. Two sets of activity duration models are developed; one for workers

and the other for non-workers. The same activity classification scheme as in the activity-type
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choice models is adopted and models are developed for all activity types except absorbing home
(person returns home for the day).

Some distribution functions may be preferred over others for activity duration. For
example, let an activity comprise n task elements, and let task completion times be identically and
independently distributed (i.i.d.) with a negative exponential distribution for all task elements.
Then the distribution of the duration of this activity is a type-n Erlang distribution. Other
distributions, including negative exponential, Weibull, and log-normal distributions, have geneses
that offer interpretations suitable for activity duration. The Weibull distribution is used in this
modeling effort considering its goodness-of-fit and intuitively appealing interpretation in the

context of activity duration modeling.

Activity Location Choice Models
The problem here is to determine the probability that the location of the j-th activity is g, given the
T, and

i,j-1> i, j-1

type and duration of the activity, the completion time of the (j-1)th activity, t, X

I:i, ;1- The models are formulated for all activity types, except in-home activity.

Home-Based Models

The home-based location choice models take on a form that is similar to conventional destination

choice models:

-~

PriL; = glh,, X, T, X, T, L0, Zi, A, §]

52 T2 “MED LD D

= Pr[Lij =g|t,h;, X, = a,T;= qysz,s]

=H,(gt,h,q,Z,A,S) (6)
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where h; denotes the residence zone, A is a vector of attractiveness measures of alternative
locations, and S is a matrix of origin-destination travel times. Note the assumption that the
T ., and L,

location choice is conditionally independent of 5(“_,, - 2

given t, h; (=Li ,j-l'), X,‘j (=a),

and Tj; (=9).

Non-Home-Based Models
As will be discussed later, a travel mode is assigned in the procedure prior to the selection of
destination location for a trip whose origin is not the home base. Let M;; be the mode of the trip

made to the j-th activity location. With the assumption that destination choice is conditionally

independent of Mm as well as Xi,j_l, Ti_j_l and fq,,;z, given t, h;, Liju (=6), X; (=a), T (=q), and
M; (=), -~
Pr[L; = glh, X;, T, M;, X, T, . L., M, Z,, A, §] |
=PrL; =glt,h,X;=a,T;=q,L;, =f,M,,, =1,Z,,A,S§]
=Q,(g:t,h,,q,f,1,Z,A,S) @)

Mode Choice and Mode Transition Models
A travel mode is assigned to each trip using the following procedure:
o the travel mode for the first trip in each home-based trip chain is determined (home-based
models), and
¢ a mode transition matrix is developed and applied to determine subsequent travel modes

on a trip-by-trip basis (non-home-based models).
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The model system incorporates a dummy variable that indicates whether a private car is parked at
the work place, which makeé. the probability very high that a car will be used for a trip originating
from the work place. Models are developed for workers and non-workers separately. Travel

modes are grouped into: auto driver, auto passenger, public transit, and bicycle and walk.

Home-Based Models

The home-based models incorporate accessibility indices for the residence zone and, for workers,
accessibility indices for the work zone. Accessibility indices by mode are defined as the “log-sum”
variables of the utility functions of the destination choice models. Highway and transit travel
times and distances to destination zones are also incorporated. Also included in the models are

descriptors of the destination zone (e.g., percent retail) and the time of day when the trip starts.

The models take on the form:
Pr[Mij = l'lhi > Xij’ Tij)Lija ii,j—l’Ti,j-l sf‘i,j-l ’Mi,j-lzi’ A3 §]
=Pr{M; =1t h;,X; =a,T;=q,L;=f,H,,,,Z,,A,§] ®)

where ﬁm is defined as I:IL n = Hy;.Hy g, - Hip jy)', m being the number of modes and

H;, ,, =1, if Hiju containsmoder, forr=1.2,...,m;
H;;, =0, otherwise.

Non-Home-Based Models
The non-home-based models are transition models which determine the probability that a certain
travel mode will be used for a trip given the mode of the previous trip. Additional explanatory

variables include descriptors of the destination zone, car-parked-at-work dummy (for workers)
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and the time of day. The non-home-based mode choice models are trip-end models that are
applied before destination location is determined. They can be summarized as follows:

PriM; =1h,,X,, T, X,,,,T,,.L..,,.M

12 Tij CMLFLY T g Zi’ A) S]

i
=PrM; =rt,h,w,,,,X; =a,T,=q,M,,, =u,H,,,Z,,A,S] ©)
where wi;.; is the car-parked-at-work dummy. As noted earlier, non-home-based mode choice

models are transition models, and replicate modal continuity conditions in the data set.

Initial Departure Timing Models

These models may be viewed as the duration models for the first activity of the day starting at say,
3:00 a.m., which is typically an in-home activity (most probably, sleeping). In this study, models
are estimated for workers and non-workers separately, and applied in synthetic pattern generation

to those sample individuals who are at home at 3:00 a.m.

Initial Activity Type/Location Models

These models determine the type and zonal location of the first activity. As noted earlier, this is
usually an in-home activity and the location is the residence zone. Data sets thus do not typically
offer rich information (in terms of variation across individuals) for these models. As a result, they

tend to be simple frequency models without many explanatory variables.

Work Location Models
These models are equivalent of home-based work trip distribution models. The probability that a

worker commutes to a certain zone is formulated as a function of network auto travel times, zonal
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attributes, and person and household attributes. The models are formulated as multinomial logit

models.

7. SAMPLE ESTIMATION RESULTS

This section provides sample results of the estimation of activity type choice models and activity
duration models for the following:

e Work activity for workers

e Social Recreation activity for workers and non-workers

For purposes of brevity, the presentation of results in this paper has been limited to two modules
of the generator and two activity types. This section is intended to provide a representative
indication of the performance of the model for mandatory (work) and discretionary (social
recreation) activities and for workers and non-workers, thus covering a variety of behavioral
conditions. The 1991 travel diary data set of the Southern California Association of Governments
is used for model estimation and validation purposes. The data set provides a total of 136,640
trip records for 32,515 individuals. As such, it provides rich information with a sufficient samble
size in each population segment considered in this effort. Sample estimation results for each of

the two modules are summarized in the subsections that follow.

Activity Type Models

The data set was randomly divided into two subsets; one subset was used for estimation purposes
and the other for validation purposes. Multinémial logit models of activity type choice were
estimated using standard maximum likelihood methods. Estimation and validation results are

presented in Tables 1 and 2 respectively.
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Table 1 presents estimation results for six activity type choice models. They are:

e Home-based and non-home-based models for workers
- Return to work
- Social-recreation

¢ Home-based and non-home-based models for non-workers
- Social-recreation

Models estimated for workers set work as the reference alternative (utility is set to zero),
while models for non-workers set shopping as the reference alternative. Explanatory variables
include socio-economic characteristics of the persoh, dummy variables of time-of-day, and lagged
dependent variables of history dependence. Those time periods which are not represented in the
model are used as reference periods.

The models clearly show the time-of-day dependence of activity type choice. For example,
in the home-based model for workers, the “return to work” activity peaks around 11:30 a.m. to
1:00 p.m.; this may be explained by workers having lunch and then returning to work.
Social/recreation activities peak between 7:30 pm and 9:30 p.m. as evidenced by the larger
coefficients associated with dummy variables representing evening hours. During the early
morning, coefficients for social recreation are less than those for work indicating that the work
activity peaks during that period.

Socio-economic variables also play important roles in determining activity type choice.
The work and social recreation activity models presented in this paper do not include socio-
economic variables as they were found to be statistically insignificant at the 0.05 level. However,
other activity types including personal business, shopping, eat out, and school (not shown in this

paper) were significantly influenced by socio-economic characteristics.



Kitamura, Chen, and Pendyala 24

History dependence is represented by a lagged dummy variable, which takes on a value of
1 if the activity is performed earlier in the day and O otherwise. History dependence effects are
found to be statistically insignificant for the return to work, but are found to be significant in
explaining workers’ social-recreation activity engagement. The coefficients have negative signs
indicating that if a social-recreation activity was pursued previously in the day, then there is a
reduced likelihood of repeating the activity. History dependence was also found to be significant
for other activity types, notably shopping and personal business (not presented in this paper).

Table 2 presents validation results for the six models for which estimation results were
presented in Table 1. The validation results are presented by time of day over a 24 hour period
for return to work and social recreation activities. For each time period, the actual frequency of
each activity type and the expected frequency (calculated as the product of mean probability and
total frequency) are provided. ¥ statistics are then éalculated for each cell. In this table, if the *
statistic is less than the critical value at n-1 degrees of freedom (where n is the number of time
periods), the predicted frequency distribution is not significantly different from the actual
frequency distribution. The * statistic associated with each cell also indicates the activity that
contributes most to differences between the predicted and observed distributions.

Table 2 shows that when the model is applied to the validation set, the overall activity
pattern by time-of-day is captured successfully. An examination of the y? statistics indicates that,
without exception, the actual and the expected frequency distributions are not significantly
different for all of the six models presented. It is noteworthy that similar results were obtained for

other activity types also (tables not shown).
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Activity Duration Models

Table 3 presents estimation results for a few activity duration models. These models are
estimated assuming that the duration of an activity episode is described by the Weibull
distribution.

The Weibull distribution is often used to model the failure time distribution of
manufactured components. Analogously, it may be used to model the distribution of the length
(duration) of activity episodes. The Weibull density function is convenient in that it provides a
wide variety of density curves to model real life failure time distributions. In addition, unlike the
Gamma distribution, the Weibull distribution has a closed-form expression for its cumulative
distribution function.

In all of the three models presented in the table, the model coefficients have the expected
sign. History dependence is a significant factor influencing the length of an activity episode. For
example, as the cumulative past time spent at work increases, the length of a “return to work”
activity episode decreases. Similarly, as time spent at work or school increases, the duration of
social-recreation activity episodes decreases.

Time-of-day is also found to be a significant factor explaining activity duration. Social-
recreation activities are shorter in the morning and longer in the evening for workers. The reverse
is true for non-workers who may often pursue social-recreation opportunities in the morning.
Return to work activity durations are longest in the morning and late evening, but shorter during
mid-afternoon. Finally, socio-economic variables such as gender, employment status, age, and
household structure are found to influence activity durations.

Validation of the activity duration model (results not presented in the interest of brevity)

may be done in a manner similar to that for activity type choice models. The observed and
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predicted frequency distributions of activity durations by activity type may be compared using 1
test-statistics to determine whether the activity duration models are statistically replicating

observed activity sojourn patterns.

CONCLUSION

An analytical framework has been proposed in this paper for the development of a procedure for
generation of synthetic activity-travel patterns. As more refined travel demand forecasting and
policy analysis are demanded in the current transportation planning contexts, it is becoming
inevitable that a new generation of travel demand models be adopted to satisfy planning needs.
Microsimulation of travel behavior is emerging as a promising approach. Many issues, including
the generation of synthetic activity-travel patterns, need to be resolved before its practical
adaptation; yet only limited knowledge has been accumulated on these issues. In this study,
attempts have been made to include a broad range of analytical issues and develop a rationale for
the proposed approach. It is hoped that the paper has aided in paving the way for the
development ofra synthetic activity-travel pattern generator and toward the formulation of the

next generation of travel demand models.
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